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Abstract

We numerically investigate the influence of interfacial deformations on the drag

force exerted on a particle straddling a fluid interface. We perform finite element

simulations of the two-phase flow system in a bounded two-dimensional geometry.

The fluid interface is modeled with a phase-field method which is coupled to the

Navier-Stokes equations to solve for the flow dynamics. The interfacial deformations

are caused by the buoyant weight of the particle, which results in curved menisci.

We compute drag coefficients as a function of the three-phase contact angle, the

viscosity ratio of the two fluids, and the particle density. Our results show that, for

some parameter values, large drag forces are not necessarily correlated with large

interfacial distortions and that a lower drag may actually be achieved with non-flat

interfaces rather than with unperturbed ones.
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1 Introduction

The problem of particles straddling an interface between two immiscible fluids (e.g. oil

and water or air and water) has been extensively addressed in the literature for many

decades. It is well-established that the presence of a fluid interface alters drastically the

transport properties of adsorbed particles (e.g. macromolecular proteins, small Brownian

aggregates, or macroscopic objects) and their interactions compared to the bulk situation.

For instance, in addition to bulk interactions due to van der Waals and electrostatic

forces, floating particles may also experience capillary interactions if they cause sufficient

perturbations in the interfacial shape [1, 2]. Such interactions originate from the overlap

of interfacial distortions and feature energies well above the thermal energy that may lead

to the clustering of a great variety of particles (from 10 nm to 1 cm) forming a wide range

of self-assembled structures [1, 3, 4]. Other experiments revealed that the diffusivity of

Brownian interfacial particles may be at odds with the well-known bulk Stokes-Einstein

law [5].

Early investigations of interfacial particle hydrodynamics dealt with translational mo-

tions both across and along fluid phase boundaries combined with rotations about axes

lying in the interfacial plane [6]. One of the simplest situations deals with the drag force

FD exerted on an isolated rigid sphere translating along a fluid interface at low Reynolds

number. In this case, FD has been written as [7]:

FD = −6πµRfdU , (1)

where R is the sphere radius, µ denotes a characteristic dynamic viscosity, U is the

particle velocity relative to the fluids, and fd is a corrective dimensionless drag coefficient

accounting for the presence of the interface. The well-known bulk Stokes drag is obviously

recovered for fd = 1. However, this is seldom the case at the interface where fd can be

either smaller or greater than 1. Several experimental and theoretical studies have shown

that fd depends not only on the three-phase contact angle α and the viscosity ratio of the

two fluids [7, 8, 9, 10, 11, 12, 13], but also on the deformation of the interface which in turn

is a function of the fluids density ratio, surface tension, size and density of the adsorbed
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particle [14]. The presence of adsorbed surfactants brings in an additional contribution to

the drag, with fd up to ≃ 3, due to the viscous nature of the interface with nonvanishing

shear and dilatational viscosities [8, 9, 15, 16, 17]. More recent investigations focused

on the influence of contact line fluctuations on the drag force [18, 19], whereas both the

rotational and translational dynamics of a colloid moving at a flat air-liquid interface in

a thin film were addressed in [20].

However, among the various parameters affecting the value of fd, the influence of

interfacial deformations has been particularly overlooked so far. On the experimental

side, Petkov et al. [14] were the first to address this issue and reported substantial fd

values (fd ≃ 1.75) due to a deformed meniscus forming around heavy copper spheres

translating at the air-water interface. The meniscus dimple was caused by the particle

buoyant weight in this case and the authors attributed the enhanced drag coefficient

to the motion of the curved meniscus around the particle together with the particle

itself. So far, we are unaware of any other study similar to that of [14] at liquid-gas

interfaces. However, a few works dedicated to pairwise interactions of interfacial particles

at liquid-liquid interfaces mentioned smaller fd values, around 1.2, presumably for the

same reasons [21, 22, 23]. On the theoretical side, only the recent work of Dörr & Hardt

[24] considered explicitly interfacial deformations around spherical particles translating

along an interface between fluids of very different viscosities. The driven spheres act as

capillary dipoles but the effect on the drag force was not reported. Furthermore, we

are not aware of any numerical simulations that take explicitly into account interfacial

perturbations. Does a curved meniscus always increase the drag, as is commonly believed?

A detailed investigation on that subject is currently missing and will be the main topic

of the present work. Since drag forces are ubiquitous in any fluid media, the problem is

also relevant to the self-assembling properties of a great variety of adsorbed species (e.g.

nano- or micro-particles, proteins, molecular aggregates) confined in fluid interfaces, thin

liquid films, and even membranes of lipid vesicles or living cells [4].

In the following, we wish to shed some light on the influence of interfacial deformations

on the drag force exerted on particles translating along a fluid interface. We tackle this
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task through two-dimensional (2D) numerical simulations able to describe the dynamics

of two-phase flow systems in the presence of a fluid interface and a three-phase contact

line. Our primary objective is to qualitatively capture the main physical trends upon

browsing the parameter space, which justifies a simple 2D approach to start with. To

the best of our knowledge, we do not know of any other simulations or theoretical works

addressing similar issues.

The outline of the paper is as follows. In section 2, we describe the geometry of

the problem prior to summarizing the governing equations in section 3. We specify the

relevant dimensionless parameters along with some details relative to the computations

of drag forces and particle densities. General considerations on the numerical method

we employed follow in section 4. Validation steps are then presented in section 5 before

describing and discussing the results in section 6. In particular, we will show that large

drag forces are not necessarily correlated with large interfacial deformations. Concluding

remarks close the paper in section 7.

2 Geometry

The detailed geometry of our 2D problem is specified in Fig. 1. An infinitely long circular

cylinder of radius R and density ρp is trapped at the interface between two Newtonian

fluids of different densities (ρ1, ρ2 with ρ2 > ρ1) and dynamic viscosities (µ1, µ2). The

whole system is confined in a box of length L and height H. In practice, the cylinder

moves horizontally across the interface with a constant velocity −U0 x̂ under the action of

an external force. However, in our simulations, we use a reference frame attached to the

cylinder so that far from it, both liquids flow with constant velocity U0 in the direction of

the x-axis. In this case, the upper and lower bounding plane walls should also move with

the same velocity U0 from left to right in their own planes. Note that the cylinder’s center

of mass will not be necessarily located midway across the fluid interface. Actually, its

position will be shifted either up or down in order to simulate different cylinder densities,

as we will explain further below. In most cases, the fluid interface will be deformed

around the cylinder, featuring either an upward or a downward meniscus depending on
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operating conditions. The interfacial tension between the two fluids is denoted as σ.

The fluid interface is kept horizontal at the inlet and the outlet in all cases, whereas the

contact angle, α, at the cylinder surface (cf. Fig. 1) is a parameter of the simulation

which will take on different values. All the physical and geometrical parameters used in

the simulations are reported in table 1.

Figure 1: Geometry of the problem for the computation of two-dimensional two-phase flow

drag on a circular cylinder confined at a fluid interface between two plane walls. PPC: Pressure

Point Constraint, α: contact angle, ∆ym: Meniscus elevation. See text and table 1 for other

symbol definitions.

3 Governing equations

3.1 Two-phase flow modeling

In order to determine the drag force exerted on the cylinder at the fluid interface, we need

a model able to describe the interfacial dynamics accurately. Among the numerous multi-

phase flow approaches available in the literature [25], we opted for a diffuse interface

method, based on the concept of “phase-field” (PF), to account for the fluid interface

motion, combined with the Navier-Stokes equations to describe the flow. The choice

of the PF model was primarily motivated by the fact it provides an elegant, coarse-

grained physical description of interfaces where short-range intermolecular interactions,
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Table 1: Definitions and values of the parameters used in the simulations.

Parameter Symbol Value Unit

Cylinder radius R 1 mm

Box length L 30R mm

Box height H 20R mm

Inlet/outlet velocity U0 20 µm.s−1

Upper fluid dynamic viscosity µ1 0.001− 0.1 Pa.s

Lower fluid dynamic viscosity µ2 0.1 Pa.s

Upper fluid density ρ1 800− 103 kg.m−3

Lower fluid density ρ2 103 kg.m−3

Cylinder density ρp 600− 1200 kg.m−3

Interfacial tension between fluids 1 and 2 σ 0.01 N.m−1

Contact angle α 40◦ − 140◦ deg

such as van der Waals forces, are implicitly taken into account. An explicit tracking of

the fluid interface is unnecessary and the interface normal and curvature are not required

to accurately determine surface tension forces. Moreover, the PF approach is naturally

able to simulate contact line motion without any singularity or ad hoc slip models [25].

The details of the coupled phase-field/Navier-Stokes equations have been described ex-

tensively by a number of authors [25, 26, 27, 28]. Consequently, in the following, we will

only highlight the main ideas and list the governing equations.

The two fluid components are considered immiscible, but in the PF formulation, they

are allowed to mix within a thin interfacial region. A PF variable, or scaled ‘concentra-

tion’, φ is introduced such that in the two-fluid bulks φ = ±1 and the fluid-fluid interface

is defined by φ = 0. The free energy associated with the mixing process may be written

fmix =
λ

2
|∇φ|2 + λ

4ϵ2
(
φ2 − 1

)2
, (2)

where λ is the mixing energy density with a dimension of force, and ϵ is a capillary width
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representative of the diffuse interface thickness. The equilibrium fluid-fluid interfacial

tension is defined by the ratio λ/ϵ and given by [26, 27]

σ =
2
√
2

3

λ

ϵ
. (3)

The evolution of φ, and therefore of the fluid interface, is governed by the Cahn-Hilliard

(CH) equation [26, 27]
∂φ

∂t
+ v ·∇φ = ∇ · (γ∇G) , (4)

where G = λ
[
−∇2φ+ (φ2 − 1) /ϵ2

]
is the chemical potential, γ the mobility parameter

(assumed to be constant), and v the fluid velocity. The balance equations of mass and

momentum must be added to the above relation to describe the fluid dynamics. The fluids

being incompressible, the velocity and pressure fields satisfy the Navier-Stokes equations

∇ · v = 0 , (5)

ρ(φ)

(
∂v

∂t
+ v ·∇v

)
= −∇p+∇ · σv + ρ(φ)g +G∇φ , (6)

where the last body force term in the momentum relation (G∇φ) is the diffuse-interface

equivalent of the interfacial tension [26, 29]. σv = µ(φ)
[
∇v + (∇v)T

]
is the viscous

stress tensor, g is the gravitational acceleration, and ρ(φ) (resp. µ(φ)) is the density

(resp. the viscosity) of the two-phase system given by: ρ(φ) = 1+φ
2 ρ1 + 1−φ

2 ρ2 , and

µ(φ) = 1+φ
2 µ1 +

1−φ
2 µ2 .

The coupled equations (4-6) must be supplemented by initial and boundary conditions.

With the help of Fig. 1, the boundary conditions for the velocity are:

v = U0 x̂ , onΓwall (7)

v = 0 , on the cylinder (Γp) (8)

v = U0 x̂ , onΓin and Γout . (9)

The pressure level was set to zero at the top left corner of the box [pressure point

constraint (ppc) in Fig. 1]. As for the CH variables, we impose the following boundary
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conditions for the chemical potential (G) and φ

∇G · n̂ = 0 , on all boundaries (10)

∇φ · n̂ = |∇φ| cosα , at the contact line (11)

∇φ · n̂ = 0 , on Γin and Γout , (12)

where n̂ is the outward unit normal vector to the considered boundary. Eq. (10) is a

zero-flux natural boundary condition resulting from the variational formulation of the

CH equation. Eq. (11) is a geometric condition enforcing a constant contact angle α at

the three-phase contact line on the cylinder. This condition is set in the Comsol phase-

field module and allows the determination of the contact line position. The latter is

automatically updated according to the motion of the fluid interface. Also, we assume

that equilibrium is reached at any time so that contact angle hysteresis is discarded.

Outside of the fluid interface, Eq. (11) reduces to a homogeneous Neumann condition,

while Eq. (12) simply reflects the fact that we impose α = 90◦ on Γin and Γout .

Finally, as initial conditions, we set up a zero pressure and fluid velocity everywhere

in the domain. At time t = 0, the fluid interface is flat and the particle center of mass

lies in the center of the box, if not otherwise stated.

3.2 Dimensionless groups

If we consider the parameters listed in table 1, together with those specific to the CH

model, namely, the capillary width ϵ and the interfacial mobility γ, a total of seven
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dimensionless numbers may be constructed for our problem:

Bo =
∆ρgR2

σ
, where ∆ρ = ρ2 − ρ1 (Bond number) (13)

Ca =
µ2U0

σ
, (capillary number) (14)

Re =
ρ2U0R

µ2
, (Reynolds number) (15)

Cn =
ϵ

R
, (Cahn number) (16)

S =

√
γµe

R
, where µe =

√
µ1µ2 (mobility number) (17)

µ∗ =
µ1

µ2
, (viscosity ratio) (18)

ρ∗ =
ρ1
ρ2

, (density ratio) . (19)

The Bond number, Bo, compares the relative importance of surface tension and gravity

forces. It may also be written as: Bo = (R/Lc)
2, where Lc =

√
σ/(g∆ρ) is the capillary

length. The latter gives the typical length scale over which interfacial deformations occur

due to the competition between surface tension and gravity. In our work, Bo will be

smaller than unity (Bo ≃ 0.2), meaning that capillarity will be more important than

gravity. The capillary number will be very small in this study, Ca ∼ 10−4 − 10−3,

implying that the shape of the fluid interface should not be altered by the flow around the

cylinder. This is the simplest situation to consider as a first step and, given the already

complicated nature of the problem, we will not explore here the effect of finite Ca, which

can be examined in a future effort. Moreover, since the cylinder is kept fixed and does not

rotate, and that all our drag simulations involve steady-state flows, there is no motion of

the contact line relatively to the cylinder surface.

Next, fluid inertia is not important here since the Reynolds number is well below unity

(Re ∼ 10−4−10−3), i.e. we are near the Stokes flow limit. The two following dimensionless

groups, Cn and S, are specific to the CH model. The former represents the interfacial

thickness while the latter reflects the so-called CH-diffusion across the fluid interface [30].

Their values cannot be easily assigned for real materials but are of paramount importance

to ensure convergence and accuracy of the computed solutions. We used the guidelines

proposed in [29, 30] to ensure that the fluid interface was appropriately resolved, which is
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a crucial issue in the PF method. More details on this point will be provided in the next

section. Finally, we varied the viscosity ratio in the range 0.01− 1 while the density ratio

was kept close to unity (0.8− 1).

3.3 Drag force and particle density calculations

In our 2D geometry (Fig. 1), the drag force (per unit length), F̃D, acting on the particle

in the x-direction, can be computed by integrating the total stress exerted on the cylinder

contour, Γp ,

F̃D = x̂ ·
∮

Γp

(−pI+ σv) · n̂ ds , (20)

where x̂ is the unit vector in the x-direction, n̂ the outward unit normal vector on the

line element ds, and σv the viscous stress tensor defined previously [Eq. (6)]. Since we

only consider the case of a nonviscous fluid interface, there is no additional contribution

coming from the fluid interface to the drag force. The influence of interfacial viscosity on

F̃D was considered by, e.g. Danov et al. [8, 9].

In our simulations, the interfacial deformations are caused by the particle’s buoyant

weight which depends on its density. At steady state, the y-component of the force balance

on the particle reads:

M̃g = F̃v + F̃c = ŷ ·
∮

Γp

(−pI+ σv) · n̂ ds+ σ ŷ ·
∮

Γp

σc · n̂ ds , (21)

where M̃ is the mass (per unit length) of the cylinder and ŷ is the unit vector in the

y-direction. σc is the capillary stress tensor whose expression can be derived using a

variational procedure, as shown in [27], yielding

σc = fmix I− λ∇φ∇φ , (22)

where fmix is the mixing free energy density defined in Eq. (2). Note that taking the

divergence of Eq. (22) leads exactly to the body force term (G∇φ) in Eq. (6) for the

surface tension. The first term on the right hand side (rhs) of Eq. (21) accounts for

the viscous force (per unit length), F̃v, exerted on the particle due to stresses generated
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by fluid motion. In the absence of flow, F̃v simply reduces to the buoyancy force. The

second term on the rhs of Eq. (21) corresponds to the capillary force (per unit length),

F̃c , exerted on the cylinder because of interfacial deformations. Note that F̃c becomes

non-zero as soon as the interface deforms to satisfy the prescribed contact angle for a given

position of the cylinder across the interface. Since F̃v and F̃c can be readily computed in

the simulations, the particle weight (or density) follows directly from Eq. (21).

In this work, we would like to stress that we choose to explore the effect of different

particle densities not by tuning the value itself, but by changing the vertical position of

the particle across the interface. For a given contact angle, we compute the steady state

solution while holding the cylinder fixed in place and compute its density as explained

above. We will demonstrate in Sec. 5.2 that the resulting interfacial profile is identical to

that one would obtain by solving explicitly the vertical force balance [Eq. (21)] for a freely

moving cylinder of the same density. In the latter case, the cylinder would be allowed to

translate vertically across the interface until equilibrium is reached, and a costly moving

mesh feature would be required to resolve this motion in situ. Our strategy enables us to

bypass this complication, thereby making the computations faster.

Finally, it will be shown in Sec. 6.3 that the explored range of particle displacements

across the interface does not incur any change in confinement effect.

4 Numerical method

Eqs. (4)-(6), and the imposed boundary conditions [Eqs. (7)-(12)], were solved numeri-

cally using the finite element computational software COMSOL Multiphysics! [31] with

the coupled two-phase laminar flow/phase-field (Cahn-Hilliard) modules. To guarantee

accuracy and stability, we discretized the fluid flow with quadratic elements for the ve-

locity field and linear elements for the pressure field; quadratic elements were employed

to discretize the phase-field variable. We used a fixed nonuniform triangular mesh fitted

with subdomains to appropriately resolve the fluid interface as it moved within the do-

main to satisfy the imposed contact angle on the cylinder surface. The subdomains were

uniformly meshed with a mesh size adjusted so that the interfacial thickness, which is on
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the order of 4ϵ, contained at least 8− 10 elements. According to the criterion defined in

[29, 30], the latter condition ensures a sufficient resolution of the fluid interface, which is

of great importance within the PF framework. The dimensions of the subdomains were

optimized in each case, depending on the contact angle value and the vertical position of

the cylinder. Sizeable interfacial deformations, which mostly occurred for small (α < 50◦)

and large (α > 130◦) contact angles, required the largest subdomains, as expected. Out-

side of these domains, the mesh size was much coarser since the fluid interface never

wandered in these areas. The value of the mobility number S was adjusted so that the

inequality Cn < 4S was always satisfied in all our simulations. The latter condition was

recommended as a guideline in [30] for producing convergent results with moving contact-

lines. With a Cahn number Cn = 0.04 (resp. Cn = 0.02), a typical mesh consisted of

≃ 140 000 (resp. 450 000) elements with about 1.5 million (resp. 4.8 million) degrees of

freedom. We advanced the system to steady state using an implicit time-stepping scheme.

At every time step, we used Newton iterations to solve the nonlinear system, and chose

either the ‘MUMPS’ or ‘PARDISO’ solver of COMSOL to solve linear systems. Steady

state was reached, in most cases, after ∼ 50 s (physical time) and about 1h (Cn = 0.04)

to 4h (Cn = 0.02) of computing time on a workstation equipped with an Intel i7 8-core

processor with 64 GB of RAM.

5 Validations

5.1 Drag force

Prior to dealing with non-flat interfaces, we first present a validation of our numerical

setup for computing the drag force on the cylinder in a confined two-phase flow case

with a flat interface. Since the simulation box has a finite size, confinement effects are

unavoidable, and it is well-known that the presence of boundaries strongly influence drag

values [32]. Nevertheless, the confined case is still very interesting to consider because,

one the one hand, experimental systems are always confined, and on the other hand, the

so-called Stokes’ paradox [33] disappears in a bounded geometry, allowing 2D Stokes drag
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Table 2: Comparison between our numerical results and those of the literature for the dimen-

sionless drag force F̄D. Definition of symbols: H/L: Box aspect ratio; spf: single-phase flow;

tpf: two-phase flow. Rel. err.: Relative error between Present Study - spf and Present Study

- tpf. Cn: Cahn number [cf. Eq. (16)]. For the Present Study - tpf case, the two phases

have the same viscosity and density than in the Present Study - spf situation. For illustrative

purposes, only the results for two different values of H/L are displayed below, but many other

degrees of confinement were tested and show an equally good agreement between the litera-

ture data and our simulations. Parameters: µ = 0.1Pa.s, ρ = 103 kg.m−3, U0 = 20µm.s−1,

Re = 2× 10−4.

F̄D = F̃D/µU0
H/L

Ref. [35] Ref. [34] Present Study - spf Present Study - tpf Rel. err. (%)

8.9650 (Cn = 0.04) 0.26

8.9535 (Cn = 0.02) 0.1320R/30R 9.1990 8.9506 8.9440

8.9400 (Cn = 0.01) 0.02

16.5555 (Cn = 0.04) 0.25

16.5155 (Cn = 0.02) 0.1210R/20R 16.7335 16.5326 16.5160

16.5080 (Cn = 0.01) 0.05

analytical solutions to be found [34]. However, since we were unable to find any reference

data for two-phase flows in a confined geometry, we used as references the analytical

result of Faxén [34] and the numerical data of Ben Richou et al. [35] valid for single-phase

flows and very low Re. To compare with such data, we computed the bulk flow around

a cylinder, first using a single-phase formalism, and then employing our more general

two-phase formalism. In the latter case, we matched the densities and viscosities of the

two phases so that the fluid interface plays no role. In these tests, the cylinder lies in

the middle of the box with the fluid interface (when present) halving the domain. In

two-phase flows, a 90◦-contact angle was imposed on all solid boundaries. We computed

the dimensionless drag force F̄D = F̃D/µU0 for two box aspect ratios H/L. The values

are summarized in table 2, along with the other relevant parameters.
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Figure 2: Velocity field and the associated streamlines (red arrow lines) obtained for (A) a

single-phase flow (spf) (reference state), and (B) a two-phase flow (tpf) with the cylinder held

fixed in the middle of the box. The fluid interface is represented as a solid black line (φ = 0)

and the color bar indicates the velocity amplitude in m/s. Simulation parameters: α = 90◦

(tpf), µ∗ = 1 (tpf), ρ∗ = 1 (tpf), Cn = 0.01 (tpf), H/L = 20R/30R.

As can be seen from table 2, our single-phase flow values for F̄D reproduce well the

literature data, especially those due to Faxén [34]. The same comment goes for the

two-phase flow situation with identical phases. The relative error on F̄D is on the order

of 0.25% or less depending on the Cahn number. As Cn decreases, the two-phase flow

value of F̄D becomes extremely close to its single-phase flow counterpart, meaning that we

approach the so-called sharp interface limit (ϵ → 0) [29, 30]. In this limit, the CH diffusion

is minute, the fluid interface is at equilibrium and does not perturb the streamlines, which

should be identical (with α = 90◦) to those of the single-phase flow case, as is indeed

revealed in Fig. 2. The overall good agreement therefore validates our numerical setup.

In the following, we will use the box size H/L = 20R/30R to make sure that (i) the

position of the confining walls is not too close to the cylinder, i.e. we are not dealing with

a highly confined geometry, and (ii), the lateral extension of the fluid interface covers

a few times the capillary length in most cases. Note that increasing the length of the

simulation box is computationally costly since the fluid interface has to be finely resolved

within the PF method. For H = 20R, we have checked that increasing L further has
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no consequence on the value of F̄D (the variation is less than 0.01%), and therefore,

we will keep L = 30R. Also, for most simulations, we have chosen either Cn = 0.04

or Cn = 0.02, which turned out to be good enough values realizing a tradeoff between

precision and reasonable computing time. Lower values of Cn do increase the accuracy

of F̄D (cf. table 2), but at the expense of much longer computations. Finally, we have

checked that the mass of both fluids is well-conserved in our simulations. The relative

mass variation is typically less than 0.01% (0.005%) for Cn = 0.04 (Cn = 0.02).

5.2 Meniscus profile and particle density

In order to check the validity of the interfacial shapes, and the values of the particle

density computed in the drag simulations, we performed a series of tests that we shall

now outline.

Let us first consider a purely static situation where the velocity of the flow field at the

inlet, outlet, and the bounding walls is set to zero. For a given set of physical parameters

(particle density, contact angle, surface tension, and so forth), we then carry out a Comsol

simulation which solves for the vertical force balance at the interface [cf. Eq. (21)]. In such

a simulation, the particle is allowed to move in the y-direction depending on its weight.

We used the built-in moving mesh module of Comsol based on an Arbitrary Lagrangian-

Eulerian (ALE) scheme to follow and resolve the particle motion until equilibrium is

reached [36]. The resulting particle position (yp), meniscus elevation (|∆ym|, defined in

Fig. 1), and interfacial profile (y(x)) are then compared with those obtained from an

independent in-house code that solves the Young-Laplace equation in 2D and takes into

account the aforementioned vertical force balance. Note that in the static case, analytical

expressions can be derived for the capillary force and the buoyancy force acting on the

floating cylinder [37]. We followed closely the procedure outlined by Pozrikidis and all

the details can be found in [38].

A typical result of these static tests is displayed on Fig. 3 for a contact angle α = 110◦

and a particle density ρp = 982.2 kg/m3. A very good agreement is achieved for the

interfacial profiles as well as for other quantities such as those listed in table 3 (first two
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Figure 3: Meniscus profiles obtained for a cylinder attached at a fluid interface. Comparison

of the Comsol simulation results (static and dynamic cases) with those computed from an

independent in-house code (static case). See Sec. 5 for details. Parameters: α = 110◦,

ρp = 982.2 kg/m3, µ∗ = 1, ρ∗ = 0.8, Cn = 0.04 (Comsol).

rows). Similar matches were realized upon testing a few other parameter values. The

above results therefore validate our numerical approach in the static case.

Next, let us move on to the dynamic situation, i.e. the drag simulation setup of

Fig. 1, where the interface is initially flat. We now fix the particle position yp at the

value determined from the static case and choose the same contact angle on the particle

surface. Note that the boundary conditions for φ at the inlet and outlet of the domain

are the same in both the static and dynamic situations. The vertical position of the fluid

interface hardly changes between the two configurations since it is required to be flat there

(Sec. 3) with a minute CH diffusion at steady state. Then, because the capillary number

is small in all our simulations (Sec. 3.2), we expect the dynamic interfacial profiles at

steady state to differ very little from their static counterparts for the same set of physical
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Table 3: Comparison of the Comsol results with those of an in-house code computed for a

cylinder floating at a fluid interface. All the variables are defined in the text (see also table 1).

The physical parameters are the same as those listed in Fig. 3.

∆ym/R yp/R F̃c [10−3 N/m] F̃v [10−2 N/m] ρp [kg/m3]

In-house code -0.269 -0.0424 2.386 2.788 982.2 (input)

Comsol (static) -0.273 -0.0409 2.393 2.787 982.2 (input)

Comsol (dynamic) -0.274 -0.0421 2.400 2.787 982.186

parameters. Fig. 3 clearly demonstrates that this is indeed the case since all profiles are

very well superimposed. This result allows us to accurately back out the particle density

directly from the dynamic meniscus shape, as explained in Sec. 3.3. The very good match

between static and dynamic data is quantitatively illustrated in the last row of table 3.

6 Results and discussion

After the validation steps, we now address in detail the influence of interfacial deformations

on the drag force exerted on the cylinder attached to the fluid interface. We will be

focusing on the role of three parameters, namely (i) the contact angle, (ii) the viscosity

ratio between the upper and lower fluids, and (iii) the particle density. We stress again that

our 2D simulations are only likely to capture qualitative trends, but that this limitation

does not prevent new physical insights from being unveiled, as we will show hereafter.

6.1 Influence of the contact angle

In the simulations to be described below, the cylinder is held fixed in the middle of the

box (yp/R = 0) and we vary α in the range 45◦ − 135◦. We choose ρ∗ = 0.8, thereby

giving Lc/R ≃ 2.26 and Bo ≃ 0.2 using the values of table 1. For each value of α, we

compute F̃D along with the meniscus elevations |∆ym| . The numerical data are gathered

in Figs. 4-5 for fluids with matched viscosities (µ∗ = 1). Note that the drag force has
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been normalized with respect to that calculated in the flat interface case, i.e. for α = 90◦.

Hence, the effect of interfacial distortions can be readily assessed by a direct reading of

the values F ∗
D = F̃D/F̃D(α = 90◦) on the y-axis.

In Fig. 4, the curve F ∗
D = f(α) has the shape of a symmetric concave parabola with

a minimum obtained for α = 90◦ and |∆ym = 0|. Indeed, when α ̸= 90◦, the curved

meniscus perturbs the flow streamlines with respect to the flat interface configuration,

thereby increasing the friction. Furthermore, the highest drag values are correlated with

the largest meniscus deformations, as expected. And since the two phases have equal

viscosities, the perturbation is symmetric with respect to α = 90◦. Note that the small

density difference between the two fluids (ρ∗ = 0.8) does not perturb this symmetry,

probably because inertia does not matter much here (Re ≪ 1).

Figure 4: Computed normalized drag force (F ∗
D) and meniscus elevations (|∆ym|), as a

function of the contact angle (α). Simulation parameters: µ∗ = 1, ρ∗ = 0.8, Cn = 0.04.

Furthermore, we notice that |∆ym| varies linearly with α (Fig. 4). Such a linear depen-

dence can be rationalized from the Young-Laplace equation and the associated boundary
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conditions governing the meniscus shape around the floating cylinder. The details of the

derivation are presented in the appendix. With the notations of Fig. 9 (cf. appendix), it

can be shown that

|∆ym| = 2Lc sin

(
α− β

2

)
, (23)

where β is the floating angle (Fig. 9). Within the explored range of α values, it turns out

that the argument (α− β)/2 remains small and does not exceed 7.5◦. Therefore, to first

order, |∆ym| ≈ Lc(α− β), which explains the linearity of |∆ym| vs. α in Fig. 4.

Figs. 5a,b display typical velocity fields calculated for α = 110◦. When compared to

Fig. 2b (α = 90◦), the influence of the meniscus is clearly reflected by a deformed flow

pattern. The PF map of Fig. 5c shows the interfacial deformations in the neighborhood

of the cylinder. The corresponding mesh, superimposed on the PF map, is exhibited

on Fig. 5d, which shows that the fluid interface is well-resolved within the subdomains,

according to the criterion defined earlier (Sec. 4).

Overall, the data of Fig. 4 show that, for µ∗ = 1, the effect of interfacial deformations

on F ∗
D is rather moderate within the probed range of α, yielding an excess drag, defined

as (F ∗
D−1)×100 (in %), on the order of 5% compared to the case of a flat interface. Note

that this order of magnitude compares well with that obtained by Danov et al. [9], who

computed 3D excess drag coefficients for an infinite, flat, and nonviscous fluid interface

with µ∗ = 1. By shifting the particle up and down across the undistorted interface, which

amounts to testing several contact angles, the authors report a similar concave shape for

the curve fd = f(α) with fd [cf. Eq. (1)] ranging up to 1.05. Hence, similarly to the

curved meniscus, shifting the particle’s vertical position breaks the symmetry of the flow

pattern and results in an increased drag.

Experimentally, only a few studies considered the hydrodynamical behavior of particles

trapped at fluid interfaces with matched viscosities (typically, oil-water systems). For

instance, Vassileva et al. [21] and Boneva et al. [22, 23] tracked the trajectories of pairs of

interacting sub-millimeter spheres and deduced an excess drag coefficient of around 10−

20%, presumably ascribed to interfacial deformations. However, one should bear in mind

that actual colloidal systems at fluid interfaces are far from “ideal” and feature a lot more
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Figure 5: (A) Velocity field and the associated streamlines (gray arrow lines) computed for

a contact angle α = 110◦ at steady state. The black solid line represents the fluid interface

and the color bar indicates the velocity amplitude in m/s. (B) Zoomed-in view of (A) close

to the particle with streamlines as red arrow lines. (C) Corresponding phase-field map with

the fluid interface (φ = 0) plotted as a solid magenta curve. The phase variable φ is specified

for each fluid. (D) Zoomed-in view of a typical mesh superimposed to the phase-field map in

the vicinity of the particle. The fluid interface is well-resolved since it always lies in a finely

meshed region defined as a subdomain (cf. Sec. 4). Simulation parameters: α = 110◦, µ∗ = 1,

ρ∗ = 0.8, Cn = 0.02.
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complications. For instance, the particle surface roughness, chemical inhomogeneities,

contact angle hysteresis or the ubiquitous presence of a variety of contaminants are only

but a few of the phenomena which are likely to profoundly alter the response of the system

and dash the hope of an easy comparison with idealized computations.

Hence, with the above proviso in mind, both simulations and experiments qualitatively

agree on the fact that a deformed fluid interface, with matched viscosities, enhances only

slightly the drag force on the particle.

6.2 Influence of the viscosity ratio

In this section, we examine how a viscosity difference between the two fluids affects the

drag force. We will consider a two-order-of-magnitude change of µ∗ in the range 0.01− 1,

by altering the upper fluid viscosity (µ1) whilst keeping that of the lower one (µ2) constant

(see table 1). The particle is held fixed at the center of the box (yp = 0).

First, only a slight deviation of µ∗ from unity is investigated as a function of the

contact angle. With µ∗ = 0.75, we see that the curve F ∗
D = f(α) reported on Fig. 6 is no

longer symmetric with respect to α = 90◦. Its minimum is shifted towards larger α and

is now reached for α = 100◦. Furthermore, the highest drag force is obtained for α < 90◦,

i.e. when the meniscus is convex and deformed upwards. Indeed, when α decreases, the

size of the region underneath the meniscus grows as the meniscus becomes more and more

distorted. This leads to an enhanced friction since the lower fluid is more viscous than the

upper one. Equivalently, for µ∗ > 1, the minimum drag would have been shifted towards

α < 90◦ and the highest drag force would have occurred for α > 90◦. Furthermore,

because of the small capillary number, note that the values of |∆ym| do not depend on

µ∗ and, consequently, they are the same here as those reported in Fig. 4.

Thus, for µ∗ ̸= 1, our results show that one can encounter situations where the flat

interface case (α = 90◦) actually causes more friction than a slightly non-flat one. This

finding departs from the common belief that interfacial disturbances yield necessarily an

extra hydrodynamic resistance.

Note that, for µ∗ ̸= 1, the drag force exerted on the particle should normally be
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Figure 6: Computed normalized drag force (F ∗
D) as a function of the contact angle (α) for two

viscosity ratios (µ∗). For µ∗ = 0.75, the curve is no longer symmetric with respect to α = 90◦

and the minimum drag force is obtained for a slightly non-flat interface with α = 100◦. See

text for further details. Simulation parameters: ρ∗ = 0.8, Cn = 0.04.
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accompanied by a non-zero viscous torque as well. The main reason for this is that, with

fluids of different viscosity, the drag force’s line of action does not generally run through

the particle’s center of mass, as first mentioned by Dörr & Hardt [24]. Consequently, the

particle is expected to rotate in this case. Actually, particle rotation is also expected to

occur even for µ∗ = 1 as long as there is an up-down asymmetry in the flow pattern.

The latter may be caused either by interfacial distortions, as we saw in Sec. 6.1, or

simply by shifting the particle position across an otherwise flat interface [9]. Anyway, as

aforesaid (end of Sec. 3.2), we have ignored such a rotation in the present study, where the

particle is kept fixed with respect to the passing flow. Allowing particle rotation implies

that the contact line dynamics would have to be taken into account. Although the PF

method is well-adapted to tackle such an issue [25, 30, 39, 40], we will leave it for a future

investigation.

We also performed simulations with much larger viscosity mismatches, i.e. much

smaller values of µ∗. The graph of Fig. 7a represents dimensional drag force values

plotted vs. µ∗ for three different contact angles (75◦, 90◦, and 110◦). The data obtained

for α = 90◦ serve as a reference with a flat fluid interface. Since inertia is negligible

(Re ≪ 1), the drag force follows the expected linear dependence on µ∗ for the three α’s.

Next, we note that the data points for α = 110◦ mostly lie below those computed for

α = 90◦, especially at low values of µ∗. Upon re-plotting these data using normalized

drag forces (Fig. 7b), we see more clearly that F ∗
D(α = 110◦) falls well below unity as µ∗

decreases, while the opposite trend is observed for F ∗
D(α = 75◦). This result is a further

evidence that the presence of interfacial deformations can actually yield a state of lower

drag when compared to its undisturbed counterpart. Furthermore, recall that the particle

position is the same for all these data and that the meniscus profiles do not depend on

µ∗. Therefore, for either α = 75◦ or α = 110◦, it is not too surprising to see that the

shift of F ∗
D with respect to unity grows as the viscosity mismatch is further increased.

Coming back to Fig. 6, it means that both the curve asymmetry, with respect to α = 90◦,

and the well depth, with respect to unity, would be enhanced for much lower values of

µ∗. This statement suggests that the larger the viscosity mismatch, the larger the drag
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Figure 7: (A) Computed dimensional drag force (F̃D) as a function of the viscosity ratio (µ∗)

for three different contact angles (α). (B) Corresponding normalized drag forces (F ∗
D) vs. µ

∗.

The data for α = 110◦ clearly evidence that the presence of interfacial deformations can result

in a configuration of lower drag when compared to an undisturbed fluid interface. Simulation

parameters: ρ∗ = 0.8, Cn = 0.04.
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enhancement or reduction. For instance, the maximum excess drag force in Fig. 6 does

increase from ≃ 4.5% for µ∗ = 1 to ≃ 6% for µ∗ = 0.75. The use of smaller viscosity

ratios, such as µ∗ = 0.02, actually makes the maximum excess drag go above 10% for

α = 45◦ and ρ∗ = 0.8 (data not shown). An equally important drag reduction occurs for

α = 135◦ in this case.

6.3 Influence of the particle density

In the preceding section, the particle’s center of mass was located at the center of the

simulation box and we examined the influence of various contact angles and viscosity

ratios on the drag force exerted on the particle. In this section, we wish to investigate

the effect of the particle density for a given contact angle. One way to simulate either a

heavy or light particle is to displace its vertical position (yp) with respect to the center

of the box in the y-direction, as explained in Secs. 3.3 & 5.2. We consider two contact

angles, namely α = 110◦ and α = 75◦, and vary yp in the range [−0.4R, 0.4R]. In each

case, we compute the drag force, the particle density, and the meniscus elevations. The

resulting numerical data are graphed in Fig. 8.

We only consider the case µ∗ = 1, which is the simplest situation to deal with for

investigating the effect of the particle density. For each α, we first notice that the curves

F ∗
D vs. yp (Fig. 8a) are not symmetrical with respect to yp = 0. This is expected since for

α ̸= 90◦, the meniscus computed for yp differs from that obtained for −yp . Furthermore,

the values of F ∗
D are all greater than 1 for both contact angles but again, the excess

drag is rather moderate. It is slightly above 2.5% (resp., 2%) at most for α = 110◦ (resp.,

α = 75◦) with our simulation parameters. The corresponding particle densities are plotted

in Fig. 8b. They follow the expected trend, i.e. the heavier (resp. lighter) the particle,

the more it sinks (resp. rises) into the lower (resp. upper) fluid.

The meniscus elevations exhibited on Fig. 8c deserve some comments. First of all, a

striking feature emerges when comparing Figs. 8a,c : we note that the highest values of F ∗
D

do not correlate with the largest meniscus elevations as in Fig. 4, and, rather surprisingly,

it is actually even the opposite. See for instance the values of F ∗
D and |∆ym| obtained at
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Figure 8: (A) Computed normalized drag force (F ∗
D) as a function of the particle position

across the interface (yp) for two different contact angles (α). (B) Corresponding particle

densities (ρp) calculated from the interfacial profiles as explained in Secs. 3.3 & 5. (C)

Associated meniscus elevations (|∆ym|). The black arrows mark a change in the meniscus

curvature, which is illustrated by the two zoomed-in phase-field snapshots at the bottom.

Simulation parameters: µ∗ = 1, ρ∗ = 0.8, Cn = 0.04.
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yp = ±0.3R on Figs. 8a,c. Therefore, for a given contact angle, it seems like the amount of

drag is primarily controlled by the particle position across the interface, and not only by

the interfacial distortions. Otherwise stated, the same value of |∆ym| may well correspond

to two different values of F ∗
D depending on yp . And this is indeed well-illustrated for e.g.

α = 75◦, where |∆ym| is about the same for both yp = −0.1R and yp = −0.4R, but the

corresponding drag forces differ significantly (Fig. 8a).

Next, we note that the minimum drag in Fig. 8a is obtained for small particle dis-

placements (yp ≃ ±0.1R) and moderate |∆ym| (< 0.2R). Further increasing |yp| always

results in an enhanced drag force, even if |∆ym| drops substantially. One might argue

that the increase in F ∗
D for large values of |yp| is the result of a confinement effect, i.e. one

of the walls being a bit closer to the particle surface. However, using single-phase flow

simulations (Sec. 5), we checked that confinement effects manifest themselves only when

the particle surface is typically less than one diameter away from the moving wall. In all

the configurations considered in Fig. 8, yp ranges from −0.4R to 0.4R and the separation

distance between the cylinder surface and the walls always exceeds several diameters.

Consequently, one may rule out any influence of the confining walls on the drag force

values when the particle is moved across the fluid interface.

Finally, the solid arrows on Fig. 8c mark the cases where the meniscus curvature

changes sign. More precisely, for those values of yp , the otherwise concave (resp. con-

vex) meniscus normally obtained for α = 110◦ (resp. α = 75◦) cannot be retained and

it gradually becomes flat and then convex (resp. concave). The curvature reversal is

illustrated by the two zoomed-in phase-field snapshots at the bottom of the graph. This

‘meniscus transition’ goes in pairs with a new increase in |∆ym| and is responsible for the

non-monotonic variation of |∆ym| vs. yp (Fig. 8c).

7 Concluding remarks

The primary goal of the present study was to explore, through 2D numerical simulations,

the influence of interfacial distortions on the drag force exerted on a particle straddling

a fluid interface. We mainly focused on the effects of three parameters, the contact
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angle, the viscosity ratio, and the particle density. For fluids of equal viscosity and the

particle centered on the initially flat interface, our results reveal that the drag force is an

increasing function of interfacial deformations with the minimum drag obtained with a

flat interface. Introducing a viscosity difference between the two fluids alters this intuitive

picture as a state of lower drag may actually be achieved with a non-flat interface rather

than with a flat one. Furthermore, high viscosity mismatches seem to favor either large

drag enhancement or large drag reduction depending on the contact angle.

Other counter-intuitive findings are found when tuning the particle density. In this

case, with matched fluid viscosities, we have shown that the drag force is again not

necessarily an increasing function of interfacial deformations. Indeed, “high” drag config-

urations are possible even with small meniscus distortions depending on how the particle

is positioned across the interface. This result has never been predicted nor experimentally

evidenced before. Thus, based on the above findings, two main interesting insights emerge:

(i) large drag forces may not always correspond to large interfacial distortions, and (ii),

the drag force is strongly affected by the location of the particle across the interface.

Another salient result is that interfacial deformations do not seem to yield significant

drag variations compared to the case of a flat interface. As an upper bound order of

magnitude, our simulation data indicate that interfacial distortions may increase or de-

crease the drag coefficient by about 10% within the explored physical parameters. This

result is the first simulated estimate of the influence of fluid interface perturbations on

the mobility of interfacial particles. It is consistent with drag enhancement observed

in experiments involving liquid-liquid interfaces [21, 22, 23] but larger differences exist

with data compiled from experiments performed at liquid-gas interfaces [14]. However,

in the latter case, the physical parameters greatly differ from those we used in our study.

Nevertheless, let us recall here that a painstaking comparison between simulations and

experiments was beyond the scope of the present work, whose primary objective was to

capture qualitative trends through an approximate 2D approach.

Overall, our study unearthed unexpected findings on a rather simple situation where

the interfacial deformations were caused by the buoyant weight of macroscopic particles.
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While this situation applies down to length scales, say, ≈ 50µm, it is worth pointing out

that interfacial distortions also exist when dealing with much smaller adsorbed particles.

In this case, gravity is no longer relevant but the particle’ surface roughness, the chemical

inhomogeneities, the presence of surface electric charges or the nonspherical shape all serve

as other potential sources of interfacial perturbations, possibly with undulating contact

lines as well [2, 4, 41]. How do these phenomena impact drag forces? Such issues pertain to

a much broader class of colloidal systems, including biological membranes, and definitely

warrant more in-depth investigations. We hope that the present study will foster the

development of other simulations or theoretical calculations on the topic we have touched

upon herein.
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Appendix: Derivation of Eq. (23)

The details for deriving Eq. (23) in Sec. 6.1 can be found in [38]. Here, we summarize
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the main steps of the calculations.

Figure 9: Geometry of the floating circular cylinder used to derive Eq. (23) in the appendix.

The fluid interface is defined by the function y(x). Definitions of symbols: R, cylinder radius;

α, contact angle; β, floating angle; θ, interface slope; ∆ym, meniscus elevation.

With the notations of Fig. 9, we consider a static situation where a circular cylinder

floats at a fluid interface, which is described by the function y(x). We set the origin of

the y-axis at the position of the flat interface far from the particle. Since the interface

curvature, noted as κ, also tends to zero far from the particle, the hydrostatic Young-

Laplace equation governing the shape of the 2D curved fluid interface in our problem is

written as

κ = − y

L2
c

, (24)

where Lc is the capillary length introduced in Sec. 3.2. The curvature is given by

κ = − y′′

(1 + y′2)3/2
=

1

y′

(
1√

1 + y′2

)′

=
1

y′
d| cos θ|

dx
, (25)

where y′ = dy/dx = tan θ, as shown in Fig. 9, with the prime denoting a derivative

with respect to x. Combining Eq. (24) with the last two expressions of Eq. (25) and

rearranging, we obtain the following nonlinear differential equation for the fluid interface:

d

dx

(
1√

1 + y′2

)
=

d| cos θ|
dx

= −yy′

L2
c

= −(y2)′

2L2
c

.
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Integrating once with respect to x, we get

1√
1 + y′2

= | cos θ| = − y2

2L2
c

+ C , (26)

where C is a dimensionless integration constant. Requiring that both y and θ decay to

zero as x tends to infinity, we obtain C = 1. At the contact line, we have θcl = α − β

and ycl = ∆ym (see Fig. 9), so that the last two expressions of Eq. (26) give

(∆ym)
2

2L2
c

= 1− cos(α− β) = 2 sin2

(
α− β

2

)
, (27)

where the absolute value has been dropped since the angle (α−β) is always smaller than

π/2. Finally, Eq. (27) yields Eq. (23)

|∆ym| = 2Lc sin

(
α− β

2

)
.
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