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Abstract: Manipulation of the Rayleigh-Taylor instability using an external electric field has been the sub-
ject of many studies. However, most of these studies are focused on early stages of the evolution. In this
work, the long-term evolution of the instability is investigated, focusing on the forces acting on the inter-
face between the two fluids. To this end, numerical simulations are carried out at various electric permit-
tivity and conductivity ratios as well as electric field intensities using Smoothed Particle Hydrodynamics
method. The electric field is applied in parallel to gravity to maintain unstable evolution. The results show
that increasing top-to-bottom permittivity ratio increases the rising velocity of the bubble while hindering
the spike descent. The opposite trend is observed for increasing top-to-bottom conductivity ratio. These
effects are amplified at larger electric field intensities, resulting in narrower structures as the response to
the excitation is non-uniform along the interface.
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1. Introduction

An interface between two immiscible fluids may be subject to capillary, viscous and gravitational forces,
depending on the flow configuration. Manipulation of this interface by introducing an external electric
field has been of great interest. Earlier works on this subject have been carried out by Taylor [1], who
proposed the leaky dielectric model. Melcher conducted further studies on the effects of tangential and
perpendicular fields on the interface [2, 3]. A review of several flow configurations are provided by Saville
[4]. Some examples of the applications of electrically manipulated interfaces are found in spraying [5, 6],
flow focusing [7], dispersion [8], micromixing [9–11] and pattern formation [12, 13], to name a few.

The manipulation of the interface with the electric field is highly dependent upon the orientation of
the electric field with respect to the interface and the electrical properties of the fluids in question. The
electric field may be parallel or perpendicular to the initially undisturbed interface while the fluids may
be either perfect or leaky dielectrics. Pease and Russel [14] investigated the pattern formation in leaky and
perfect dielectric fluids using linear stability analysis, pointing out the importance of conductivity in the
liquid. Shankar and Sharma [15] conducted a similar study for leaky dielectric fluids using lubrication
theory. Craster and Matar [13] investigated the instabilities in thin films in the non-linear regime and
reported the effects of fluid properties on the formation of instabilities. In these studies the electric field
direction is perpendicular to the interface. Tilley et al. [16] investigated small-amplitude capillary waves
on a non-conducting (perfect dielectric) liquid sheet subject to a parallel electric field, and showed that
the electrical force delays rupture in the sheet. Further extension to arbitrary amplitudes was carried out
by Papageorgiou and Vanden-Broeck [17]. The effects of parallel and perpendicular electric fields on the
evolution of the interface in (pressure driven) channel flows were studied by Uguz and Aubry [18]. Their
results show that both parallel and perpendicular electric fields may be used to stabilize or destabilize the
interface.
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The studies mentioned above disregarded gravity because of the dominating role of electrical and capil-
lary forces. One configuration where gravity plays an important role in driving the flow is Rayleigh-Taylor
Instability (RTI). First observed by Lord Rayleigh [19] and Taylor [20], the instability happens when a heav-
ier fluid sits atop a lighter one. The effects of an external electric field on the RTI have been well studied
[11, 21–25]. Mohamed and Shehawey [21] investigated the effects of a perpendicular electric field for per-
fect dielectric fluids using the method of multiple-scale perturbations. Their results show that the electric
field may stabilize or destabilize the interface depending on the electric permittivity and density ratios.
Elbade [23] studied the effects of parallel electric field and identified a stabilizing regime for RTI of inviscid
perfect dielectric fluids. Barannyk et al. [25] further investigated this case for the limit of thin upper layer
and reported a periodic motion at the interface for large enough electric fields. Joshi et al. [24] derived the
dispersion relation for perturbation at the interface, emphasizing the viscous and leaky dielectric nature
of the fluids. Most of the studies on electrohydrodynamic RTI are limited to the linear regime, and little
has been done on the nonlinear development on longer time scales. To our knowledge, the only excep-
tion is Cimpeanu et al. [11], who performed Direct Numerical Simulation (DNS) of RTI in perfect dielectric
medium subject to parallel electric field and found the results in the linear regime to be in agreement with
their linear stability analysis. They further investigated the non-linear regime using DNS and proposed a
method for modulating the interface using timed electric field application.

Another limitation of the prior studies is their use of the perfect dielectric model. In reality, conductivity
plays an important role in the evolution of interfacial forces in most fluids of interest [24, 26, 27]. The
evolution of RTI in viscous leaky dielectric fluids in the presence of an external field involves complex
interaction of surface and body forces. In this regard, a close observation of the interfacial forces and
vorticity generation may provide valuable information regarding the later stages of the RTI evolution. To
this end, we simulate RTI perturbed by a small-amplitude cosine wave subject to a perpendicular electric
field. Unlike a parallel field, a perpendicular electric field does not result in suppression of the instability,
allowing us to study the effects at later stages of the evolution.

Our results show that within the range of the parameters covered, the surface charges play an important
role in shaping the interface. The electrical forces are concentrated on either of the bubble or the spike tips,
depending on the parameters, and compete with the surface tension forces. The dominant mechanism in
vorticity generation is found to be the surface tension force. However, the electric forces show comparable
role at later stages of the simulation for higher field strengths.

2. Mathematical formulation

2.1. Governing equations of the fields
The equations governing electric and flow fields are evolved simultaneously for two incompressible,

immiscible, isothermal, Newtonian and leaky dielectric fluids. Governing equations describing the evolu-
tion of the flow field may be written as

∇ · u = 0, (1)

ρ
Du
Dt

= −∇p +∇ · τ + f(b) + f(s) + f(e), (2)

where u is the velocity vector, p is pressure, ρ is density, t is time and D/Dt = ∂/∂t + u ·∇ represents the
material time derivative. Viscous stress tensor τ is defined as

τ = µ
[
∇u + (∇u)†

]
, (3)

where superscript �† denotes the transpose operation. Here, f(b), f(s) and f(e) are gravity, surface tension
and electrical forces and will be defined in section 2.2.

Assuming small dynamic currents and neglecting the magnetic induction effects, we have an irrota-
tional electric field governed by Gauss’ Law and charge conservation equation [28]. Further assumption of
short electric relaxation time in comparison to viscous relaxation time simplifies these equations into [4, 29]

∇ · (σ∇ϕ) = 0, (4)
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qv = ∇ · (ε∇ϕ) , (5)

where σ and ε denote electrical conductivity and permittivity of the fluid, respectively, qv is the volumet-
ric representation of the surface charge density and the electric field is expressed in terms of an electric
potential, ϕ, as E = −∇ϕ.

To distinguish between different phases, a color function ĉ is defined such that it is zero for the heavier
fluid and unity for the other. Thermodynamic variables, transport coefficients, interface curvature and unit
normals are computed using corresponding color function values [30].

2.2. Interfacial and body forces
In this section, we define the body and interfacial forces introduced in equation (2). Being a body force,

gravity is treated directly as
f(b) = ρg, (6)

where g is the gravitational acceleration vector. For computational efficiency and simplicity, the local sur-
face tension force is expressed as an equivalent volumetric force [31], f(s). Replacing the sharp interface
between two fluids with a transitional region of finite thickness, surface tension force may be formulated
as

f(s) = γκn̂δ, (7)

where δ is the Dirac delta function computed as the gradient of color function and γ is the constant surface
tension coefficient. The interface curvature κ is found through −∇ · n̂, where n̂ is the unit surface normal
vector.

The stress induced by the external electric field on the flow is given by Maxwell stress tensor [4, 32, 33].
The equivalent volume force exerted on the flow is found by taking the divergence of the Maxwell stress
tensor as

f(e) = −1
2

E · E∇ε + qvE. (8)

The first term on the right hand side, called the polarization force (dielectric force) f(ep), will always act in
a direction normal to the interface. The second term (called Coulomb force) f(eq), is a result of interactions
between electric field and electric charges and will be oriented in the direction of the electric field. The
resultant electric force has a complex behavior which will be discussed further in section 3.2.

2.3. Contribution of the interfacial forces to the vortex sheet strength
Following Dopazo et al. [34] and Wu [35], the vortex sheet strength on an infinitesimal path of length δω

perpendicular to the interface may be written as

Γ =
∫ 0

−δω/2
ωldn +

∫ δω/2

0
ωhdn. (9)

Here subscripts �h and �l denote heavy and light fluid sides, respectively. The contribution of pressure to
DΓ/Dt may be written as

n̂ ×
∥∥∥∥1

ρ
∇p

∥∥∥∥ = n̂ ×∇
∥∥∥∥ p

ρ

∥∥∥∥ , (10)

where ∥ f ∥ = fh − fl . Rearranging ∥p/ρ∥ into∥∥∥∥ p
ρ

∥∥∥∥ =
∥p∥
ρh

−
(

1
ρl

− 1
ρh

)
pl (11)

and considering the stress balance on the interface [29], one may rewrite the left hand side of equation (10)
as

n̂ ×
∥∥∥∥1

ρ
∇p

∥∥∥∥ = −n̂ ×
∇
(

n̂ · f(e) + n̂ · f(s)
)

ρ̄ (1 +A)
− n̂ × 2A

ρ̄ (1 −A2)
∇pl , (12)
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where both fluids have identical viscosities while A and ρ̄ denote Atwood number and average density, re-
spectively. The first term on the right hand side of the above equation will be computed to study the effects
of the interfacial forces on vortex sheet strength. Although the above definition assumes an infinitesimally
thin interface, we employ the forces used to evolve a diffuse representation of the interface in our simula-
tions. As such, the forces are interpolated at the nominal location of the interface (0.5 level contour of color
function) before calculating equation (12).

2.4. Dimensionless form of the equations
To better identify the effective parameters and ratios affecting the evolution of RTI, equations (1), (2),

(4) and (5) are made dimensionless assuming the following characteristic scales

x′ =
x

W
, t′ =

t√
W/g∞

, u′ =
u√

g∞W
, κ′ = κW, (13)

p′ =
p − ρg · x

ρ̄g∞W
, ρ′ =

ρ

ρ̄
, g′ =

g
g∞

,

E′ =
E

E∞
, ϕ′ =

ϕ

E∞W
, q′ =

qv

ε̄E∞/W
,

where �̄ denotes arithmetic average between heavier and lighter fluid values. W is the width of the compu-
tational domain while E∞ and g∞ denote undisturbed electric field strength and gravitational acceleration,
respectively. In addition, ratios of heavy to light fluid values are defined as

A =
ρh − ρl

2ρ̄
, V =

µh − µl
2µ̄

, P =
εh − ε l

2ε̄
, C =

σh − σl
2σ̄

. (14)

Here, A is Atwood number, V is viscosity ratio, P is permittivity ratio and C is conductivity ratio. Imple-
menting these scales, the aforementioned equations may be rewritten as

∇′ · u′ = 0, (15)

ρ′
Du′

Dt′
= −∇′p′ +

1
Re

∇′ · τ′ +
1

Bo
f′(s) +

1
Eg

f′(e), (16)

∇′ ·
(
σ′∇ϕ′) = 0, (17)

q′ = ∇′ ·
(
ε′∇′ϕ′) , (18)

where

Re =
ρ̄
√

g∞W3

µ̄
, Bo =

ρ̄g∞W2

γ
, Eg =

ρ̄g∞W
ε̄E2

∞
, (19)

are Reynolds, Bond and electro-gravitational numbers [36], respectively. Taking Re, Bo, A and V constant,
the remaining effective parameters are Eg, P and C, allowing this study to assess the effects of electrical
properties and electric field intensity on the evolution of the instability. The motivation behind choosing P
and C in their current form is to determine the force directions by observing the sign of these parameters.
Further implications of this choice is illustrated in section 3.3 and the Appendix.

From this point forward, we drop the primes when referring to dimensionless values. To maintain the
relative magnitude of the interfacial forces when comparing them, f(s) and f(e) are normalized with the
same scale as the left hand side of equation (16), ρ̄g∞.
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2.5. Numerical method
The governing equation are discretized using Incompressible Smoothed Particle Hydrodynamics (ISPH)

method. Details of the method and extensive validation are provided by Shadloo et al. [29, 37]. A summary
of the numerical procedure is provided here.

To ensure a smooth transition between the properties of each phase when used for their interpolation,
the color function ĉ is smoothed out across the phase boundaries [29] as

ci =
Jn

∑
j=1

ĉjWij

ψi
. (20)

Here, ψi = ∑Jn
j=1 Wij, is the number density of SPH particle i, calculated as the sum of the interpolation

kernel of neighboring particles i and j over all neighbors of particle i, Jn. The interpolation kernel W(rij, h),
concisely noted as Wij, is a function of the magnitude of distance vector, rij = ri − rj, between particle of
interest i and its neighboring particles j and h, the smoothing length. The smoothed color function is also
utilized to evaluate δ ≃ |∇c|, κ = −∇ · n̂ and n̂ = ∇c/ |∇c| in equation (7) [30, 37].

A predictor-correcter scheme is employed to advance the governing equations of flow in time using a
first-order Euler approach with variable timestep according to Courant-Friedrichs-Lewy condition, ∆t =
ζh/umax, where umax is the largest particle velocity magnitude and ζ is taken to be equal to 0.25 [37, 38]. In
predictor step all the variables are advanced to their intermediate form using following relations,

r∗i = r(n)i + u(n)
i ∆t + δr(n)i , (21)

u∗
i = u(n)

i +
1

ρ
(n)
i

(
1

Re
∇ · τi +

1
Bo

f(s)i +
1

Eg
f(e)i

)(n)
∆t, (22)

ψ∗
i = ψ

(n)
i − ∆tψ(n)

i (∇ · u∗
i ) , (23)

where starred variables represent intermediate values, δri is the artificial particle displacement vector [37]
and superscript (n) denotes values at the nth time step.

Using intermediate values, pressure at the next time step is found by solving the Poisson equation
which is then followed by corrections in position and velocity of the particles, completing the temporal
transition.

∇ ·
(

1
ρ∗i

∇p(n+1)
i

)
=

∇ · u∗
i

∆t
, (24)

u(n+1)
i = u∗

i −
1
ρ∗i

∇p(n+1)
i ∆t, (25)

r(n+1)
i = r(n)i +

1
2

(
u(n)

i + u(n+1)
i

)
∆t + δr(n)i . (26)

Boundary conditions are enforced through multiple boundary tangent method described in [39] while
first derivative and Laplace operator of vector and scalar functions are approximated through following
expressions

∂ f m
i

∂xk
i

akl
i =

Jn

∑
j=1

1
ψj

(
f m
j − f m

i

) ∂Wij

∂xl
i

, (27)

∂

∂xk
i

(
φi

∂ f m
i

∂xk
i

)
aml

i = 8
Jn

∑
j=1

2φi φj

φi + φj

1
ψj

(
f m
i − f m

j

) rm
ij

r2
ij

∂Wij

∂xl
i

, (28)

∂

∂xk
i

(
φi

∂ fi

∂xk
i

)(
2 + akk

i

)
= 8

Jn

∑
j=1

2φi φj

φi + φj

1
ψj

(
fi − fj

) rk
ij

r2
ij

∂Wij

∂xk
i

. (29)
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Here, akl
i = ∑Jn

j=1
rk

ij
ψj

∂Wij

∂xl
i

is a corrective tensor that eliminates particle inconsistencies [38] while φ may denote

density-inversed, viscosity, permittivity or conductivity, where appropriate.
The current method has been used successfully to simulate Rayleigh-Taylor instability [37] and motion

of a neutrally buoyant droplet suspended in an external electric field [29].

3. Results

In this study Re, Bo, A and V are assumed to be constants and equal to 225, 150, 1/3 and 0 while P , C
and Eg are varied to study the effects of electrical forces. The computational domain consists of a rectangle
of size 1 × 4 discretized by 80 × 320 particles arranged on a Cartesian grid. This corresponds to a uniform
particle spacing of 1/80 for the base resolution. Top and bottom walls obey the no-slip condition and have
a constant potential difference. Side walls allow slip but prohibit penetration. The electric field direction
is fixed pointing downward and parallel to the side walls. To define heavier and lighter fluid regions, we
assign an initial interfacial perturbation according to

ĉ (x, y) =

{
0, y > 2 + 0.025 cos (2πx) ,
1, y < 2 + 0.025 cos (2πx) .

(30)

Two sets of parameters, PN (Positive permittivity ratio P = 0.3, Negative conductivity ratio C = −0.3,
Eg = 90) and NP (Negative permittivity ratio P = −0.3, Positive conductivity ratio C = 0.3, Eg = 90), are
referred to as baseline cases. When studying the effects of each parameter, the other parameters are kept
constant at the baseline values. First we establish the convergence of the numerical results with respect
to spatial resolution. Then the baseline cases are compared to RTI with no electric field and the general
behavior of the interfacial forces are presented. The effects of the electrical properties of the fluids are
investigated by simulating RTI at different P and C. Finally, by varying Eg, we study the effects of electric
field intensity on the evolution of instability.

3.1. Spatial resolution
As the particles are initially arranged in an equally spaced Cartesian grid, equation (30) results in an

interface with a resolution-dependent step-like pattern. While the computational method is extensively
tested for RTI without an external electric field [37], addition of electric forces necessitates further confir-
mation of proper resolution. To test the effects of the resolution on the results, we simulate case NP with
particle spacings of δp = 1/40, 1/60, 1/80, 1/100 and 1/120 and compare the results.

Figure 1 plots the simulation results where we call the lowest point of the heavier fluid the “spike tip”
(�s) and the highest point of the lighter fluid the “bubble tip” (�b). Interface profiles are taken at moments
when the spike reaches the following positions: ys = 1.7, 1.4, 1.1, 0.8 and 0.5. Due to its initial step-
like nature, the interface retains a slightly sinuous profile during the simulation. This results in a wavy
pattern in surface tension force as it depends on the second derivative of the color function (cf. figures 3
and 4). However, as it is seen in figure 1-a and 1-b, position and velocity profiles are quite similar for 1/80
and finer particle spacings. The interface profiles in the vicinity of the spike and bubble (figure 1-c) have
similar structures as well. Based on these observations and considering that this study focuses mostly on
the behavior of the spike and bubble regions, the base resolution is found adequate.

3.2. Effects of an external electric field
To identify the effects of the electric field on Rayleigh-Taylor instability, the evolution of baseline cases

are compared to that of a case with No Electric field, NE. Figure 2 provides spike and bubble tip positions
and velocities along with snapshots of interface profiles at ys = 1.7, 1.4, 1.1, 0.8 and 0.5. For case NP, the
electric field affects the position of the spike tip much more than the bubble tip. The spike moves faster
while the bubble is slightly slower. The opposite is true for case PN where the bubble is the faster feature.
When compared at similar spike tip position, the longer side tails of case PN may also be attributed to its
faster bubble ascent.
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Figure 1: Spike and bubble tip positions (a) and velocities (b) versus time for different particle spacings of δp = 1/40, 1/60, 1/80,
1/100 and 1/120; (c) interface profiles at ys = 1.7, 1.4, 1.1, 0.8 and 0.5.
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Figure 2: Spike and bubble tip positions (a) and velocities (b) for cases NP (red), PN (blue) and NE (green); (c) interface profiles at
ys = 1.7, 1.4, 1.1, 0.8 and 0.5.
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of normalized interface length. Symbols on the interface and horizontal axes correspond to spike tip (▽), middle point of interface
(#) and bubble tip (△).
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nents; (c) electrical force, surface tension and the resultant interfacial force; the cross marks on the interface are placed at 0.1 intervals
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(#) and bubble tip (△).

To better demonstrate the force composition (and analyze its effects) along the interface, figures 3 and
4 provide the force components perpendicular to the interface versus normalized interface length at spike
tip position ys = 1.4. A superscript �n is used to denote the normal component when necessary. A positive
value indicates a force pointing from heavier fluid to the lighter one. The only tangential component (not
shown) applied to the interface is due to f(eq) which is an order of magnitude smaller than its normal
component and two orders of magnitude smaller than the surface tension force.

Figures 3-b and 4-b show the normal electric force fn
(e) and its components, f(ep) and fn

(eq), as defined
in equation (8). The polarization force f(ep) always points in the opposite direction of the permittivity
gradient, i.e. toward the heavier fluid for case NP and in reverse direction for case PN. The Coulomb force
f(eq) is only parallel to the electric field and its direction is dependent on q. At this stage of the simulation,
the extrema of fn

(eq) occur at the spike tip, bubble tip and the relatively flat region between the two inflection
points along the interface. f(ep) has a smaller and relatively uniform magnitude along the interface when
compared to fn

(eq).
Figures 3-c and 4-c plot the electric force fn

(e), surface tension f(s) and their summation fn
(i). Compared to

the surface tension, which is larger at sharper corners of the interface, the electric force is almost negligible
except at bubble tip (case PN) or spike tip (case NP). The role of the resultant electric force in these cases
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may be described as that of countering the hindrance of surface tension force which tends to minimize the
surface energy by reducing the curvature. In case NP, the total force on the spike region is reduced due
to the presence of the external electric field while the impeding force on the bubble is slightly increased.
Having the inverse force configuration, case PN experiences the opposite situation where bubble ascent is
less prohibited and spike descent is slightly more hindered. This results in faster bubble ascent for case PN
and faster spike descent for case NP, as observed in figure 2.

3.3. Effects of electrical permittivity and conductivity ratios
To study the effects of the permittivity ratio, the conductivity ratio is kept constant at C = ±0.3 while

P is varied from −0.9 to +0.9 in steps of 0.2. As for the effects of the conductivity ratio, P = ±0.3 while C
is varied from −0.5 to +0.5 in steps of 0.2.

Figure 5 shows spike and bubble positions and velocities with respect to time for constant C. The
arrows show the direction of increasing permittivity ratio P . The effect of increase in P is identical for both
C = ±0.3, resulting in an increase in bubble ascent velocity while hindering the spike descent. Comparing
the two cases, it is notable that the effects are more pronounced in the spike for C = +0.3 while the bubble
is more affected in C = −0.3. Assuming that the bubble or the spike tip of different cases passing through
the same height experience the same electric field, it is seen that f(e) and its components f(ep) and f(eq) have
a linear relationship with P (cf. Appendix). Increasing P at constant C increases f(e) which in turn reduces
the spike descent velocity and increases the bubble ascent velocity. For C < 0, the electric field is stronger
at larger y thus having greater effect on the bubble while C > 0 has a similar effect on the spike (cf. equation
(32) in Appendix).

Figure 6 provides spike and bubble tip positions and velocities with respect to time for different C at
constant P . Increasing C reduces the ascent velocity of the bubble while increasing the descent velocity of
the spike. For the range of parameters studied here, the bubble tip position tends to converge to a similar
profile for C > 0 whereas such convergence for the spike happens for C < 0. A similar observation is
valid for the tip velocities as well. The reason behind this behavior lies in the relation between electric
field intensity and C (cf. equation (32) in Appendix). At C = 0 the electric field intensity is uniform and
equal to E∞. Further increase in C results in a reduction in electric field intensity at the bubble region. The
difference in electric field intensity between consecutive levels of C is also reduced for larger C. As a result,
the electric force magnitude tends to converge to a minimum value at larger C, as seen in figure 7-right
for P = +0.3. The reverse is true for the spike region where the electric force profiles converge for C < 0
(figure 7-left). Figure 7 also shows surface tension and resultant interfacial force for bubble and spike tips
with respect to the related feature’s position. Surface tension is mostly insensitive to changes in electrical
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Figure 6: Spike and bubble tip position (a,b) and velocity (c,d) for P = −0.3 (a,c) and P = +0.3 (b,d); the arrow shows the direction
of increasing C.

properties. As expected, surface tension is the dominant interfacial force where electrical force has the
smallest magnitude, i.e. for C < 0 on the spike and for C > 0 on the bubble. As a result, a converging
profile is observed for each feature in its respective interval of C. Similar observations are valid when
P = −0.3.

3.4. Effects of electric field intensity
3.4.1. Positions, velocities and interface profiles

To investigate the effects of the electric field intensity, the electro-gravitational number is started from
5.625 and multiplied by two for consecutive cases until Eg = 360 where a lower Eg denotes larger electric
field intensity. The permittivity and conductivity ratio are kept at baseline values of NP and PN.

Figure 8 provides spike and bubble tip positions and velocities for both NP and PN baselines. Larger
electric field intensities augment the effects observed in section 3.2, i.e. an increase in the spike velocity and
a decrease in the bubble velocity for NP. For PN, the reverse is true. The effects are more pronounced in
the spike tip for NP and in the bubble tip for PN. After an initial movement at Eg = 5.625, the bubble and
spike tips are almost stationary for cases NP and PN, respectively. Combined with the fast motion of the
opposite feature, this results in significant deviations from the interface profiles for RTI at A = 1/3 in the
absence of the electric field which will be discussed further in the following paragraphs. The potential flow
region (constant velocity movement) of evolution is reached earlier at smaller Eg while reacceleration of
spike does not appear during the simulation times considered here.

Figure 9 plots interface profiles at Eg = 5.625, 22.5, 90 and 360. The interface profiles are shown at
identical spike tip positions for NP. Fast spike motion and nearly stagnant bubble at Eg = 5.625 result in
a lack of heavy fluid at the spike region. This in turn leads to a very small spike tip and thin stem with
completely suppressed side tails. This behavior resembles that of very high A RTI. Increasing Eg results in
thicker stem and well developed side tails. As for PN, the interface profiles are plotted at identical bubble
tip heights. At Eg = 5.625, the spike tip moves much slower than the bubble tip. This leads to a thick spike
with a small structure rising at its side. This structure resembles bubbles rising in quiescent fluid at high
Bo numbers (small surface tension). At Eg = 22.5, the spike and the bubble cover similar distances with
respect to time, which is a feature of very low A RTI. By further increasing Eg, the profiles approach those
in the absence of the electric field.

3.4.2. Vortical structures
To investigate the effects of the electric field intensity on the vortical structures, figure 10 shows vorticity

contours and streamlines near the interface drawn in red at Eg = 5.625. The figure shows case NP at ys =
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1.7, 1.1 and 0.5 and case PN at yb = 2.1, 2.5 and 2.9. These six panels correspond to those of figure 11 which
depicts n̂ ×∇

(
n̂ · f(e)

)
, n̂ ×∇

(
n̂ · f(s)

)
and their summation as a measure of the first term on the right

hand side of equation (12) along the interface. The interface is marked at 0.1 intervals of the normalized
interface length on the contour lines of figure 10 and horizontal axes of figure 11, where symbols ▽, # and
△ correspond to the spike tip, middle point of the interface and the bubble tip, respectively.

In figure 10, the single vortex generated at early stages of the simulation is highly skewed toward the
heavier fluid for case NP and toward the lighter fluid for case PN. This structure, which rotates counter-
clockwise, encompasses large regions of one fluid while leaving the other fluid almost stagnant, except near
the interface (figure 10-a,d). Vorticity generation sites are clearly observable near the tip of the preferred
structure (spike for NP and bubble for PN) in figure 10-b,e. Occasionally, counter-rotating vortices may
emerge near the main vortex in the lighter fluid for case NP and in heavier fluid for case PN (not shown
here). A co-rotating vortical structure emerges at the later stages shown in figure 10-c,f. Such co-rotating
vortices are not observed in our NE simulation. The co-rotating vortices of case PN merge as the bubble
rises to yb = 3.8 while the co-rotating vortices in case NP persist during the simulation time (until ys = 0.2).

Figure 11 provides a measure of the role of the electric forces in generation of the observed vortical
structures. The very early stages involving generation of small co-rotating vortices are similar to that of the
case NE (cf. section 3.1). However, the rest of the evolution is different when large electric field values are
used. As is seen in figure 11-a,d, the dominant vorticity generation mechanism is through electric forces
near the tip of the preferred structure (spike for NP and bubble for PN). As the features start to extend (11-
b,e), additional sites are introduced where surface tension is the dominant generation mechanism. The sites
dominated by the electric force also start to move away from the tips (11-c,f) which results in the generation
of the smaller co-rotating vortex observed in 10-c,f. At later stages of the simulation, both surface tension
and electric forces play an equal role in vorticity generation.
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yb = 2.1, 2.5 and 2.9 (blue contours in figure 9-b).
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Figure 11: Electric force (red), surface tension (blue) and resultant contribution of interfacial forces (black) on vortex sheet strength in
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with Eg = 5.625 at yb = 2.1, 2.5 and 2.9.

4. Conclusion

Rayleigh-Taylor instability appears when a heavier fluid is above a less dense one in a gravitational
field. Manipulation of this instability using electric fields has been the subject of many studies. Most of
these studies, however, are based on linearized or simplified models. In this study, incompressible immis-
cible RTI of leaky dielectric fluids is simulated until its late stages using Smoothed Particle Hydrodynamics
method at Re = 225, Bo = 150, A = 1/3 and V = 0. The electric field is taken to be perpendicular to the
initial interface so as to maintain the unstable evolution. Interfacial forces and vortex generation are stud-
ied to explain how the interfacial evolution is affected by the permittivity ratio, the conductivity ratio and
the electric field intensity.

The results show that increasing the top-to-bottom permittivity ratio augments the rise of the bubble
while hindering the descent of the spike. On the other hand, increasing the conductivity ratio results in a
decrease in the bubble velocity while augmenting the spike movement. At large conductivity ratios, the
bubble is more affected when the permittivity ratio is positive whereas the spike is more affected when
permettivity ratio is negative. Increasing the electric field intensity has different effects depending on
the combination of the permittivity and conductivity ratios. Applying larger field intensities results in
narrower structures. At higher field intensities, electric forces dominate vorticity generation at early stages
of the simulation. However, the role of surface tension and electric forces become comparable at later stages
of the evolution.

To summarize, it is shown that manipulating the electric field intensity in conjunction with electrical
properties of the fluids allow for control of the interrfacial morphology by suppressing certain features
while augmenting others.
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Appendix

To demonstrate the underlying relation between P , C and f(e), a simplification for flat regions is de-
rived here. As bubble and spike tips have relatively flat surfaces, this will provide further insight about
the behavior of these structures with respect to P and C. Using dimensional form of the variables and
starting with the definition of a divergence free electric field (equation (4)), it is possible to approximate the
divergence of the electric field across the interface as

∇ · E ≈ −Ē · ∇σ

σ̄
. (31)

It is notable that the strength of electric field due to finite potential ∆ϕ on a flat interface depends on its
position with respect to the electrodes and C as

Ē ≈ ∆ϕ

(H − y) (1 − C) + y (1 + C) n̂. (32)

Without a loss in generality, it is assumed that σ̄ = ε̄ and test cases are set according to this assumption.
Upon setting ∇ f = −δn̂∆ f , where ∆ f = fh − fl represents permittivity or conductivity difference between
heavy and light fluids, one may rewrite equation (5) as

qv ≈ −2ε̄δĒ · n̂ (P − C) . (33)

As noted before, positive normal vector points from heavier fluid to the lighter one in this study. This
means that surface normal and electric field vector point in the same direction on the flat portions of the
interface. Consequently, approximations of f(eq) and f(ep) follow as

f(eq) ≈ −2ε̄δ (P − C) Ē2n̂, f(ep) ≈ ε̄δP Ē2n̂, (34)

while f(e) may be approximated as
f(e) ≈ −ε̄δ (P − 2C) Ē2n̂. (35)

Equations (32), (34) and (35) provide a coarse approximation to the electric field and the electric force
applied to the bubble and the spike tip regions, facilitating a general observation of the trends.
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