
A Phase-Field Based Hybrid Lattice-Boltzmann

Finite-Volume Method and Its Application to Simulate

Droplet Motion under Electrowetting Control

J.J. Huang1,C. Shu2,
∗

,J.J. Feng3,4and Y.T. Chew2

1 Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, Singapore 117411, Singapore

2 Department of Mechanical Engineering, National University of Singapore,
10 Kent Ridge Crescent, Singapore 119260, Singapore

3 Department of Chemical and Biological Engineering, University of British Columbia,
Vancouver, BC V6T 1Z3, Canada

4 Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, Canada

Abstract

A phase-field based numerical model combining the lattice-Boltzmann method (LBM) and the finite-volume
method (FVM) is proposed and applied for the study of two-dimensional (2-D) droplet under electrowetting
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1 Introduction

Microfluidic systems promise to revolutionize the chemical and biological laboratories, and thus have attracted
considerable attention in recent years [1]. Droplet actuation, transport, and mixing within the droplets are all
encountered in such systems. One of the effective methods to control droplets is electrowetting (EW) [2, 3].
To optimize the design and operation of EW controlled microfluidic systems, computer simulation plays a very
important role. In general, EW modeling and simulation may be categorized into two types: the quasi-static
(QS) approach and the full computational fluid dynamics (CFD) simulation [4]. The QS approach assumes
that droplet is in its quasi-static limit and minimizes the total energy of the system subject to EW and various
constraints to find the droplet shape. By contrast, a full CFD simulation includes much more physics and is
more realistic, but it is computationally much more demanding.

Electrowetting controlled droplets have been investigated by both numerical and experimental methods recently.
Walker et al. [5] proposed a Hele-Shaw type model to study the droplets confined between two parallel plates
with EW control. They included the contact line pinning effect and obtained good agreement between numerical
and experimental results. However, they mainly focused on translational motions of the droplet. Oh et al. [6, 7]
developed a numerical model based on the domain perturbation method to study droplet oscillations under AC-
controlled EW. Although quite efficient, their model is restricted only to small deformation of the droplet. Lu et
al. [8] proposed a diffuse-interface model to study droplet motion in a Hele-Shaw cell, and provided asymptotic
analysis for its sharp-interface limit. Their prediction of droplet deformation agrees well with experiment.
Aminfar and Mohammadpourfard [9] proposed a free energy-based lattice-Boltzmann model for droplet under
EW. They solved the Poisson-Boltzmann equation for the electrical potential and showed that its solution is
effectively one-dimensional under usual conditions. Only DC-controlled droplets were considered in [8] and [9].
In recent years, more experiments have been carried out to study AC-controlled droplets [10, 6, 11, 12, 13].
Mugele et al. [10] studied mixing by EW-induced droplet oscillations and found that such oscillations may
greatly enhance mixing. Oh et al. [6] investigated droplet oscillations systematically and discovered certain
resonance frequencies and different oscillation modes. Ko et al. [11] studied the hydrodynamic flows inside
oscillating droplets through flow visualization, and uncovered two types of flows in different frequency ranges.
Lai et al. [12] reported the oscillation spectrums and beat phenomenon of a water droplet under AC EW, and
also highlighted the phase difference between the applied voltage and droplet motion. Recently, Ko et al. [13]
examined an interesting method to generate jets from EW-controlled oscillating bubbles. Probably because of
computational difficulties, the numerical investigations of AC-controlled droplet oscillations seem to lag behind
the corresponding experimental studies.

Mixing is an important process in microfluidic devices for chemical and biological applications. However, as is
well known, mixing is more difficult at small scales than at large scales because of the weak advection at low
Reynolds numbers. As mentioned above, one method to enhance mixing at small scales is through EW-controlled
droplet oscillation [14, 15, 10]. To understand this process, one must know the details of the dynamic flow
fields inside the droplet, which are often difficult to obtain in experiments. Numerical simulations can be very
helpful in this respect. However, it is a rather daunting challenge because of the complex processes occurring
simultaneously (namely, two-phase flows, wetting and electrowetting, and mixing due to convection-diffusion).

In this paper, we focus on CFD simulations of droplets under AC-controlled EW. The long-term aims of
the present work include the investigation of mixing inside such droplets, which can be handled by CFD
simulations but not by the QS approach. Previous numerical studies of this type of flows usually employed
front-tracking methods that are not very flexible in handling topological changes. Here, we propose a phase-
field (or diffuse-interface) method and apply it to study an AC-controlled droplet. Unlike previous studies that
used sinusoidal waveforms for the voltage, we use a trapezoidal waveform for voltage with several stages of
controlled durations (details to be given later). This introduces extra dimensions for voltage control and might
lead to more efficient mixing. As a first step, we focus on the oscillation of the drop and the flow field inside,
with the aim of approximating the droplet motion observed in mixing enhancement experiments (see [10]).
Mixing itself, described by an additional advection-diffusion equation, will be investigated in a future effort.
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In the literature, there are several full CFD simulation methods for multiphase flows encountered in microflu-
idics, in which both phases are simultaneously considered, including the front-tracking method, volume-of-fluid
method, level-set method and the phase-field or diffuse-interface method. There are two common requirements
for computational methods to simulate multiphase flows,

• to capture or track the interface motion;

• to model the interfacial tension effects and their coupling with the flow.

In a continuum formalism, accordingly, two sets of equations need to be solved: one for the interface motion and
the other for the fluid flow (often the Navier-Stokes equations (NSEs) with additional term for the interfacial
tension).

In addition to these continuum-based methods, there is a quasi-particle method known as the lattice-Boltzmann
method (LBM). LBM for multiphase flows has undergone substantial development in the past two decades and
has seen successful applications for many problems. One of the popular models in LBM, the free-energy
based LBM, is closely connected with the phase-field method. In most free energy-based LBMs, two sets of
distribution functions are used to simulate the phenomena that are described by the two sets of equations in
the continuum-based methods. The success of LBM is due to some special features, including its simplicity and
excellent parallel performance. Besides, in LBM there is no need to solve the Poisson equation for pressure, and
complex geometries such as those in porous media can be treated in a relative easy manner. However, there are
some issues in the popular free energy-based lattice-Boltzmann models using two sets of distribution functions.
Firstly, the relaxation parameter for the set of distribution functions that describe the interface is not fixed but
often empirically determined, and using different values may lead to different results. Secondly, the equation
for the interface often differs from that in the phase-field model (to be more specific, the Cahn-Hilliard equation
(CHE)) with extra terms. Some efforts have been made to devise an optimal lattice-Boltzmann equation that
closely follows the CHE (e.g., see [16]). Thirdly, it is difficult to use a variable mobility (in the CHE) in the
LBM framework. Fourthly, the boundary conditions for the variables in the CHE are implemented indirectly
through the distribution functions. This is less straightforward and might not be accurate enough in some cases.
Fifthly, the lattice-Boltzmann equation typically uses 2nd-order explicit time stepping, which may require very
small time steps for the CHE. All these issues are related to the interface equation. To overcome them while
keeping the advantageous features of LBM, we propose a hybrid method that integrates LBM for fluid flow
and the finite-volume method (FVM) for interface dynamics. As a new computational scheme, we establish
the theoretical and numerical framework in this paper, without attempting to address all the numerical issues
listed above. For instance, we will use a constant mobility for simplicity. In spirit, our approach resembles the
LBM-finite-difference hybrid method of Tiribocchi et al. [17].

The paper is organized as follows. In Section 2, the theoretical model and the hybrid method are described. In
Section 3, the specific problem studied is presented, some numerical issues in the phase-field model are discussed,
the EW control is then introduced, and finally a few specific studies of different parameters are carried out.
Section 4 concludes this paper.

2 Theoretical Model and Numerical Methodology

The present method is based on the phase-field model for binary fluids. As mentioned earlier, there are two
types of dynamics being considered, hydrodynamics for fluid flow and interfacial dynamics, which are closely
coupled together. The lattice-Boltzmann method is employed to simulate the hydrodynamics, whereas the
equation describing the interface motion, the Cahn-Hilliard equation, is solved by the finite-volume method (for
spatial discretization) and the Runge-Kutta method for time marching. These components are described in the
following subsections.
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2.1 Phase-Field Model

In the phase-field model, an order parameter φ is used to distinguish different fluids, and a free energy functional
is defined as

F(φ,∇φ) =

∫

V

(

Ψ(φ) +
1

2
κ|∇φ|2

)

dV +

∫

S

ϕ(φ)dS (2.1)

where Ψ(φ) is the bulk free energy density and takes the form

Ψ(φ) = a(φ2 − 1)2 (2.2)

with a being a constant. This form indicates that φ varies between −1 (in one fluid) and 1 (in the other fluid).
The second term is the interfacial energy density with κ being another constant, and the last term in the surface
integral is the surface energy density. In this work, we use the following surface energy [18],

ϕ(φ) = −σ cos θ
φ(3 − φ2)

4
+

1

2
(σw1 + σw2) (2.3)

where σ is the interfacial tension between the two fluids, θ is the static contact angle, ϕ(±1) gives the fluid-
solid interfacial tensions σw1 and σw2 between the wall and fluid 1 and fluid 2, respectively. Young’s equation
determines θ as

cos θ =
σw2 − σw1

σ
(2.4)

The chemical potential µ is calculated by taking the variation of the free energy functional with respect to the
order parameter,

µ =
δF
δφ

=
dΨ(φ)

dφ
− κ∇2φ = 4aφ(φ2 − 1)− κ∇2φ. (2.5)

The coefficients a and κ can be related to the interfacial tension σ and interface width W as [19],

a =
3σ

4W
, (2.6)

κ =
3σW

8
. (2.7)

2.2 Electrowetting Modeling

To apply electrowetting to control a droplet, a common setup is to use a dielectric layer as the substrate
and establish a circuit across the conductive droplet [3, 10] (known as electrowetting-on-dielectric). In such a
electrowetting system after a voltage V is applied, the new equilibrium static contact angle θ may be expressed
as [4]

cos θ =
σw2 − σw1 +

1
2
εrε0
d V 2

σ
(2.8)

where σ, σw1 and σw2 are defined above,

d is the thickness of the dielectric layer (substrate), εr is the relative dielectric constant of the material, and
ε0 is the dielectric constant of vacuum. This equation suggests that the effect of the applied voltage can be
absorbed into either σw1 or σw2 to form an equivalent interfacial tension [4] (for instance, an equivalent σw1(V )
with the electrostatic energy taken into account may be defined as σw1− 1

2
εrε0
d V 2). In terms of the zero-voltage

contact angle, the contact angle at voltage V may be expressed as

θ(V ) = cos−1

[

cos[θ(0)] +
1
2
εrε0
d V 2

σ

]

. (2.9)

A more sophisticated approach is to include the electrical potential in the system and solve for the potential,
which is governed by the Poisson-Boltzmann equation [9]. However, unless the system is extremely small (e.g.,
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at nanometer scale for which the Debye length is non-negligible), the potential distribution in the droplet can
be much simplified and the contribution due to the electrical field may be captured by the boundary conditions
(e.g., through the surface energy term) [9].

As noted in Section 1, we are interested in dynamic situations with the contact angle controlled by AC, in which
the voltage varies with time, i.e., V = V (t). A straightforward extension of Eq. (2.9) gives

θ(V (t)) = cos−1

[

cos[θ(0)] +
1
2
εrε0
d

[V (t)]2

σ

]

. (2.10)

We assume that by specifying the instantaneous equilibrium contact angle in phase-field simulations, one may
approximately mimic the dynamics of the system subject to the AC-controlled electrowetting.

Detailed specification of the parameters d, εr, and ε0 may be avoided if the equilibrium contact angle under the
maximum voltage VM is known.

Thus, the coefficient in front of V 2 can be determined:

εrε0
d

=
2σ

V 2
M

(cos[θ(VM )]− cos[θ(0)]) . (2.11)

2.3 Lattice-Boltzmann Method for Hydrodynamics

For the fluid flow, the lattice-Boltzmann method is used to simulate the hydrodynamics. The lattice-Boltzmann
equation reads [19],

fi(x+ eiδt, t+ δt)− fi(x, t) = −
1

τf
[fi(x, t)− feq

i (x, t)] +
1

c2s
δtwiei · [µ∇φ] (2.12)

where ei (i = 0, 1, · · · , b) is the lattice velocity and for the D2Q9 model used here,

ei =

{

0 for i = 0

(cos[ (i−1)π
4 ], sin[ (i−1)π

4 ])c for i = 1, 2, · · · , 8
(2.13)

with c being the lattice velocity, δt is the time step (δx = cδt is the grid spacing), cs is the LBM sound speed.
The equilibrium distribution feq

i is given by

feq
i = wi

{

Ai + ρ

[

1

c2s
ei · u+

1

2c4s
(ei ⊗ ei − c2sI) : (u⊗ u)

]}

(2.14)

with wi being the weight for different lattice velocities,

wi =







4
9 for i = 0
1
9 for i = 1, 3, 5, 7
1
36 for i = 2, 4, 6, 8

(2.15)

ρ being the density (nearly a constant), and the coefficient Ai is given by

Ai =

{

A = 1
c2s
(ρc2s + φµ) if i > 0

1
w0

[ρ− (1− w0)A] if i = 0
(2.16)

The last term (combined with the specially designed equilibrium distributions) provides the force due to the
interfacial tension. The second-order moments of feq

i satisfy the following relation,

b
∑

i=0

eiαeiβf
eq
i = ρuαuβ + (ρc2s + φµ)δαβ (2.17)
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where the subscripts α and β denote the spatial coordinate directions. The density and momentum are calculated
as,

ρ =
b

∑

i=0

fi, ρu =
b

∑

i=1

fiei

The relaxation parameter τf is related to the viscosity of the fluid. Using the Chapman-Enskog expansion, the
following equation can be obtained in the long-time, large-wavelength limit,

∂

∂t
(ρu) +∇ · [ρu⊗ u+ (ρc2s + φµ)I] = ∇ · [ρν(∇u+ (∇u)T )] + µ∇φ (2.18)

where ν is the kinematic viscosity and it is related to τf as

ν = c2s(τf − 0.5)δt (2.19)

Note that for very small LBM Mach number MLBM = |u|max

cs
(|u|max is the maximum velocity magnitude) (which

is well satisfied in this work), Eq. (2.18) approximates the following incompressible Navier-Stokes equations
(NSEs) sufficiently well,

∂u

∂t
+ (u ·∇)u = −∇S + ν∇2

u− φ∇µ (2.20)

where S is similar to the hydrodynamic pressure in the usual situation without any interfacial tension [20].

Near the wall, the bounce-back-by-link (BBL) condition is applied for fi.

2.4 Finite-Volume Method for Interface Dynamics

As noted before, the interface dynamics is described in terms of the order parameter φ field, which is governed
by the Cahn-Hilliard equation [20],

∂φ

∂t
+ (u ·∇)φ = ∇ · (M∇µ) (2.21)

where M is the mobility. For incompressible flow, ∇ · u = 0, and it may be rewritten as

∂φ

∂t
= ∇ · (−uφ+M∇µ) (2.22)

Note that Eq. (2.5) is required to calculate the chemical potential in Eq. (2.22).

2.4.1 FVM mesh and its relation to LBM mesh

For a clear description, it is helpful to first introduce the mesh for the finite-volume method. The relation
between the FVM mesh and the LBM mesh is shown in Figure 1. Note that when the bounce-back-by-link
(BBL) condition is used in LBM for fi, the outmost LBM nodes are half-lattice ( δx2 ) away from the wall. By
using the arrangement in Figure 1, the boundary of the FVM mesh overlaps with the wall. This allows for an
easier enforcement of the boundary conditions for φ and µ (as shown later).

2.4.2 Spatial discretization by FVM

For a square cell with four sides 1, 2, 3, and 4, the finite-volume discretizations of Eqs. (2.22) and (2.5) read,

d

dt
(VΩφ̄) =

4
∑

k=1

∫

k

(

− unφ+M
∂µ

∂n

)

k

dS (2.23)
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4

1
2

3
n

FVM cell center
& LBM node

ei

(i+1,j)(i,j)(i-1,j)

Figure 1: Mesh for coupling LBM and FVM (solid line with filled circle: LBM mesh; dashed line: FVM mesh;
line with arrow and labels “1, 2, 3, 4”: boundary of one cell in FVM along the direction of integral; 1, 2, 3, 4:
four sides of a cell in FVM; n: local outward normal vector of a FVM cell boundary (on side 3); filled circle:
LBM node and also the cell center in FVM; ei: lattice velocity).

µ̄ = Ψ′(φ) +
κ

VΩ

4
∑

k=1

∫

k

(

∂φ

∂n

)

k

dS (2.24)

where n is the outward unit normal vector along the boundary of the cell, un is the projection of the velocity on n,
∂µ
∂n

and ∂φ
∂n

are the normal derivatives of the chemical potential and order parameter respectively, φ̄ = 1
VΩ

∫

Ω φdΩ,

µ̄ = 1
VΩ

∫

Ω µdΩ, and Ψ′(φ) = 1
VΩ

∫

ΩΨ
′(φ)dΩ are the the cell-averaged values of φ, µ, and Ψ′(φ) respectively,

∫

k

denotes integral along side k with appropriate direction (counter-clockwise). In this work, we approximate the
term Ψ′(φ) as Ψ′(φ) ≈ Ψ′(φ)|φ=φ̄. Other terms in Eqs. (2.23) and (2.24) involve the integrals along the faces
(sides) of the cell. They are calculated as the average of the values in two neighbouring cells. For instance, for
the convection term −unφ on side 3, the integral is calculated as,

∫

3
(−unφ)3dS =

1

2

(
∫

(i,j)
(−unφ)(i,j)dS +

∫

(i+1,j)
(−unφ)(i+1,j)dS

)

(2.25)

where
∫

(i,j) means the integral is performed in the cell (i, j). Note that along side 3, dS = dy, un = u. For the
cell (i, j), the integral is approximated along the center vertical line, and also rewritten in the local coordinate
ξ = 1

δx
(y − yi,j) Then, it becomes,

∫

(i,j)
(−unφ)(i,j)dS = δx

∫ 0.5

−0.5
[−u(ξ)φ(ξ)](i,j)dξ (2.26)

The local profiles u(ξ) and φ(ξ) along the center line are reconstructed using one local and two neighbouring
(cell-averaged) values. For instance, φ = φ(ξ) is found from φ̄i,j−1, φ̄i,j , φ̄i,j+1 as,

φ(ξ) = aξ2 + bξ + c (2.27)

with

c = φ̄i,j , b =
1

2
(φ̄i,j+1 − φ̄i,j−1), a =

1

2
(φ̄i,j+1 + φ̄i,j−1 − 2φ̄i,j) (2.28)

Similar reconstructions are applied for un and µ as well. Using such reconstructions, the accuracy in the
direction parallel to each side can reach 3rd-order in theory, and the accuracy in the normal direction is 2nd-
order. Overall, at least 2nd-order accuracy can be guaranteed. The integrals for the normal derivatives are
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calculated in a somewhat different way. For example, along side 3,
∫

3

(

∂φ

∂n

)

3

dS =

∫

3

∂φ

∂x
dy ≈ δx

∫

3

φi+1,j(ξ) − φi,j(ξ)
δx

dξ (2.29)

where φi,j(ξ) is the profile constructed along the center vertical line of the cell (i, j) as given by Eqs. (2.27) and
(2.28). The same formulas are used for µ as well.

2.4.3 Boundary conditions at the wall

At the wall, the following boundary conditions are applied for the Cahn-Hilliard equation,

unw = 0 (2.30)

κ
∂φ

∂nw
= −ϕ′

w(φ) (2.31)

∂µ

∂nw
= 0 (2.32)

where nw denotes the unit normal vector at the wall (pointing into the fluid). Using Eq. (2.3), the following
condition for φ is obtained,

∂φ

∂nw
=

3

4

σ

κ
cos θ(1 − φ2w) ≡ q(1− φ2w), (2.33)

where φw is the order parameter at the wall, and the parameter q = 3
4
σ
κ cos θ is introduced for convenience.

Note that φw is unknown and must be found through some relations. For consistency, the reconstruction given
in Eq. (2.27) is also applied near the wall in the normal direction. Now there are four unknowns, including φw
and the coefficients a, b and c. Four relations are provided by two cell-averaged values (nearest to the wall), Eq.
(2.33) (on the normal derivative) and the requirement φ = φw at the wall. For instance, when side 2 overlaps
with the lower wall, an equation for φw can be derived as,

φ2w +
8

3q
φw − 1 +

8φi,j − (φi,j+1 − φi,j)
−3q

= 0 (2.34)

where φi,j takes the cell-averaged value. From this equation, two values for φw are found and care must be
taken to select the right one. After φw is obtained, Eq. (2.33) can be directly used in Eq. (2.24) for the cells
that have one side overlapping with the lower wall. Similarly, Eq. (2.32) can be directly used in Eq. (2.23) for
such cells.

2.4.4 Temporal discretization

The time stepping for Eq. (2.23) employs the explicit 4th-order Runge-Kutta method. Note that the velocity
is frozen during the time marching from tn to tn+1(= tn + δt). Eq. (2.23) can be written as,

d

dt
φ̄ =

1

VΩ

4
∑

k=1

∫

k

(

− unφ+M
∂µ

∂n

)

k

dS ≡ L(φ) (2.35)

The time stepping follows these steps,

an = δtL(t
n, φ̄n)

bn = δtL

(

tn +
1

2
δt, φ̄

n +
1

2
an

)

cn = δtL

(

tn +
1

2
δt, φ̄

n +
1

2
bn
)

dn = δtL(t
n + δt, φ̄

n + cn)

(2.36)
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φ̄n+1 = φ̄n +
1

6
(an + 2bn + 2cn + dn) (2.37)

Note that Eqs. (2.23) and (2.24) are a coupled system. To advance Eq. (2.23) in time, Eq. (2.24) has to be
used in each sub-step.

2.5 Remarks on the Hybrid Method

By using the finite-volume method for the CHE, the present hybrid method overcomes the problems with the
pure LBM mentioned in Section 1, but some important LBM advantages are kept. When compared with the
conventional Navier-Stokes methods, it avoids the need to solve the Poisson equation for the pressure. When
compared with LBM using two sets of distribution functions (denoted as fi and gi) for hydrodynamics and
interface evolution, it is advantageous because

• It avoids introducing and adjusting the empirical relaxation parameter for the distribution functions gi;

• The boundary conditions for the order parameter φ and the chemical potential µ are easily imposed
accurately;

• The time stepping scheme for the Cahn-Hilliard equation is more flexible (for instance, schemes with
better stability properties like high-order Runge-Kutta schemes or even semi-implicit schemes may be
used).

• It makes it easier to use a variable mobility M(φ) (dependent on the order parameter);

• The hybrid framework allows easier inclusion of more physical phenomena, for example, the convection-
diffusion of some additional species within the droplet (which is encountered when considering mixing
inside the droplet).

Note that the third aspect about time stepping becomes more important as the interfacial thickness W (reflected
by the Cahn number Cn to be defined later) decreases. The Cahn-Hilliard equation becomes stiffer at smaller
Cn and imposes more stringent requirement on δt.

Of course, the hybrid formulation is more complex than each of the constituent ones. But when compared with
the pure LBM formulation, the increased complexity is not significant because the solution of the Cahn-Hilliard
equation consumes a relatively small portion of the overall effort. As compared with the pure FVM formulation
for the Navier-Stokes-Cahn-Hilliard equations, it retains the advantages of the LBM for the Navier-Stokes
equations, which make up for the additional formulation complexity.

3 Simulation of Droplet Dynamics Under Electrowetting Control

In this section, the basic setup of the problem is given first, together with the specifications of numerical
simulation. Then, various parameters in phase-field model are defined and discussed. After that, details on
the temporal control of driving voltage are provided. Next, some numerical tests are performed to validate the
method and also to examine the issue of convergence. Finally, case studies focusing on the effects of several
control parameters are given, and some further discussions end this section.

3.1 Setup of the Problem and Numerical Simulation

The setup of the problem is shown in Figure 2. A droplet of radius R is positioned on the lower wall, the
wettability of which is controlled by electrowetting (the varying contact angle being θ(t)). The droplet is
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surrounded by another fluid. Note that we consider a setup in which the droplet is non-conducting whereas the
surrounding fluid is conducting. When the voltage is applied, the interfacial tension between the surrounding
fluid and the wall is reduced, and the contact angle θ (measured in the droplet, see Figure 2) will increase.
Accordingly, one has to modify the formula from Eq. (2.10) to the following by changing the sign before the
voltage term,

θ(V (t)) = cos−1

[

cos[θ(0)]−
1
2
εrε0
d

[V (t)]2

σ

]

. (3.1)

Initially, no voltage is applied and θ(0) = 90◦. The droplet shown in Figure 2 is at equal distance from the left
and right boundaries of the domain, takes a semi-circle shape and the contact angle is 90◦, thus the system is
in equilibrium at that instant (this initial condition is used for all cases studied). The top wall is solid while
the left and right boundaries of the domain are periodic. The computational domain has a size Lx × Ly. In
this work, we assume that the two fluids have the same density and viscosity for simplicity.

(Xc, Yc)

Ly

R

Lx
Wall

Wall (EW)

(periodic)(periodic)

θ=θ ( )t
Rx θ

Conducting
Surrounding
Fluid

Non-conducting
Droplet

Figure 2: Problem setup for the droplet controlled by electrowetting (EW)

The interfacial tension is σ and the kinematic viscosity is ν. It is natural to use the droplet radius R as the
characteristic length Lc = R. Suppose the characteristic velocity is Uc, then the Reynolds number and the
capillary number are defined by

Re =
UcLc

ν
=

UcR

ν
(3.2)

Ca =
ρνUc

σ
(3.3)

However, before the simulation (or a corresponding experiment) the droplet velocity is unknown. Thus, it is
not possible to determine the typical parameters like the Reynolds number and the capillary number a priori.

Following [21], we use an alternative characteristic velocity

Uc =
σ

ρν
(3.4)

Then, the characteristic time is,

Tc =
Lc

Uc
=

Rρν

σ
(3.5)

the capillary number is always unity, and the Reynolds number is

Re =
UcR

ν
=
σ

ρν

R

ν
=
σR

ρν2
(3.6)

Of course, the dimensionless numbers calculated in this way do not truly reflect the physics of the problem
(they may differ from the actual values by orders of magnitude, as seen later). Nevertheless, they facilitate the
numerical simulation setup and the actual characteristic velocity can be found after the simulation is completed.
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Note that in what follows, all quantities of length, time and velocity are scaled by Lc, Tc and Uc, respectively
(unless otherwise specified).

In analyzing the dynamic EW process, we will examine the following attributes of the numerical solutions:

• Droplet radius on the lower wall Rx, defined as half of the distance between the two three-phase points
on the lower wall (see Figure 2).

• Average droplet velocity in the y-direction

V̄d =

∫

V
N(φ)vdV

∫

V
N(φ)dV

≈
∑

i,j vi,jN(φi,j)
∑

i,j N(φi,j)
(3.7)

In the above, V denotes the domain, and the function N(φ) is defined by

N(φ) =

{

1 if φ > 0
0 if φ ≤ 0

(3.8)

3.2 Parameters in Phase-Field Modeling

In the phase-field model, two additional parameters are important: the Cahn number

Cn =
W

Lc
(3.9)

and the Peclet number

Pe =
UcL

2
c

Mσ
. (3.10)

The Cahn number measures the ratio of interface width over the characteristic length (here the droplet radius),
and the Peclet number reflects the ratio of convection over diffusion in the Cahn-Hilliard equation. In real binary
fluid systems (probably except those at the nanoscale), Cn is extremely small (Cn → 0), Pe is extremely large
(Pe → ∞), and the Cahn-Hilliard equation, Eq. (2.21), approaches a pure convection equation. But in phase-
field modeling, both Cn and Pe have finite values. Usually, Cn should be small enough so that the simulation
results are close to the sharp-interface limit. But how to vary Pe to reach such a limit is not well established
in general. Recently, Yue et al. [18] studied the convergence of numerical results towards a sharp-interface limit
in terms of an alternative parameter S defined by

S =

√
Mν

Lc
. (3.11)

They provided guidelines on how to approach the sharp-interface limit by varying these parameters in phase-field
simulations. A brief study on convergence will be provided later in Subsection 3.5.

3.3 Control of the Driving Voltage

The modeling of electrowetting was presented in Subsection (2.2). Since we consider AC control and the voltage
is time-dependent, the form of voltage variation has to be specified. It is important to determining the droplet
deformation. In fact, it is one of the main factors studied in this work.

Suppose the voltage varies with time as
V (t) = VMfV (t;TEW) (3.12)

where TEW is a characteristic time scale for the electrowetting control (e.g., the AC period), and fV satisfies
0 ≤ fV (t) ≤ 1. In the above, it is assumed that the applied voltage V acts instantly (e.g., on a time scale much
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smaller than TEW), and is within the range for electrowetting-on-dielectric to work. In other words, a quasi-static
balance is assumed to hold at each moment between the surface energies and the electrical potential [8].

Consider the period 0 ≤ t ≤ TEW. For convenience, we use a scaled time variable

t̃ =
t

TEW
(3.13)

In the present work, we assume that the function fV is given by the following function for the first period
(0 ≤ t̃ < 1)

fV (t̃) =



















t̃
T̃tran

, 0 ≤ t̃ ≤ T̃tran

1, T̃tran ≤ t̃ ≤ T̃tran + T̃on

1− t̃−(T̃tran+T̃on)

T̃tran

, T̃tran + T̃on ≤ t̃ ≤ 2T̃tran + T̃on

0, 2T̃tran + T̃on ≤ t̃ < 1

(3.14)

where T̃on denotes the duration in which the voltage is maximum (scaled by TEW, called “fully-switched-on”
time for convenience), T̃tran denote the duration for transition (from no voltage to full voltage and vice versa,
also scaled by TEW). Denoting the duration in which the voltage is zero as T̃off (scaled by TEW), it is easy
to find that T̃off = 1 − T̃on − 2T̃tran. Note that the unscaled durations are denoted as Ton, Toff, and Ttran (all
measured in Tc), which can be obtained by multiplying the scaled ones with TEW.

For illustration, the instantaneous scaled voltage fV and contact angle θ(t) from Eq. (2.10) with the following
parameters, θ(0) = 90◦, θ(VM ) = 135◦, TEW = 100, T̃tran = 0.15(TEW), and T̃on = 0.5(TEW) (T̃off = 0.2(TEW)),
are shown in Figure 3 for the first period. In subsequent periods, fV is easily specified from the periodic
condition.
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Figure 3: Evolutions of (a) the scaled voltage function fV ; (b) the dynamically imposed contact angle θ. The
parameters are θ(0) = 90◦, θ(VM ) = 135◦, TEW = 100, T̃tran = 0.15(TEW), and T̃on = 0.5(TEW) (T̃off =
0.2(TEW)).

3.4 Validation

To validate the hybrid method and the code, a case of droplet dewetting (with much simpler EW control)
has been simulated by the hybrid code (denoted as “Hybrid LBM-FVM”) and another code that is based on
the projection method (for the Navier-Stokes equations) (denoted as “NSCH PM”). In that code, a 2nd-order
finite difference method was used for spatial discretization (of both the NSEs and CHE), 2nd-order semi-implicit
Crank-Nicholson scheme and Adams-Bashforth scheme were used for the viscous term and the convection term
in the momentum equation, respectively. In both methods, the 4th-order Runge-Kutta method was used for the
time stepping of the CHE. For this validation case, the general parameters are Re = 4000, Ca = 1, Cn = 0.15,
Pe = 1.6 × 104, S = 7.9 × 10−3, Lx × Ly = 5 × 2.5, and the parameters for EW control are θ(0) = 90◦,
θ(VM ) = 135◦, Ttran = 0, and Ton → ∞ (which effectively correspond to a DC control). Note that initially (for
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t < 0) the contact angle is 90◦ and the droplet is in static equilibrium with Rx = Rstat
x,0 = 1. From t = 0, the

imposed contact angle is suddenly changed to 135◦ and that causes the drop to retract.

Figure 4 compares the evolutions of Rx for the period 0 ≤ t ≤ 1000. It is seen that the evolutions of Rx

obtained by these two different numerical methods are close to each other. The droplet undergoes an initial
oscillation with a rapidly decaying amplitude, and finally approaches an equilibrium state with Rx ≈ 0.545. If
the final contact angle is exactly 135◦, the equilibrium value of R(x) should be Rstat

x,VM
= 0.524, indicated by the

horizontal dash-dot line in the plot. The small deviation from Rstat
x,VM

can be attributed to numerical errors and
the relatively large Cn number.
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Figure 4: Comparison of Rx evolutions by “NSCH PM” and “Hybrid LBM-FVM” with the same EW control.
The horizontal line represents the final equilibrium value of Rx based on theoretical estimate.

In Figure 5, we compare the velocity fields at t = 100 predicted by the two methods. Note that as implemented
here, the two grids are offset by half a grid size. For example, in “NSCH PM” using finite difference, the wall
overlaps with the boundary nodes, whereas in “Hybrid LBM-FVM” the wall is half-grid away from the outmost
cell centers (note that it provides the integral along one side of these outmost cells in FVM). Therefore, the
velocity vectors are plotted on staggered lattice points. But it is clear that the two velocity fields are in close
agreement.

Finally, for this case (to finish 1000Tc), the CPU times for “NSCH PM” and “Hybrid LBM-FVM” are 512 s
and 303 s, respectively, on a PC with Intel Core Duo 1.83GHz CPU. This shows the advantage of the hybrid
method. The relatively low speed of “NSCH PM” may be attributed to the cost of the solution of the Poisson
equation for pressure and the semi-implicit time stepping.

3.5 Convergence toward Sharp-Interface Limit

A diffuse-interface computation should be done with a sufficiently thin interface such that the result does
not depend on the interfacial thickness. Convergence to such a sharp-interface limit is typically established
by numerical experiments with decreasing W or Cn. For steady-state moving contact line problems, Yue et
al. [18] showed that the sharp-interface limit is approached by decreasing the Cn number while fixing other
parameters. We follow a similar approach in our time-dependent problem. Specifically, we use Pe = 4 × 104

and S = 5 × 10−3 in the convergence study. The Cn number takes the following values 0.3, 0.15, 0.075 and
0.0375 in a series of simulations. Each simulation runs from 0 to 300. Other general parameters are Re = 4000,
Ca = 1, Lx × Ly = 6 × 3. The EW control, as shown in Figure 3, is applied with the parameters listed again
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(a) (b)

Figure 5: Comparison of velocity fields (right half) around the interface at t = 100 by (a) “NSCH PM” and (b)
“Hybrid LBM-FVM”. For clarity, the velocity vectors are plotted every other grid point.

as follows, θ(0) = 90◦, θ(VM ) = 135◦, TEW = 100, T̃tran = 0.15(TEW), and T̃on = 0.5(TEW).

To examine the effects of varying Cn, we first investigate two quantities, the radius of the wetted area Rx and
the averaged vertical velocity of the drop V̄d. Figure 6 compares the evolutions of Rx and V̄d for different cases,
and shows a clear trend of convergence as Cn decreases. The difference in Rx evolutions between Cn = 0.075
and Cn = 0.0375 is much smaller than that between Cn = 0.15 and Cn = 0.075. The same trend is seen for V̄d

as well. As noted before, the Reynolds number Re given above (Re = 4000) does not actually reflect the physics
of the problem; instead, it is defined based on a capillary velocity scale (Eq. 3.4). In actual simulations, as
found in Figure 6, the maximum droplet velocity is about 2.5×10−3(Uc). Based on this value, one can estimate
another set of dimensionless numbers as Rem ≈ 10 and Cam ≈ 2.5 × 10−3, which more accurately reflect the
flow magnitude of the problem. Unlike Re and Ca, however, these depend on the EW control and cannot be
determined a priori.

Besides the evolutions of Rx and V̄d, interface positions at t = 300 are also compared. In Figure 7, the interface
positions (defined as the contour lines with φ = 0) are shown for different Cn numbers. Note that because of
the symmetry with respect to the center vertical line, only the right half is shown. Similar trend of convergence
is also found from Figure 7 for decreasing Cn number. Based on these results, we use Cn = 0.075 in the
other results to be presented. This value provides a reasonably close approximation to the sharp-interface limit
without incurring too much computational cost.

Though these figures are intended mostly for probing the sharp-interface limit, they also demonstrate some
interesting physical behavior of the interface. Figure 6 shows that in the first three periods Rx does not simply
reflect the periodicity in the imposed contact angle (or the driving electrical field). Instead, between the first
two periods, Rx tends to decline, but climbs back up for the third period. After the first three periods, Rx

tends to become periodic. A prolonged run confirms that it eventually enters a periodic stage (as shown next).
More analyses for longer runs will be provided later.

3.6 Droplet Motion under Electrowetting Control

Before proceeding to the detailed studies of EW controlled droplet, we list the common parameters for the
simulations in Table 1. NL,dis is the number of points to discretize the characteristic length R, Nx × Ny

represent the discrete domain size, NT,dis is the number of time steps to discretize the characteristic time Tc
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Figure 6: Convergence of the solution with decreasing Cn manifested by (a) the evolution of Rx; and (b) the
evolution of the average droplet velocity V̄d. The total time of 600 amounts to six periods of the electric voltage.
Four Cn numbers are tested: Cn = 0.3, 0.15, 0.075 and 0.0375, with Pe = 4× 104 and S = 5× 10−3 fixed.
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Figure 7: Comparison of interface positions at t = 300 with different Cn numbers (Cn = 0.3, 0.15, 0.075 and
0.0375) at Pe = 4× 104 and S = 5× 10−3.
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(which means that the time step is 1
NT,dis

(Tc)). Let Tt be the total simulation time (in Tc), then the total
number of steps is NT,dis × Tt. Tt may vary in different cases. We note that the Pe number (or the S number)
is another independent parameter of the problem corresponding to the slip length in the sharp-interface model
[18]. In this work, we do not intend to investigate its effects and focus on one specific Pe (or S) only.

Table 1: Common parameters in simulations of EW controlled droplets
Parameter Value

Re 4000

Ca 1

R 1

Lx × Ly 6× 4

Cn 0.075

Pe 4× 104

S 5× 10−3

NL,dis 40

Nx ×Ny 240× 160

NT,dis 160

In addition to those parameters given in Table 1, there are some others, including the set of parameters related
to the EW control (θ(0), θ(VM ), TEW, T̃tran, and T̃on). For simplicity, in this work θ(0) is fixed to be 90◦, and
we focus on the other parameters for the EW control.

3.6.1 Analysis of typical droplet responses

Before varying the parameters, we examine the typical droplet responses to the applied electrical field. The
case used in the convergence study is selected again for this purpose. The EW parameters are θ(0) = 90◦,
θ(VM ) = 135◦, TEW = 100, T̃tran = 0.15(TEW), T̃on = 0.5(TEW), and T̃off = 0.2(TEW). As briefly noted in
Section 3.5, in the first few periods the droplet shows some irregular motions that do not match the imposed
contact angle varying periodically. For a prolonged run with 0 ≤ t ≤ 1200, which amounts to twelve periods of
the voltage, the regular periodic motion is seen after about five periods, as reflected from the evolutions of Rx

and V̄d shown in Figure 8. By comparing the initial adjustment stage (for this case approximately 0 ≤ t ≤ 500)
and the periodic stage (for this case t > 500), one may find the reason for the initial adjustment. In the periodic
stage, Rx varies regularly between maximum and minimum values, denoted as Rx,max and Rx,min. It is seen
that Rx,min > Rstat

x,VM
and Rx,max < Rstat

x,0 where Rstat
x,0 and Rstat

x,VM
are the static equilibrium values for DC control

with no voltage and with full voltage applied, respectively (cf. Section 3.4). Thus, under periodic driving the
drop never achieves the static conditions corresponding to zero and maximum voltages. This hints at an inertial
effect at work.

Further understanding may be achieved by examining the detailed process in the two different stages. Figure 9
compares the interface evolutions during the 1st and the 6th periods at selected times. The local time t′ in
Figure 9 is defined with respect to the start time of the nth period, i.e., t′ = t− (n− 1)TEW. Although the local
contact angle follows the same trend (cf. Figure 3b), the displacement of the contact line is different for the 1st

and 6th periods, as is the overall interface shape. In the 6th period, the interfaces at t′ = 0 and t′ = 100 almost
overlap, as expected since the solution is in the periodic stage. At t′ = 0 or 100, the drop assumes a non-circular
shape and a negative velocity V̄d (Figure 8b). By contrast, the initial shape in the 1st period is circular and
there is no flow at t′ = 0. Therefore, although the external forcing on the contact line may be the same, the
propagations of the capillary wave are different due to different initial configurations and flow fields. The initial
adjustment hence represents the “correction”, against inertia, of an initial condition that does not conform to
the eventual periodic solution. We note that the division of droplet motion into two stages was also reported by
Oh et al. [6]. In their numerical simulation of an oscillating droplet based on the domain perturbation method,
an initial “stabilizing time”, is required before harmonic drop deformation is established. Such observations
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Figure 8: Evolution of (a) the radius Rx of the contact line and (b) the drop velocity V̄d in 0 ≤ t ≤ 1200 for
the case with θ(0) = 90◦, θ(VM ) = 135◦, TEW = 100, T̃tran = 0.15(TEW), T̃on = 0.5(TEW), and T̃off = 0.2(TEW)

agree with the present numerical results qualitatively even though the specific setup, the models and methods
are different.

(a)

t’=0
t’=40
t’=80
t’=100

(b)

t’=0
t’=40
t’=80
t’=100

Figure 9: Snapshots of interface positions at selected times (t′ = 0, 40, 80, 100) during (a) the 1st period
(initial adjustment stage) and (b) the 6th period (periodic stage) for the case with θ(0) = 90◦, θ(VM ) = 135◦,
TEW = 100, T̃tran = 0.15(TEW), T̃on = 0.5(TEW), and T̃off = 0.2(TEW). Note that in (b) the interfaces at t′ = 0
and t′ = 100 almost overlap (as required by the periodicity).

3.6.2 Effects of control period TEW and “fully-switched-on” time T̃on

First, TEW and T̃on are investigated with θ(VM ) fixed at 135◦. Five values for TEW were tested: TEW = 100,
200, 300, 400, and 600. In these cases, we keep Ttran = 15 fixed, such that its fraction of TEW varies. For each
TEW, different values of T̃on were investigated. Note that T̃off = 1 − T̃on − 2T̃tran, thus the ratio T̃on

T̃off

(equal to
Ton

Toff
) varies with T̃on for given TEW and Ttran. The specific cases tested for each TEW are summarized in Table 2.

First, we fixed Ton

Toff
= 1 and varied the length of TEW. The initial adjustment stage, measured in TEW, shortens

as the period TEW increases. In the following, we focus on the periodic stage. Figure 10 compares the Rx

evolutions during 400 ≤ t ≤ 1600 for the five TEW values. In all cases, Rx displays a periodic variation with
the period matching that of the applied voltage. The most prominent feature of Figure 10 is resonance at
TEW = 300. The amplitude of Rx oscillation at this period is larger than those for shorter and longer periods.
This is more clearly demonstrated in Figure 11 that plots (Rx,max−Rx,min) as a function of TEW. The existence
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Table 2: Temporal control parameters for different cases. The first three columns are given in Tc.
TEW Ton Toff

Ton

Toff

100

5 65 0.08
10 60 0.17
35 35 1.0
50 20 2.5
60 10 6.0
65 5 13.0

200
20 150 0.13
85 85 1.0
150 20 7.5

300

90 180 0.5
135 135 1.0
180 90 2.0
240 30 8.0

400
40 330 0.12
185 185 1.0
330 40 8.25

600
60 510 0.12
285 285 1.0
510 60 8.5

of resonance frequency for AC-controlled droplets has been reported previously by Oh et al. [6] for a sinusoidal
voltage and by Lai et al. [12] for square waves. Our results show resonance for a trapezoid waveform, the limit
of which, when Ttran → 0, corresponds to the periodic square wave.
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Figure 10: Evolutions of Rx for T̃on = T̃off with TEW = 100, 200, 300, 400, and 600.

The resonance can be understood from the “reaction time” of the sessile drop to external forcing. Note that
the problem involves three time scales: the droplet’s intrinsic relaxation time (sometimes called the “emulsion
time”), the reaction time of the sessile drop, and the driving period. The emulsion time Tc (see Eq. (3.5)), which
reflects how fast the droplet shape reacts to disturbance, is small and should be irrelevant here. The reaction
time of the sessile droplet reflects how fast the drop contracts or spreads on the substrate when the contact
angle is changed. Dominated by the viscous friction at the contact line, it should be much larger than Tc but is

18



0.2

0.4

0.6

0.8

1

1.2

100 200 300 400 500 600

R
x
,m

a
x
−

R
x
,m

in

TEW

Figure 11: Variations of Rx,max −Rx,min with TEW at T̃on = T̃off.

difficult to estimate more quantitatively. In experiments, contact angle hysteresis will also affect this reaction
time. In any event, resonance is expected when the driving period of the voltage approaches the reaction time
of the sessile drop. Interestingly, Oh et al. [6] and Lai et al. [12] both reported resonance at multiple driving
frequencies, indicating that different modes of shape oscillation have different resonance frequencies. Figure 11
shows a single resonance period, probably owing to the narrow range explored in our simulations.

Next, we investigate the effects of varying the fractions of T̃on and T̃off within a fixed TEW. For TEW = 100,
Figure 12 compares the evolutions of Rx for T̃on = 0.05, 0.1, 0.35, 0.5, 0.6, 0.65 for the interval 0 ≤ t ≤ 600. In
all cases, the droplet enters the periodic stage after an initial adjustment of three to five TEW. With increasing
T̃on, the droplet dewets more (corresponding to smaller Rx,min) as one might expect.
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Figure 12: Evolutions of Rx with TEW = 100, and T̃on = 0.05, 0.1, 0.35, 0.5, 0.6, and 0.65(TEW)

Figure 13 plots the amplitude (Rx,max −Rx,min) against the ratio Ton

Toff
for different values of TEW. In all cases,

the amplitude of droplet oscillation peaks at Ton

Toff
= 1.0, the effect being most prominent at the resonance

period (TEW = 300). Equal duration of the spreading and dewetting stages is conducive to larger amplitude
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of oscillation. When the two durations are made unequal, for instance by increasing T̃on, the droplet dewets
more during the “on” stage but the extra displacement cannot be fully recovered during the “off” stage, thereby
limiting the amplitude. This finding may be important to the control of droplets using EW to achieve more
energetic oscillation and hence more efficient mixing inside.
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Figure 13: Variations of Rx,max −Rx,min with Ton

Toff
at TEW = 100, 200, 300, 400, and 600.

3.6.3 Effects of control force θ(VM )

Besides the temporal control parameters discussed above (TEW and T̃on), we have also investigated θ(VM ) as
an indication of the magnitude of the EW forcing. For this study, the following temporal parameters were used:
TEW = 300 and T̃on = T̃off = 0.45(TEW). Figure 14 shows the temporal evolutions of Rx for θ(VM ) ranging
from 120◦ to 140◦. With increasing θ(VM ), the amplitude of oscillation increases, as expected. Rx retains
the same regular zigzag pattern in time. We did not investigate if the resonance period varied with θ(VM ).
The experimental study of Oh et al. [6] reported that the resonance frequency decreases slightly with increasing
maximum voltage. Figure 15 plots the amplitude of oscillation Rx,max−Rx,min as a function of the contact angle
difference θ(VM )− θ(0) at zero and maximum voltages. Increasing the magnitude of the driving force causes an
increase in the amplitude of drop oscillation. Within the range tested, this relationship is approximately linear.

4 Concluding Remarks

To summarize, a hybrid LBM-FVM numerical model based on phase-field theory has been developed for elec-
trowetting problems, and validated through comparisons with other methods. Application of this new method
to electrowetting of droplets controlled by AC voltage has identified two stages of droplet deformation: an initial
adjustment stage and a periodic stage. This study has also revealed the effects of the control parameters. In
particular, to achieve the most energetic droplet oscillation, a resonance period has been found for the driving
voltage, together with an optimal on-off time ratio within the period. Besides, the effects of the magnitude of
the control force have also been examined. The droplet oscillation amplitude varies roughly linearly with the
change in contact angle due to the maximum voltage. These results suggest a strategy to control the parameters
of the problem to achieve highly efficient mixing within the droplet.

It should be noted that the present work has several limitations. First, the problem considered is two-dimensional
and the droplet actually corresponds to an infinitely long ridge. To match with real experiments, axisymmetric
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or, more generally, three-dimensional simulations are required. Second, we have used a simple model for
electrowetting (EW), which mimics EW by varying the imposed static contact angle. As noted before, this
neglects changes of material properties after the voltage is applied, and assumes that the action of voltage is
instant and the system can achieve local equilibrium also instantly. Such assumptions may be well justified for
DC-controlled EW systems. For AC-controlled EW they are less so. For example, a recent experimental study
[12] found that the phase difference between the droplet motion and the applied voltage varies (from −180◦

to 180◦) with the frequency of the voltage. A better model should take into account such factors. Third, the
two fluids were assumed to have the same density and viscosity. Although this is close to some experiments
using liquid-liquid systems (e.g., see [10]), it differs much from the common situation of water droplets in
air. The roles of the density and viscosity ratios in the EW systems need to be studied further. Finally, the
contact angle hysteresis (CAH) is not yet considered in the modeling. Thus, this study corresponds to perfectly

smooth surfaces without CAH. The inclusion of CAH might improve the prediction of EW by introducing phase
difference between the droplet response and the applied voltage. However, currently it is an unresolved issue in
contact line models.
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