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We use two-dimensional numerical simulation to study the interaction between a pair of
ferrofluid drops suspended in a rotating uniform magnetic field. Numerical results show
four distinct regimes over the range of parameters tested: independent spin, planetary
motion, drop locking and direct coalescence. These are in qualitative agreement with
experiments, and the transition between them can be understood from the competition
between magnetophoretic forces and viscous drag. We further analyze in detail the
planetary motion, i.e. the revolution of the drops around each other while each spins
in phase with the external magnetic field. For drops, as opposed to solid microspheres,
the interaction is dominated by viscous sweeping, a form of hydrodynamic interaction.
Magnetic dipole-dipole interaction via mutual induction only plays a secondary role. This
insight helps us explain novel features of the planetary revolution of the ferrofluid drops
that cannot be explained by a dipole model, including the increase of the angular velocity
of planetary motion with the rotational rate of the external field, and the attainment of
a limit separation between the drops that is independent of the initial separation.
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1. Introduction

A ferrofluid is a suspension of magnetizable nano-particles in a carrier fluid. Owing to
the ultra-fine particle size and the colloidal stability, a ferrofluid appears as a homoge-
neous medium, but it displays a variety of novel interfacial phenomena under an external
magnetic field (Cowley & Rosensweig 1967; Miranda 2000; Conroy & Matar 2015; Feng
& Chen 2016). As ferrofluids can be manipulated remotely by a magnetic field, they find
applications in mechanical seals, damping systems and loudspeakers (Rosensweig 1982;
Bailey 1983). More recently, ferrofluids have been studied for potential applications in
drug delivery (Voltairas et al. 2002), treatment of retinal detachment (Mefford et al.
2007), control of microfluidic devices (Tan et al. 2010), and mechanical measurement
in biological tissues (Serwane et al. 2017). In these cases, the dynamics of deformable
ferrofluid drops suspended in an immiscible liquid plays an essential role.
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The behavior of a single ferrofluid drop in a static uniform field is well understood. It
elongates in the field direction as the magnetic force pulls the drop against interfacial ten-
sion. At small deformation, the equilibrium drop shape can be calculated approximately
by assuming a prolate spheroidal shape (Bacri & Salin 1982). At large deformations
numerical computation is necessary (Afkhami et al. 2010; Rowghanian et al. 2016). Zhu
et al. (2011) studied the case of a drop resting on a hydrophobic substrate, with the
field direction parallel to the substrate. Other studies have examined the motion of a
ferrofluid drop in a magnetic field driven by buoyancy (Korlie et al. 2008) or a field
gradient (Afkhami et al. 2008), drop rupture (Falcucci et al. 2009) and drop relaxation
(Rowghanian et al. 2016).

In a rotating magnetic field, a single ferrofluid drop exhibits an array of interesting dy-
namics. When the angular velocity of the field—called the driving frequency hereafter—
is low, a drop elongates as in a static field and follows the rotation of the field. With
increasing driving frequency, the prolate drop may bend (Lācis 1999; Cēbers 2002) or
even break up (Lebedev & Morozov 1997) because of viscous friction in the surrounding
medium. At even higher frequencies, the drop may assume several shapes depending
on the field strength, ranging from oblate spheroidal at low field strength to a “spiny
starfish” shape at high field strength (Bacri et al. 1994; Cēbers & Lācis 1995; Morozov
et al. 2002; Lebedev et al. 2003). The recent boundary-integral computation of Erdmanis
et al. (2017) has successfully reproduced many of these shapes.

A pair of ferrofluid drops interact in a static field because of mutually induced
magnetization. If their line of centers is initially perpendicular to the external static field,
the drops repel while rotating around each other so that their line of centers aligns with
the field. Meanwhile the radial force becomes attractive and the two approach each other
and may even coalesce (Chen et al. 2015). A similar scenario occurs in the equivalent
problem of two bubbles interacting in a ferrofluid (Lee et al. 2010). In both cases, the
magnetophoretic interaction can be understood by viewing each drop as an effective
magnetic dipole. If an array of ferrofluid drops are constrained in a plane and a static
external field is applied perpendicular to the plane, the drops assemble into a hexagonal
lattice owing to the magnetic repulsion among them (Chen & Li 2010; Timonen et al.
2013).

Note that the ferrofluid problem is equivalent to an electrohydrodynamic (EHD)
problem for perfect dielectrics, with no free charge and vanished conductivity. Thus,
the observations above have counterparts in EHD studies, e.g. on the equilibrium shape
of a dielectric drop in an insulating fluid (Garton & Krasucki 1964; Sherwood 1991),
the conical ends of a drop under high field strength (Stone et al. 1999), and the
dielectrophoretic alignment of drops (Baygents et al. 1998).

For a pair of ferrofluid drops in a rotating magnetic field, Chen et al. (2015) observed an
intriguing “planetary motion”, illustrated in figure 1 and Movie 1 in the Supplementary
Material online. In their experiments, the millimeter-sized drops elongate in the field
direction into an ellipsoidal shape and then spin in phase with the rotating field. The
driving frequency is too low for any of the shape instabilities (Lebedev et al. 2003).
In addition to the self-spin, the drops revolve around each other in the same sense as
the rotation of the field. This planetary revolution does not proceed smoothly with a
constant angular velocity, but is punctuated by periodical reversals. The averaged angular
velocity is much lower than that of the field. Moreover, a larger number of drops arrange
themselves into a regular array that revolve in the sense of the rotating field, at a much
lower angular velocity.

For understanding the cause of the planetary revolution, the most closely related work
is perhaps Bacri et al. (1995), which concerns a pair of micron-sized highly viscous
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Figure 1. Snapshots of the planetary motion of a pair of ferrofluid drops under a magnetic field
of uniform strength H0 = 4488 A/m that rotates counterclockwise at a driving frequency of 1
Hz. The letter “R” marks the drop initially on the right. Reproduced from Chen et al. (2015)
with permission, c©Springer. See also Movie 1 in the Supplemental Material online.

ferrofluid drops in a rotating field. Because of the small size of the drops, their high
viscosity and presumably surface immobilization by surfactant transport, the drops
deform little and behave essentially as rigid particles. A pair of solid particles are known
to exhibit a revolution around each other (Helgesen et al. 1990; Gao et al. 2012) at high
enough driving frequency, and the angular velocity of the revolution decreases with the
driving frequency. This can be rationalized by treating each particle as a magnetic dipole,
and balancing the magnetophoretic forces with a Stokes drag on the particle (Helgesen
et al. 1990).

The experiment of Chen et al. (2015) differs from the solid-particle studies in that
the drops are large (radius r0 ∼ 1 mm); they deform and are subject to inertial effects.
Can their planetary motion be explained by the same dipole model, or does it involve
distinct mechanisms? Are there other modes of interaction between deformable ferrofluid
drops? These questions have motivated the current study. We have conducted a careful
two-dimensional (2D) numerical simulation of the interaction between a pair of ferrofluid
drops in a rotating field. We have reproduced the planetary revolution but found that
it arises from different mechanisms. Although the magnetophoretic forces play a role,
the most important factor is the hydrodynamic interaction between the elongated drops
termed “viscous sweeping”. We have also discovered a novel “drop locking” regime, and
confirmed it in new experiments.

2. Governing equations

Consider a pair of ferrofluid drops suspended in an immiscible viscous fluid. Both fluids
are assumed to be Newtonian and incompressible, with matched density so gravity or
buoyancy is immaterial. The equations of motion are

∇ · v = 0, (2.1)

ρ (∂tv + v · ∇v) = −∇p+∇ · (2ηD) +∇ · τm. (2.2)

Here p is the pressure, v the velocity, ρ the density, and η the dynamic viscosity. D =
(∇v+∇vT)/2 is the rate of deformation tensor. The Maxwell stress tensor τm represents
the magnetic forcing on the ferrofluid. All magnetic equations and quantities in this paper
are in SI units. Both fluids are assumed to be dielectric, with instantaneous relaxation of
magnetic moments within the ferrofluid (Shliomis & Morozov 1994; Fischer et al. 2005;
Tackett et al. 2015). Hence,

τm = µHH − 1

2
µH2I, (2.3)

where µ is the magnetic permeability of the medium. The surrounding fluid (denoted
by subscript s) is non-magnetic, so its permeability µs equals that of vacuum µ0 =

4π × 10−7 N/A
2
. For the ferrofluid drop (denoted by subscript d), µd = µ0(1 + χ)

with χ being the magnetic (volume) susceptibility. H is the magnetic field vector. As
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commonly done in the literature (Afkhami et al. 2010; Erdmanis et al. 2017), we assume
magnetostatics so H = −∇ϕ is irrotational, ϕ being the magnetic potential, and the
Maxwell equations reduce to

∇ · (µ∇ϕ) = 0. (2.4)

The boundary conditions across the interface between the two fluids are standard:

JvK = 0, n · Jτη + τmK · t = 0, JϕK = 0, JµHK · n = 0. (2.5)

where J·K denotes the interfacial jump of a quantity. n and t are the unit normal and
tangential vectors, respectively, and τη = 2ηD is the viscous stress tensor. The normal
component of the stress has a jump across the interface due to interfacial tension:

n · Jτη + τmK · n + JpK = σκ, (2.6)

where σ is the constant interfacial tension and κ the curvature.
We use the Volume-Of-Fluid (VOF) formalism to solve the two-phase ferro-

hydrodynamics problem numerically. This modifies the governing equations. First,
the interfacial tension is accounted for through a body force term that acts only on the
interface:

ρ (∂tv + v · ∇v) = −∇p+∇ · (2ηD) +∇ · τm + σκδsn, (2.7)

where δs is the Dirac delta function at the interface. A volume fraction function c(x, t)
is introduced such that c takes the value of 1 in the ferrofluid and 0 in the surrounding
medium. Thus c marks the location of the interface, and evolves according to an advection
equation:

∂tc+∇ · (cv) = 0. (2.8)

We choose the following reference scales: the initial radius of the circular drops r0, the
matched density of both fluids ρ, the viscosity of the surrounding medium ηs, and the
magnitude of the uniform external magnetic field H0. The reference time scale is chosen
to be t0 =

√
ρr20/µ0H2

0 . It follows that the reference velocity scale is v0 = r0/t0, and
the reference pressure scale is p0 = µ0H

2
0 . Denoting all dimensionless variables using the

same symbols, the dimensionless Navier-Stokes equation becomes

(∂tv + v · ∇v) = −∇p+

√
1

Lam
∇ · (2ηD) +∇ · τm +

1

Bom
κδsn. (2.9)

The magnetic Laplace number Lam

Lam =
µ0H

2
0ρr

2
0

η2s
(2.10)

represents the ratio of the magnetic and inertial forces over the viscosity force, and can
be interpreted as the square of a Reynolds number. The magnetic Bond number Bom
represents the ratio of magnetic force to interfacial tension,

Bom =
µ0H

2
0r0
σ

. (2.11)

Other dimensionless numbers that govern the problem are as follows: the dimensionless
frequency of the driving field,

f =
1

T

√
ρr20
µ0H2

0

, (2.12)
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Figure 2. The 2D computational domain is a square with the ferrofluid drops initially
placed symmetrically inside. On the outer boundary we specify a rotational magnetic field and
no-penetration condition with free slip for the velocity.

with T being the period of rotation of the field; the viscosity ratio

ξ =
ηd
ηs

; (2.13)

and the magnetic (volume) susceptibility of the ferrofluid

χ =
µd
µ0
− 1. (2.14)

The magnetic field strength in the current study is sufficiently low that we can ignore the
rotational viscosity of the ferrofluid (Shliomis 1972) and assume linear magnetization.
Hence ξ and χ are both constants. The latter implies that the magnetic force ∇ · τm =
−(H2/2)∇µ amounts effectively to a surface force acting on the interface only. From
this point on, unless stated otherwise, we use dimensionless variables normalized by the
reference scales given above.

3. Problem setup and numerics

After extensive numerical experimentation, we have realized that a full three-
dimensional simulation of two ferrofluid drops in a rotating magnetic field is
computationally prohibitive using our current tools. Thus, we will carry out a two-
dimensional (2D) simulation using the geometry of figure 2. Two drops of initially
circular shape are placed symmetrically in a square domain Ω, which is large enough
that the magnetic field and the velocity field on the boundary ∂Ω are hardly disturbed
by the drops. A uniform external field rotates counter-clockwise with a constant speed
and the dimensionless driving frequency of equation (2.12). Its orientation is given by
the phase angle θh = 2πft with respect to the x axis. Thus, we prescribe the rotating
magnetic field and impose no penetration of fluid but free slip on ∂Ω:

v
∣∣
∂Ω
· n = 0, n · τη

∣∣
∂Ω
· t = 0,

∂ϕ

∂n

∣∣∣∣
∂Ω

= −Hn(t) = −n · (cos θh, sin θh) . (3.1)

In most of our simulations, the pair of drops start from a horizontal initial orientation.
The VOF computation is carried out using the open-source software package Gerris

(Popinet 2003, 2009; López-Herrera et al. 2011), which uses a second-order accurate
fractional-step projection method for time marching, and a finite volume spatial dis-
cretization with a structured quad/octree grid. Both the time step and mesh are adaptive.
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Chen et al. (2015) Simulations
χ = 2.14 χ = 2
f = 1/79 f = 1/120− 1/40
Bom = 1.81 Bom = 0.2− 2
Lam = 3.37 Lam = 50− 75
ξ = 0.0249 ξ = 0.2− 1

Table 1. Comparison of parameters used in the experiment of Chen et al. (2015) and in our
simulations.

The discretisation of the interfacial tension term σκnδs follows the Continuous-Surface-
Force (CSF) approach (Brackbill et al. 1992). To interpolate the material properties in
the interfacial cells, we use simple algebraic average for viscosity and a weighted harmonic
mean for the magnetic permeability (Afkhami et al. 2010):

η =
cηd + (1− c)ηs

ηs
= 1 + c (ξ − 1) , (3.2)

1

µ
=

(
c

µd
+

1− c
µ0

)
µ0 = 1 + c

(
1

1 + χ
− 1

)
. (3.3)

We adapt the EHD module in Gerris by setting the electric permittivity ε to the magnetic
permeability µ, and the conductivity and free charge density both to zero. Note that in
such a VOF formalism, all the boundary conditions across the interface (equations 2.5-
2.6) are naturally satisfied.

The parameter values are listed in table 1 along with the experimental values in Chen
et al. (2015). We use larger values for the magnetic Laplace number and the viscosity
ratio, since the experimental values, corresponding to a low-viscosity ferrofluid and a
high-viscosity surrounding liquid, tend to produce strong spurious currents across the
interface, which only diminish slowly with mesh refinement. Despite these differences in
parameters and the 2D geometry of the numerical simulations, we have been able to
capture the key mechanisms governing the experiment.

We have used two validation tests to assess the performance of the code for simulating
two-phase flows with magnetic effects. First, we compute the steady-state shape of a
ferrofluid drop in a static uniform field. This test problem is set up in an axisymmetric
domain, and we compute the equilibrium aspect ratio of the drop b/a as a function of Bom
and χ. If the field is weak and the deformation is small, the drop shape can be assumed
spheroidal and the problem admits an approximate analytical solution (Afkhami et al.
2010). Figure 3 compares the numerical results with the analytical solution for two χ
values. Excellent agreement is seen for relatively mild elongation of the drop. At higher
Bom or χ values, the drop shape deviates from a perfect spheroid and the discrepancy
between the numerical and theoretical results begins to increase.

Further we demonstrate convergence with respect to grid size and time step refinement
and the domain size for the full numerical solution of our drop interaction problem as
set up in figure 2. The mesh generator requires specification of the coarsest and finest
grid sizes, and we adaptively refine the mesh to deploy the finest grids at the interfaces
(Popinet 2009). For a simulation with a representative set of parameters (f = 1/80,
Bom = 2, ξ = 1, Lam = 75 and initial separation D0 = 4), figure 4 illustrates mesh
convergence using the horizontal velocity profile u(x) at t = 80. The solution converges
when the finest mesh size reaches 5× 2−8 (figure 4a) and the coarsest mesh size reaches
5× 2−4 (figure 4b). Such a grid is used for the rest of the paper except for §4.3, in which
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Figure 3. The steady-state drop aspect ratio b/a as a function of the magnetic Bond number
Bom for two χ values. We compare the numerical results (symbols) with the small-deformation
theory (Afkhami et al. 2010) for χ = 5 (solid line) and χ = 2 (dashed line). The axisymmetric
domain is large enough that the magnetic field on the boundary is not disturbed by the drop.
The finite-volume cells have sizes ranging from 5× 2−9 to 5× 2−6, with finer cells concentrated
on the drop interface.
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x
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Figure 4. Convergence with mesh refinement (f = 1/80, Bom = 2, ξ = 1, Lam = 75, D0 = 4).
(a) u(x) for different finest grid sizes: 5× 2−7 (N); 5× 2−8 (�); 5× 2−9 ( ). The coarsest grid
size is fixed at 5×2−4. (b) u(x) for different coarsest grid sizes: 5×2−3 (N); 5×2−4 (�); 5×2−5

( ). The finest grid size is fixed at 5× 2−8. Temporal discretization is adaptive and the domain
length is fixed at L = 20 to save computation time, and the profiles are taken at t = 80. The
inset in (a) shows the shape and position of the drops at this moment.

the finest mesh size is reduced to 5 × 2−9 to better resolve the fluid film between the
drops. For time stepping, we have found the default adaptive scheme sufficient, with the
maximum time step limited by the Courant-Friedrichs-Lewy condition associated with
the advection of the fluid and the volume fraction field c (Popinet 2003, 2009). For the
domain size, L = 40 is large enough for the solution to be independent of L.

4. Results and discussion

4.1. Regimes of interaction

Four regimes of pairwise interaction between the drops have been identified, which can
be observed by, for instance, varying the initial separation D0 of the drops (figure 5):
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Figure 5. Regimes of interaction of the ferrofluid drop pair under a counter-clockwise rotating
magnetic field.

• When D0 is large, the drops spin individually in phase with the external magnetic
field, with negligible interaction.
• At intermediate values of D0, the drops perform planetary motion; they spin while

revolving around each other. The angular velocity of the global revolution is lower than
the rotating velocity of the field.
• At smaller values of D0, the pair may attach to each other end-to-end without

coalescing, and form a doublet that rotates with the driving frequency. In this “drop
locking” regime, both the phase angle of individual drops and the orientational angle of
the pair are locked to the external field, while the drops maintain a small separation
between them. This regime may be transient, sometimes preceded by an episode of
planetary motion, and usually ending in coalescence.
• With an even smaller D0, coalescence takes place right away without going through

the locked rotation episode. Afterwards, the merged drop elongates and spins with the
field.
These regimes agree qualitatively with recent experimental observations (Lu 2017). The
rest of the paper focuses on the planetary motion and the drop-locking regimes, as well
as transitions between different regimes.

4.2. Planetary motion

Figure 6 shows a typical simulation of the planetary motion, and an animation (Movie
2) can be viewed in the Supplemental Material online. Each drop spins with the driving
frequency of the rotating field f , with little phase lag. This is evident from figure 6, where
the long axes of the drops align to the field direction within 3◦. In the mean time, the
drops revolve around each other in the same sense as the rotating field, at a much lower
rate. This is demonstrated in figure 7(a) by the increase of the pair orientational angle
θd(t) (see figure 6 for definition). The revolution is not monotonic but suffers periodic
small-scale reversals, as has been noted experimentally (Chen et al. 2015). The drop
separation D(t), measured between the centroids of the drops (see figure 6 for definition),
shows a similar oscillation, around a mean value that appears to approach a limit in time.



Ferrofluid Drops 9

Figure 6. Snapshots of a typical simulation of planetary motion for parameters f = 1/80,
Bom = 2, ξ = 1, Lam = 75 and D0 = 4, showing the drops and the magnetic field lines. The
letter L marks the drop initially on the left. We denote the distance between the centroids of the
drops by D, and the orientational angle of the pair by θd. See also Movie 2 in the Supplemental
Material online.

π/2

3π/4

π/4
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(a) (b)

Figure 7. (a) The planetary revolution is manifested by the continual increase in the angle
θd(t). (b) The distance D(t) between the centroids of the drops. f = 1/80, Bom = 2, ξ = 1,
Lam = 75, D0 = 4. Note the oscillation in both curves with a period tp ≈ 1/(2f) = 40.

These features can be understood from the magnetic and hydrodynamic forces on the
drops.

4.2.1. Magnetic interaction

The planetary motion resembles the behavior of two solid magnetic microspheres in
a rotating field, which has been accounted for by a dipole model (Helgesen et al. 1990;
Bacri et al. 1995). Thus, our first enquiry is which of the features observed above can
be explained by the simple picture of magnetic dipole-dipole interactions in a viscous
medium.

Assuming each drop is a magnetic point dipole, we can derive the following dimension-
less 2D dipolar forces on each drop:

Fθ =

(
χ

2 + χ

)2
sin(2∆θ)

D3
, Fr = −

(
χ

2 + χ

)2
cos(2∆θ)

D3
, (4.1)
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in the azimuthal and radial directions, respectively. The forces have been scaled by
4πµ0H

2
0r0. The former amounts to a magnetic torque that affects the rotation of the line

of the centroids, i.e. the angle θd. A positive Fθ implies a counterclockwise rotation, in
the same direction as the rotation of the magnetic field. The latter affects the separation
D, and a negative Fr attracts the drops toward each other.

Because the speed of field rotation (dθh/dt) is faster than the rate of planetary
revolution (dθd/dt) (figure 7a), the phase lag ∆θ = θh − θd increases in time. In each
round of ∆θ, Fθ changes sign at ∆θ = 0, π/2, π and 3π/2. Thus, there are four intervals in
which the magnetic torque alternately rotates the pair forward (in the same direction as
the rotating field) or backward (counter to the field). This explains the small-amplitude
oscillations of θd in figure 7(a). The oscillations in D is similarly due to the change in sign
of Fr, although at different ∆θ values. Because dθh/dt is much larger than dθd/dt, ∆θ
increases at almost the same rate as θh. Hence, the appearance of 2∆θ in equation (4.1)
means that θd and D oscillate with a frequency roughly twice the driving frequency f
(see the period tp in figure 7). Furthermore, in an interval of ∆θ corresponding to a
positive Fθ and forward rotation of θd, the line of centroids chases the driving field so as
to slow down the increase of the phase lag ∆θ and prolong the time period of forward
rotation. Conversely, the time period of backward rotation is shortened. This difference
in duration is manifested in figure 7(a). Accumulated over repeated cycles, it produces
a forward planetary revolution, in the same sense as the rotating field.

4.2.2. Hydrodynamic interaction

Our ferrofluid drops are not point dipoles, however. For one, they have a finite size
and shape, and deform under the influence of the external field H. Their motion incurs
viscous drag in the surrounding medium. As one elongated drop spins with the driving
frequency f , it creates a flow field that sweeps the other drop forward and induces
revolution around each other (figure 8). This “viscous sweeping” effect provides another
potential mechanism for the planetary motion, and is key to understanding several novel
features of the planetary motion of ferrofluid drops that are absent for point dipoles or
solid particles.

To evaluate the magnitude of the viscous sweeping effect, we vary the drop deformation
by reducing the magnetic Bond number Bom from 2 to 0.2. This can be interpreted as
increasing the interfacial tension by ten times. In figure 9(a), the ovals represent the
typical drop shape at each of the Bond numbers, at the driving frequency f = 1/40. The
drop deformation is indeed greatly reduced, and so will be the viscous sweeping. This
change in shape may potentially change the magnetization of the drops and the strength
of magnetic interaction. However, figure 9(a) shows little change in the mean value of D
and its amplitude of the oscillations. Because the radial oscillation is driven by magnetic
attraction or repulsion, it follows that there is little change in the magnitude of magnetic
forces. Meanwhile, in figure 9(b), the rate of global revolution has decreased from ω =
10.6 × 10−3 at Bom = 2 to ω = 2.50 × 10−3 at Bom = 0.2. Hence, reducing viscous
sweeping while keeping the magnetic effect roughly fixed has approximately quartered
the rate of planetary revolution. Simulations at other f values have confirmed the same
trend.

Taking the simplistic view that the dipolar magnetic interaction and viscous sweeping
contribute additive parts to the planetary motion, we deduce from the above result that
viscous sweeping is a more important mechanism than the magnetophoretic interaction.
The same conclusion probably holds in the experiment of Chen et al. (2015), whose
external fluid has higher viscosity than in our numerical study, and thus is more efficient
at viscous sweeping. As a side remark, the slower revolution for Bom = 0.2 means that
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Figure 8. Instantaneous velocity field (f = 1/80, Bom = 2, ξ = 1, Lam = 75, D0 = 4 at
t = 156.8). Only the central region of the domain containing the drops is shown.

Bom = 2

Bom = 0.2

Bom = 2

Bom = 0.2

(a) (b)
5π/2

3π/2

π/2

π

2π

ω = 10.6×10-3

ω = 2.50×10-3

Figure 9. Effect of viscous sweeping probed by varying the magnetic Bond numbers Bom and
drop shape: Bom = 2 (thin line) and Bom = 0.2 (thick line), with f = 1/40, ξ = 1, Lam = 75,
D0 = 4. (a) Evolution of the radial distance D. The ovals represent the typical drop shapes for
the two Bond numbers. (b) Evolution of the pair angle θd. The angular velocity ω = dθd/dt is
calculated from the slope of straight lines fitted to the latter part of the θd(t) curves.

∆θ = θh−θd increases slightly faster in time (figure 9b). This explains the slightly shorter
period of oscillation for the rounder drops that is evident in figure 9(a). Its oscillation
starts out in phase with that of the elongated drop, but has gained a lead of more than
half a period by the end of the simulation.

Another novel feature, distinct from its counterpart in solid particles, is how the angular
velocity ω of the planetary motion changes with the driving frequency f . With all other
parameters fixed, increasing f causes the pair to revolve around each other at faster ω
(figure 10a). This contrasts the dipole-based solution for solid particles (Helgesen et al.
1990; Bacri et al. 1995), in which ω decreases with increasing f . The latter is because at a
faster driving frequency f , the planetary revolution of the pair becomes less significant in
determining the phase lag ∆θ = θh−θd. As a result, the difference in durations of forward
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f = 1/40

� = 10.6×10-3

f = 1/120

� = 1.15×10-3
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� = 1.99×10-3

f = 1/40

f = 1/120

f = 1/80

�/2

2�

3�/2
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(a) (b)

Figure 10. Effect of the driving frequency f on the planetary motion. (a) The evolution of θd
at three frequencies f = 1/120, 1/80 and 1/40. The average angular velocity ω is calculated
from the slope of straight lines fitted to the latter part of the curves. (b) The evolution of drop
separation D under the same conditions. The other parameters are fixed: Bom = 2, ξ = 1,
Lam = 75, D0 = 4.

and backward rotation due to θd also diminishes as the two become closer to cancelling
each other. As a cumulative effect, the global revolution ω due to dipolar interaction
decreases with increasing f . The distinction between ferrofluid drops and solid particles
can be rationalized by viscous sweeping, which increases with the spinning velocity f of
each drop so much that it compensates for any loss in the contribution due to magnetic
dipolar interaction to the planetary motion. Note that the drop separation tends to
different limits at different frequencies, being closer for higher frequencies (figure 10b).
The reduced separation may also have helped enhance the viscous sweeping.

4.2.3. Limit separation

We turn to the last novel feature of the ferrodrop planetary motion: the drop separation
D approaching a limiting mean value independent of the initial separation D0. This has
been noted in passing when discussing figure 7 and figure 10. Figure 11 depicts three
trajectories that start from different D0 toward the same long-time limit mean separation,
denoted by Ds. Initially, the oscillation in the radial distance has smaller amplitudes for
the drops starting farther away. This is due to weaker magnetic force at larger distance.
As the drops approach the same Ds, the amplitudes for different cases converge to the
same value.

The limit separation cannot be explained by dipole-dipole interactions. In previous
studies of 3D spheres, the attractive radial magnetic force has greater magnitude and
longer duration than the repulsive. Hence, the particles gradually attract and move into
contact despite the periodical repulsions (Helgesen et al. 1990). In 2D, the radial magnetic
force Fr ∝ cos(2∆θ) (equation 4.1) is symmetric between the attractive and repulsive
phases. Thus, the two cancel over each cycle and do not produce a cumulative drift in D.
Two solid particles would thus revolve in orbits that retain the initial mean separation
D0.

Here we examine three hydrodynamic mechanisms that have potentially contributed to
the limit separation. The first is inertia. As the magnetic radial force Fr drives the drops
apart or toward each other, the drops will not stop instantaneously when Fr switches
between positive and negative values. Rather, inertia carries them further, overshooting
the zeros of Fr. Figure 12(a) illustrates the overshoot in the D-∆θ phase plane by a
representative trajectory, the D0 = 3.2 case in figure 11. Fr changes from attraction to
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Figure 11. Evolution of the radial distance between the drops starting from different initial
separations. f = 1/40, Bom = 2, ξ = 1, Lam = 75.
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Figure 12. The inertial effect. D0 = 3.2, f = 1/40, Bom = 2, ξ = 1, Lam = 75. (a) Trajectory
of the pair of drops in the D-∆θ phase plane. The t-arrow indicates the progression of time. As
∆θ reaches π, we fold the trajectory to the left end (∆θ = 0) because of the cos(2∆θ) periodicity
of the radial dipolar force Fr. (b) Evolution of radial distance D between the drops with (open

) or without (filled ) the nonlinear convection term.

repulsion at ∆θ = π/4. But D continues to shrink and reaches its minimum some time
after Fr has turned repulsive. At such a small D, Fr achieves a larger repulsive value than
if the overshoot were absent, and drives the drops apart more forcefully. Similarly the
maximum of D overshoots ∆θ = 3π/4, such that part of the attractive phase happens
at larger separations. This results in a weaker attractive Fr that fails to bring the drops
back to the separation at the start of the previous cycle. Over each cycle, therefore, the
inertial overshoot favors the repulsive force over the attractive one, and amounts to a net
effect of separating the drops. As a test of the inertial effect, we turn off the nonlinear
convection term in the Navier-Stokes equation, and repeat the simulation of figure 12(a).
Figure 12(b) shows that without the convective part of inertia, the separation D does not
increase as much from one cycle to the next and approaches a smaller Ds. This provides
a partial confirmation of the inertial effect.

The second is the viscous sweeping effect, which favors drop attraction. Figure 13
shows the velocity field around a single ferrofluid drop spinning in a rotating field. We
examine how a second drop, placed in different positions relative to the first, would be
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Figure 13. The velocity field around a single ferrofluid drop spinning steadily in a rotating
field. f = 1/80, Bom = 2, ξ = 1 and Lam = 75. The dashed lines indicate locations where a
second drop will be at maximum or minimum separation from the one shown during planetary
motion.

pushed or pulled by the radial component of the flow field. We prefer this simpler flow
to the two-drop velocity field of figure 8, as the latter varies according to the location
and orientation of the drops, and the added complexity obscures the underlying physics.
Here the flow is steady as far as the rotating drop is concerned. For ease of discussion,
we orient the x and y axes always at π/4 from the long axis of the drop. Thus, the flow
field stays the same at different times, and the second drop will be placed at different
angular locations at different times during its revolution.

We start by noting that the radial dipolar force vanishes if the second drop is placed
on the x or y axes (∆θ = π/4 or 3π/4, see equation 4.1). Next, to follow the increase of
the phase lag ∆θ during planetary motion, we imagine the second drop moving clockwise
around the first, starting from the first quadrant. As the second drop passes from above
the x axis to below it, ∆θ increases past π/4. Fr changes from attractive to repulsive,
suggesting a minimum in separation D. Because of inertia, however, the minimum is
attained further clockwise at an angle of about 0.13π below the x axis. Similarly the
farthest separation is at about 0.17π past the y axis. The flow is mostly radially inward
in the region around the minimum D but outward in the region around the maximum
D. As a result, the second drop experiences stronger inward flow than outward flow
during its revolution. Although the overall radial flux around a drop necessarily vanishes,
viscous sweeping favors approach over separation on balance. Figure 10(b) provides direct
evidence for this argument. Raising the driving frequency f increases the spinning velocity
of the drops and the strength of viscous sweeping, which results in closer separation
between the drops.

Finally, the third effect is anisotropic viscous drag, illustrated by the diagrams in
figure 14. The radial magnetic force is attractive when the phase lag ∆θ has a small
magnitude (below π/4). As the drops approach, therefore, they present relatively small
cross-sections to each other and thus have smaller viscous drag Fη (figure 14a). Con-
versely, the separation phase sees the drops oriented away from their line of centroids,
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Figure 14. Illustration of anisotropic viscous drag. Magnetic attraction in (a) induces a
smaller viscous drag Fη than the magnetic repulsion in (b).

and the large cross-sectional area induces more viscous drag (figure 14b). Overall the
anisotropic viscous drag favors drop attraction.

With the three effects in simultaneous action, we can rationalize the attainment of
the limit separation Ds. When the drops are initially far apart, the inertial overshoot
effect is weak, and the anisotropic drag and viscous sweeping effect bring the drops closer
together. If the initial separation D0 is small, the inertial overshoot is amplified as the
asymmetry between approach and separation becomes relatively larger. This mechanism
prevails over viscous sweeping and anisotropic drag to push the two drops apart. The
limit separation will be achieved when all effects are in balance.

Admittedly, the arguments above are mostly qualitative since it is difficult to quantify
each factor and analyze their variation with parameters such as f . For instance, when we
reduce the magnetic Bond number Bom in figure 9, the rounded shape of the drop reduces
viscous sweeping and anisotropic drag, and hence should increase the limit separation Ds.
In the meantime, numerical results show that the inertial overshoot is also suppressed for
the round drop, probably by the reduction in flow velocity. The outcome is that Ds only
increases slightly. We can rationalize the outcome thus, but cannot make the quantitative
calculation to predict it.

4.3. Drop locking

Figure 15 shows a typical simulation in the drop locking regime. Compared with the
planetary motion of figure 6, the viscosity ratio and the initial separation D0 are both
smaller. The drops initially approach each other as if coalescing, and form a thin liquid
film between them. Then the two rotate as one at the same angular velocity as the
external field. The locked rotation lasts for about 1/2 of a cycle before coalescence.

Intrigued by this behavior, we went back to the laboratory to search for it experimen-
tally (Lu 2017). Indeed, starting with the conditions that would produce the planetary
motion and gradually reducing the initial drop separation, we were able to confirm the
drop locking regime experimentally. Figure 16 shows snapshots of a pair of drops locked in
close proximity and rotating with the driving frequency. In this case, the drops are locked
for about 5/4 cycles of rotation before coalescing, a longer duration than in our numerical
solution. This duration varies among experimental runs, apparently stochastically. In one
extreme case, the drops remain locked for the entire duration of the experiment, for more
than 12 cycles. In a sense, we can view drop locking as intermediate between planetary
motion and direct coalescence. The transition among the regimes will be analyzed in the
next subsection.

The reason that drop locking lasts much shorter time in the simulations than in the
experiment is likely twofold. First, we have used a lower viscosity for the surrounding
medium in the simulations (see table 1), and this will produce faster film drainage.
Second, insufficient numerical resolution of the thin liquid film between the drops may
also lead to premature coalescence. As drop coalescence occurs upon rupturing of the thin
liquid film separating them, its exact timing depends on molecular-scale forces and cannot
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Figure 15. A typical simulation in the drop locking regime, with snapshots showing the drops
and magnetic field lines. f = 1/80, Bom = 2, ξ = 0.2, Lam = 75 and D0 = 3.5. The letter L
marks the drop (or the end of the combined drop) initially on the left. See also Movie 3 in the
Supplemental Material online.

Figure 16. Snapshots of drop locking observed in an experiment. The letter L marks the drop (or
the end of the combined drop) initially on the left. See also Movie 4 in the online Supplemental
Material.

be predicted by purely continuum models (Yue et al. 2005). In simulations, therefore,
rupture or coalescence is often precipitated by incidental factors such as numerical errors.

4.4. Transitions between regimes

The last section suggests that drop locking is an intermediate regime between planetary
motion and direct coalescence. Naturally the question arises as to what conditions
determine the transition between regimes. In §4.1, we have found it convenient to describe
the 4 regimes in terms of gradually reducing the initial separation D0. This is not the
only way to organize the regimes. Now we will consider the transitions as the outcome
of the various forces in competition.

Generally, the interaction of a pair of ferrofluid drops in a rotating field is determined
by the competition between the magnetic forces and viscous drag. The former causes
attraction and even coalescence, while the latter, by way of modifying the relative position
and orientation of the drops, introduces the potential for repulsion and sustained cyclic
motion without coalescence. Much insight can be gained from considering the simpler
case of solid microspheres (or effectively magnetic dipoles) that has been studied before
(Helgesen et al. 1990; Bacri et al. 1995).

In this case, Helgesen et al. (1990) derived a critical driving frequency based on dipole
interactions in 3D and the Stokes drag. Using our unit system and scaling (see §2), this
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critical frequency can be written in dimensionless form as

fc =
2
√
Lam
π

(
χ

3 + χ

)2
1

D5
. (4.2)

At a driving frequency f < fc, the magnetic force dominates the viscous drag. The pair
rotates at the same speed as the driving field, with a phase lag ∆θ never exceeding π/4.
Thus the magnetic radial force remains attractive at all times and the spheres approach
each other and then stay in contact. This behavior is the counterpart of our drop locking
regime. When f > fc, the strong viscous drag causes the phase lag ∆θ to exceed π/4.
The two spheres periodically repel and separate, and revolve around each other at a
lower rate, as in our planetary motion. Helgesen et al. (1990); Bacri et al. (1995) have
also verified the predictions by experiments.

Extending this idea to the ferrofluid drops in our case, we can view the transitions
outlined in figure 5 in a more general light. Increasing the initial separation D0 tends
to decrease the magnetic forces relative to the viscous drag, resulting in the shift from
direct coalescence to drop locking, and further to planetary motion and independent spin.
The same outcome can also be achieved by one or a combination of the following means:
gradually increasing the driving frequency f , reducing the magnetic susceptibility χ or
reducing the magnetic Laplace number Lam. In fact, as Lam decreases from 75 to 50 in
the simulation of figure 15, drop locking gives way to planetary motion. Furthermore,
taking the experimental parameters of Chen et al. (2015), equation (4.2) predicts the
dimensional critical driving frequency to be 0.5 Hz. This is consistent with observations
of the planetary motion at a driving frequency of 1 Hz in the experiment.

To make direct comparison with our 2D numerical simulation, we assume Oseen flow
with small inertia to avoid the singularity of Stokes flow. Balancing the dipole force in
the azimuthal direction with the Oseen drag on a cylinder (Lamb 1911), we can derive a
2D counterpart of equation (4.2):

fc

ln
(

3.7
πD
√
Lamfc

) =

√
Lam
π

(
χ

2 + χ

)2
1

D4
, (4.3)

In our numerical simulations, planetary motion prevails at a frequency of f = 0.025 at
D0 = 3.5, Lam = 75, χ = 2 and ξ = 0.2. Drop locking is realized at the lower frequency
of f = 0.0125. Thus, the threshold frequency lies between these two values. Using the
same parameters, equation (4.3) predicts a critical frequency of fc = 0.0075, smaller but
on the same order of magnitude as the threshold frequency in the simulations.

Of course, our ferrofluid drops are not point dipoles, and their deformation and
hydrodynamic interaction introduce new mechanisms into the picture. For one, we have
observed that near the boundary between regimes, the initial positioning of the drops
relative to the field can influence which behavior prevails. In all the simulations presented
so far, the drops are initially aligned along the field direction (horizontal in figure 2).
Thus, the two drops initially attract and approach each other. If the two drops are
placed in a vertical line, perpendicular to the initial field direction, they repel each other
at the start. For a relatively close D0 = 3.6 (the other parameters being f = 1/120,
Bom = 2, ξ = 1, Lam = 75), we have observed the two drops coalescing directly from the
horizontal initial configuration, but separating and settling into a planetary motion from
the vertical initial configuration. In addition, the viscosity ratio ξ of the ferrofluid to the
surrounding medium affects the regimes. In the drop-locking example of §4.3, increasing
ξ from 0.2 to 1 while keeping all other parameters the same will cause a transition from
drop locking to planetary motion. Increasing the viscosity of the ferrofluid drop makes it
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more rounded, and the reduced viscous sweeping tends to keep the drops farther apart.
These are manifestations of the ferrofluid drop dynamics as distinct from that of magnetic
dipoles.

A still more important factor is viscous sweeping, which can affect the drop interaction
significantly. On the one hand, it directly promotes the revolution of the drops around
each other through viscous forces. On the other, it tends to push the drops toward each
other, magnifying the magnetic forces in the mean time. Thus, it is difficult to express its
effects, say, as an algebraic generalization of equation (4.3). Given the computational cost,
especially associated with resolving thin films, we have not undertaken a comprehensive
parameter sweep to determine more precisely the boundaries among the regimes as part
of this study.

5. Conclusion

Inspired by the experimental observations of Chen et al. (2015), we have used direct
numerical simulation to investigate the interaction between a pair of ferrofluid drops
suspended in an immiscible fluid inside a rotating uniform magnetic field. The driving
field is of sufficiently low frequency that the drops elongate and spin in phase with
the field. We have observed four regimes of pair-wise interaction within the range
of parameters explored: independent spin, planetary motion, drop locking, and direct
coalescence. These are in qualitative agreement with experimental observations.

Furthermore, we have probed the mechanisms behind these outcomes by interrogating
our numerical results. The transition between these regimes can be understood as the
outcome of the competition of two types of forces: magnetophoretic forces that tend to
attract the drops toward each other, and viscous drag that hinders the drop motion
and causes the drops to fall periodically into a configuration of mutual repulsion. Thus,
relatively strong magnetic forces favor coalescence, while relatively strong viscous drag
favors less interactive regimes. The drop locking regime was discovered in the simulations
first, and then confirmed by new laboratory experiments. It represents an intermediate
state between direct coalescence and planetary motion.

We have analyzed the planetary motion in detail. A model of magnetic dipolar
interaction explains well the oscillations in the trajectory of the drops. Although the
magnetic interaction can also produce revolution of the two drops around each other,
we have found a type of hydrodynamic interaction—viscous sweeping—to play a more
important role. When an elongated drop spins with the driving field, it produces a flow
field that sweeps the second drop in the same direction. As a result, drop interaction
presents novel features that cannot be explained by dipolar interaction. For example, the
average angular velocity of the planetary revolution increases with the driving frequency,
contrary to predictions of the dipole model. Besides, the drops in planetary motion
approach a mean separation in time that is independent of initial separations. This limit
separation is smaller if the external field rotates faster.

We should note that the simulations are limited by computational cost to two di-
mensions, so quantitative comparison with experiments is difficult. The main numerical
challenge comes from resolving the thin film between two drops. The solution for the
magnetic field and the need for a large enough domain to avoid boundary interfer-
ence also add to the magnitude of a full 3D simulation. The main contribution of
this study, therefore, consists in elucidating qualitatively the mechanisms underlying
the experimental observations of ferrofluid drops in a rotating magnetic field. In this
regard, the 2D predictions match well with the experimental observations, including the
transition between regimes (§4.1 and §4.4) and the emergence of drop locking (§4.3). This
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indicates that the 2D simulations have captured the essential physics. Beyond the pairwise
interaction studied here, the experiments have also demonstrated self organization of a
cluster of drops into regular patterns (Chen et al. 2015). This, together with a full 3D
numerical calculation using more realistic material parameters, presents challenges for
future theoretical and computational studies.
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Bacri, J. C., Cēbers, A. O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop
in a rotating magnetic field. Phys. Rev. Lett. 72, 2705–2708.

Bacri, J. C., Drame, C., Kashevsky, B., Neveu, S., Perzynski, R. & Redon, C. 1995
Motion of a pair of rigid ferrofluid drops in a rotating magnetic field. In Trends in Colloid
and Interface Science IX. Progress in Colloid and Polymer Science, vol 98 , pp. 124–127.
Springer.

Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field.
J. Physique Lett. 43, 649–654.

Bailey, R. L. 1983 Lesser known applications of ferrofluids. J. Magn. Magn. Mater. 39, 178–
182.

Baygents, J. C., Rivette, N. J. & Stone, H. A. 1998 Electrohydrodynamic deformation
and interaction of drop pairs. J. Fluid Mech. 368, 359–375.

Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling
surface tension. J. Comput. Phys. 100, 335–354.
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