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Abstract - In Smoothed Particle Hydrodynamics (SPH) methods for fluid flow, in-

compressibility may be imposed by a projection method with an artificial homogeneous

Neumann boundary condition for the pressure Poisson equation. This is often inconsistent

with physical conditions at solid walls and inflow and outflow boundaries. For this reason

open-boundary flows have rarely been computed using SPH. In this work, we demonstrate

that the artificial pressure boundary condition produces a numerical boundary layer that

compromises the solution near boundaries. We resolve this problem by utilizing a “ro-

tational pressure-correction scheme” with a consistent pressure boundary condition that

relates the normal pressure gradient to the local vorticity. We show that this scheme com-

putes the pressure and velocity accurately near open boundaries and solid objects, and

extends the scope of SPH simulation beyond the usual periodic boundary conditions.
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1 Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that originated

from astrophysical problems some three decades ago [1,2]. In recent years, it has evolved into

a unique tool for computational fluid dynamics thanks to its meshless formalism and unique

capability to handle large strains and morphological changes [3–5]. Nevertheless, SPH is

still a relatively new tool in computational fluid dynamics, and is not as well developed as

finite difference or finite element [6, 7]. Some fundamental issues, such as the treatment of

incompressibility and boundary conditions, have not been fully resolved.

Traditionally, SPH methods employ a weakly compressible formalism with an artificial

equation of state that specifies pressure as an algebraic function of density. A large speed

of sound is used to maintain an acceptable density variation [8, 9, e.g.]. This weakly com-

pressible SPH (WCSPH) algorithm is easy to program but has several disadvantages. The

high speed of sound imposes a severely restrictive CFL criterion on the time step [10]. The

pressure is subject to large and non-physical fluctuations, especially for relatively coarse

spatial resolution. Such fluctuations may cause numerical instability. More important,

they corrupt the result in problems where pressure is of physical interest, as in computing

the drag on a solid object [11]. To bypass these difficulties, Cummins and Rudman [10]

introduced truly incompressible SPH (ISPH) algorithms based on the projection scheme.

Numerical results have demonstrated that ISPH largely eliminates the density and pressure

fluctuations, produces more accurate predictions of velocity and forces on solids, and is in

general more efficient than WCSPH [10–12].

However, these ISPH algorithms suffer from an inconsistency in the pressure boundary

condition. In the pressure-correction projection scheme, pressure is computed from a Pois-

son equation, and is then used to correct the velocity field to make it divergence-free [13,14].

Solving the Poisson equation requires boundary conditions for the pressure, which are not

required by the original Navier-Stokes equation. Following the pioneers of the original pro-

jection scheme [13, 14], Cummins and Rudman [10] and Lee et al. [11] both employed a

homogeneous Neumann condition:

n · ∇p|Γ = 0, (1)
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where n is the normal vector to the boundary Γ. In many flow situations, of course, the

normal pressure gradient does not vanish on the boundary. Important examples are open-

boundary problems where the fluid enters and exits the computational domain driven by

a pressure gradient, and flow around bluff bodies or through channels with variable cross

sections. In such cases, the simple homogeneous condition of Eq. (1) produces a numerical

boundary layer at the boundary and corrupts the accuracy of the solution. Partly for this

reason, open-boundary flows are rarely computed using SPH. The standard practice is to

impose periodic conditions on the inlet and the exit, and replace the pressure gradient

driving the flow by a body force [11]. In fact, Cummins and Rudman [10] and Lee et al. [11]

both concluded their paper by highlighting the need to develop a more suitable pressure

boundary condition.

This is a well-known problem in the projection scheme, and is by no means specific to

SPH. A physically consistent boundary condition on pressure has long been sought after [15].

Recently Guermond et al. [16] published a careful examination of the various projection

methods, and recommended the “rotational pressure-correction scheme” of Timmermans

et al. [17], with a nonhomogeneous pressure condition for the Poisson equation. Their

finite-element numerical tests show that this largely removes the artificial boundary layer

caused by Eq. (1) and preserves the accuracy of the solution throughout the domain.

Our work is inspired on the one hand by the need for a suitable pressure boundary

condition in ISPH [10, 11], and on the other by the successful finite-element computations

using the rotational scheme [16]. We implement in SPH the rotational pressure-correction

scheme, with its nonhomogeneous pressure boundary condition. The new ISPH algorithm is

validated by simulating pressure-driven Poiseuille flow with open boundaries and flow past

a square cylinder. In each case, the SPH result is in very good agreement with analytical

or finite-element benchmarks. Thus, the new pressure boundary condition enhances the

capability of SPH in computing incompressible flows; previously inaccessible problems with

open and solid boundaries can now be computed routinely.
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2 Projection schemes

2.1 Homogeneous projection scheme

The classical projection scheme of Chorin [13] and Temam [14] features the homogeneous

pressure boundary condition (Eq. 1), and will be called hereafter the homogeneous projec-

tion scheme. Consider the flow of an incompressible fluid governed by the Navier-Stokes

equations:

∇ · u = 0, (2)

du

dt
+

1

ρ
∇p− ν∇2u = g, (3)

where g is a body force. For the time being, let us assume a Dirichlet boundary condition

on the velocity:

u|Γ = uΓ. (4)

Neumann conditions on n · ∇u, as appropriate for the exit in open-boundary flows, will be

considered in subsection 2.3.

The projection scheme is a prediction-correction technique. In the prediction step, we

compute an intermediate velocity field ũ from the momentum equation (Eq. 3) without the

pressure term. This velocity satisfies the boundary condition (Eq. 4), but in general not

the continuity equation (Eq. 2). In the correction step, we compute a pressure field from

the intermediate velocity, and then use the pressure gradient to correct ũ into a solenoidal

velocity u. Using second-order time stepping, the scheme can be written as [16]:

1

2∆t
(3ũk+1 − 4uk + uk−1)− ν∇2uk = g, ũk+1|Γ = uΓ, (5)







1

2∆t
(3uk+1 − 3ũk+1) +

1

ρ
∇pk+1 = 0,

∇ · uk+1 = 0, n · uk+1|Γ = n · uΓ,

(6)

where k and k+1 indicate the old and new time steps, respectively. In the SPH implemen-

tation, the temporal differencing gives the material derivative and thus no advection term

appears. For our purpose here, the most interesting aspect is that pk+1 is computed from

a Poisson equation by taking the divergence of the first equation of Eq. (6):

∇2pk+1 =
3ρ

2∆t
∇ · ũk+1. (7)
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Equation (6) implies an homogeneous Neumann boundary condition for pk+1:

n · ∇pk+1|Γ = 0, (8)

which is evidently inconsistent with the momentum equation (Eq. 3). Unless the physical

problem is such that the normal pressure gradient indeed vanishes at the boundary, this

homogeneous Neumann condition produces a numerical boundary layer in the solution and

corrupts its accuracy [16].

2.2 Rotational projection scheme

In the prediction step, one may retain a pressure gradient based on the prior time step

when computing the intermediate velocity ũk+1 from the momentum equation. Then what

appears in the correction step will be a pressure difference between the current and prior

steps. The essence of the rotational scheme is to modify this pressure difference so as

to make the pressure Neumann condition consistent with the momentum equation [17].

Following Guermond et al. [16], we write the scheme in this form:

1

2∆t
(3ũk+1 − 4uk + uk−1)− ν∇2ũk+1 +

1

ρ
∇pk = g, ũk+1|Γ = uΓ, (9)







1

2∆t
(3uk+1 − 3ũk+1) +

1

ρ
∇φk+1 = 0,

∇ · uk+1 = 0, n · uk+1|Γ = n · uΓ,

(10)

where φk+1 is the modified pressure defined as:

φk+1 = pk+1 − pk + µ∇ · ũk+1, (11)

µ = ρν being the dynamic viscosity. The following observations can be made of this

projection scheme.

1. Retaining the old pressure gradient ∇pk in the prediction step increases the accuracy

of the scheme [18].

2. Substituting Eq. (11) into Eq. (10) and then adding it to Eq. (9), we arrive at the

proper discretization of the momentum equation:

1

2∆t
(3uk+1 − 4uk + uk−1)− ν∇2uk+1 +

1

ρ
∇pk+1 = g, (12)

where we have used the identity ∇(∇ · ũk+1)−∇2ũk+1 = ∇×∇× ũk+1 and the fact

that ∇ × ∇ × ũk+1 = ∇ × ∇ × uk+1 = −∇2uk+1 since ∇ × ũk+1 = ∇ × uk+1 and

∇ · uk+1 = 0 from Eq. (10).
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3. The use of φk+1 for correcting the velocity, instead of pk+1, is the key difference from

the homogeneous scheme. φk+1 can be solved from a Poisson equation with its own

homogeneous Neumann condition implied by Eq. (10):






∇2φk+1 =
3ρ

2∆t
∇ · ũk+1,

n · ∇φk+1|Γ = 0.

(13)

Translated into pressure, these become






∇2pk+1 = ∇2pk − µ∇2(∇ · ũk+1) +
3ρ

2∆t
∇ · ũk+1,

n · ∇pk+1|Γ = n · ∇(pk − µ∇ · ũk+1)|Γ.

(14)

Using Eq. (9) and the identities following Eq. (12), the nonhomogeneous Neumann

boundary condition for pk+1 can be rewritten as

n · ∇pk+1|Γ = n · (ρg + µ∇2uk+1)|Γ, (15)

which is consistent with the momentum equation (Eq. 12). It was called the “ro-

tational” pressure boundary condition because the viscous stress term µ∇2uk+1 =

−µ∇×∇× uk+1 was viewed as the curl of the vorticity vector [16].

2.3 Natural boundary condition

So far, our discussion is limited to Dirichlet boundary conditions for the velocity. With

open-boundary flows, it is more appropriate to impose a natural boundary condition at the

exit of the flow domain. Denoting by Γ1 the portion of the boundary with Dirichlet velocity

condition and Γ2 the exit, the boundary conditions are

u|Γ1
= uΓ, (16)

[

−pn+ µn · (∇u+∇uT)
]

|Γ2
= −pan, (17)

where pa is the ambient pressure. Following Guermond et al. [16], we modify the rotational

scheme as follows:






1

2∆t
(3ũk+1 − 4uk + uk−1)− ν∇2ũk+1 +

1

ρ
∇pk = g

ũk+1|Γ1
= uΓ, [−pkn+ µn · (∇ũk+1 + (∇ũk+1)T)]|Γ2

= −pan,

(18)







1

2∆t
(3uk+1 − 3ũk+1) +

1

ρ
∇φk+1 = 0,

∇ · uk+1 = 0, n · uk+1|Γ1
= n · uΓ, φk+1|Γ2

= 0

(19)

φk+1 = pk+1 − pk + µ∇ · ũk+1. (20)
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Note that Eq. (19) implies that on Γ1 the homogeneous Neumann condition is imposed

on φk+1 as before, but on Γ2 a Dirichlet condition is used. Equivalently, pk+1 satisfies

the non-homogeneous Neumann condition Eq. (15) on Γ1 and a non-homogeneous Dirichlet

condition on Γ2. The latter removes the indeterminacy in the pressure-Poisson equation.

The homogeneous scheme (Eqs. 5, 6) can be similarly modified, with a Dirichlet pressure

condition at the exit: pk+1|Γ2
= 0.

3 SPH implementation

To some degree, SPH particles may be viewed as representing blobs of material. But they

are for the most part a numerical device for discretizing the Navier-Stokes equations in

Lagrangian coordinates. The particles are interpolation points from which the fluid prop-

erties may be calculated by smoothing over neighboring particles. Although the particles

have mass and move according to Newton’s law of motion, the forcing terms stem directly

from discretizing the continuum governing equations. Solid boundaries are discretized by

solid particles, and the fluid-solid interaction is defined so as to satisfy the no-slip boundary

condition.

3.1 SPH interpolation

The SPH method allows any property to be interpolated from its values at a set of discrete

points—the SPH particles—using a kernel or weighting functionW (r−r′, h), which specifies

the contribution to any field variable at position r by a particle at r′ that lies within the

compact support of the kernel function. The range of the compact support, indicated by

the length scale h, determines the maximum interaction length between particles. The

weighting function is normalized such that
∫

V

W (r − r′, h)dr′ = 1, lim
h→0

W (r − r′, h) = δ(r − r′), (21)

V being the entire space. If a field variable A(r) is known only at a discrete set of particles

r′j , then its value at any spatial location r can be approximated by:

〈Ah (r)〉 =

∫

V

A(r′)W (r − r′, h) dr′

=
∑

j

A(r′j)W (r − r′j , h)Vj =
∑

j

mj

ρj
A(r′j)W (r − r′j, h), (22)
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where Vj is the volume element at r′j , and has been replaced by the ratio between the mass

and density of the jth particle: Vj = mj/ρj . The summation is over all particles that lie

within a circle or sphere with the radius of compact support of the kernel function. In our

ISPH formalism, mj and ρj are constant for all particles. The subscript j is retained to be

general and consistent with convention. The same is true for the representation of viscosity

µ in formulae below.

We have tested the cubic and quintic spline kernels [9] as well as the truncated Gaussian

kernel [19]. The Gaussian kernel provides a good compromise between computational cost

and accuracy, and has been used in all the results to be presented. In terms of the distance

s = |r − r′|/h, it can be written as

W (s) =

{

e−s2
−e−9

πh2(1−10e−9)
0 ≤ s ≤ 3

0 s > 3.
(23)

We have used h = 1.2L0, L0 being the initial spacing between neighboring particles in a

regular square lattice.

In classical SPH methods, the gradient approximations is based on convolving the vari-

ables with the kernel function [7]:

〈∇Ah(r)〉 =

∫

V

A(r′)∇W (r − r′, h) dr′ =
∑

j

mj

ρj
A(r′j)∇W (r − r′j, h). (24)

The interpolation among neighboring particles is equivalent to a Taylor expansion that

theoretically has second-order accuracy [20]. However, as the particles move and their

spatial distribution becomes irregular, the accuracy in approximating the gradient vector

can be much compromised. To improve the accuracy of the kernel-based approximation,

a number of corrective procedures have been proposed [20, 21, e.g.]. In our simulations,

the normalization technique proposed by Oger et al. [20] works well. They constructed a

correction matrix that accounts for irregular distribution of neighbors around each particle,

which in two dimensions is written as

L(r) =

[

∑

j Vj(xj − x)
∂Wij

∂x

∑

j Vj(xj − x)
∂Wij

∂y
∑

j Vj(yj − y)
∂Wij

∂x

∑

j Vj(yj − y)
∂Wij

∂y

]

−1

, (25)
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with Vj = mj/ρj and Wij is a shorthand for W (ri − rj , h). Multiplying L(r) into the

gradient of the kernel produces high accuracy even with highly irregular particle distribu-

tions [20]. For example, the pressure gradient and velocity divergence are computed as

∇pi =
∑

j

mj

ρj
(pj − pi)L(ri) · ∇iWij, (26)

∇ · ui =
1

ρi

∑

j

mj(uj − ui) ·L(ri) · ∇iWij , (27)

where pi = p(ri), ui = u(ri), and ∇i indicates differentiation with respect to ri. Note that

the right-hand-sides of Eqs. (26) and (27) use the “symmetric” form of the interpolation for-

mula for the gradient [7], an oft-used alternative to Eq. (24). In simulating the flow around

a square cylinder, in particular, the particle distribution becomes highly disordered at the

front and back of the obstacle. The classic formulae would produce large pressure fluctua-

tions, which are mostly suppressed by the corrected forms of the gradient and divergence

formulae.

3.2 Solution algorithm

For both the homogeneous and rotational schemes, the algorithm reflects the same two-

step structure. We will outline the solution procedure by referring to the equations of the

rotational scheme, and a similar one is followed for the homogeneous scheme. The prediction

step consists in solving a Helmholtz equation for the intermediate velocity ũk+1 (Eq. 9 or

18), while the correction step a Poisson equation for the modified pressure φk+1 (Eq. 13 or

its counterpart for natural boundary conditions at the exit). In a time-dependent setting, we

have tested implicit and explicit schemes in both steps. Balancing stability and efficiency,

we have settled on a scheme similar to that of Lee et al. [11] of solving for the intermediate

velocity explicitly in the prediction step and for the modified pressure implicitly in the

correction step. Of course, in the end we correct the velocity to make it divergence-free via

Eq. (10) or Eq. (19).

The Laplacian of velocity and modified pressure are discretized in SPH using the fol-

lowing formulae [9, 22]:

ν∇2ui =
∑

j

mj(µi + µj)rij ·L(ri) · ∇iWij

ρiρjr
2
ij

(ui − uj), (28)

∇2φi =
∑

j

2mj

ρj

rij ·L(ri) · ∇iWij

r2ij
(φi − φj), (29)
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Figure 1: Computational domain for flow past a square cylinder of side D in a channel of width H ,
showing the three types of boundaries to be encountered in the simulation.

where rij = ri − rj and rij = |rij|. In solving the pressure-Poisson equation, we combine

Eq. (29) for all the particles to construct a linear system of equations for φk+1. If all

boundary segments of the domain have Dirichlet boundary condition on u and Neumann

boundary condition on φ, there will be an indeterminacy in φ and the resulting linear system

will be degenerate. This is to be expected since in the incompressible Navier-Stokes system,

the absolute value of pressure is immaterial. The indeterminacy is removed by replacing one

of the diagonal elements of the coefficient matrix by a very large number, thereby setting

that φ value to nil [23]. The linear system is solved by using the stabilized version of the

bi-conjugate gradient method (Bi-CGSTAB).

3.3 Boundary conditions

Because of the Lagrangian nature of SPH particles, implementing boundary conditions

at fixed spatial boundaries is less straightforward than in mesh-based methods. To be

specific, we discuss three types of boundaries that appear in our simulations: solid walls,

inflow boundary (entry) and outflow boundary (exit). These come from the geometry of

flow around an obstacle in a channel (Fig. 1), and are common to a broad class of flow

simulations.

3.3.1 Solid walls

For velocity, the no-slip boundary condition on solid walls has been implemented in earlier

work with image particles [10, 24], dummy particles with zero velocity [11, 25], dummy
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particles with extrapolated velocity [9], and a normalization procedure to compensate for

the boundary deficiency of neighboring particles [26]. Here we adopt the method of Morris

et al. [9] of extrapolating the fluid velocity onto layers of dummy particles inside the solid

wall. Initially we deploy a square lattice of SPH particles with spacing L0 to cover the

fluid domain as well as the solid surfaces. Furthermore, three layers of dummy particles are

drawn inside the solid, also at spacing L0. Our Gaussian kernel has a cut-off range of 3h

(Eq. 23) and we set h = 1.2L0. Thus three layers of dummy particles, in addition to the wall

particles, cover the compact support of all fluid particles. At the beginning of the prediction

step, we assign a velocity to each dummy particle that is the negative of the interpolated

velocity of its image inside the fluid domain. These dummy particles will serve as neighbors

in solving the momentum equation for the fluid particles, but they will not move from one

time step to the next. The velocity of the wall particles remains zero, of course. This setup

is used for the channel walls as well as the solid obstacle in the middle of the domain. For

dummy particles along the diagonal inside the corners of the square cylinder (cf. Fig. 1), we

follow the scheme of Lee et al. [11] by averaging between their neighbors. The extrapolation

of velocity into the solid wall is essential for accurate evaluation of wall shear stresses and

the overall drag [27].

On solid walls, the homogeneous Neumann condition for p (Eq. 8) or φ (Eq. 13) ap-

plies. Following Lee et al. [11], we simply propagate the p or φ value of the wall particle

to the dummy particles along the normal direction. This is implemented numerically by

manipulating the relevant entries in the linear system.

3.3.2 Entry

Most SPH simulations up-to-date have replaced entry and exit conditions by periodic condi-

tions [9,11]. These are rather easy to implement; particles exiting the computational domain

are simply reinserted at the entry, carrying the same properties. Lastiwka et al. [28] have

implemented a genuine entry condition, for compressible flows, by attaching an inflow zone

upstream of the computational domain. Properties of particles inside the inflow zone are

assigned to reflect the analytical boundary conditions to be realized at the entry.

For our incompressible flow, the proper entry condition is a prescribed unidirectional

velocity profile (uin(y), 0), say a parabolic profile representing fully developed Poiseuille flow.
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Our approach is similar in spirit to Lastiwka et al. [28]. We replicate the first line of fluid

particles at the entry, called the entry layer, three times upstream at spacing L0. The entry

layer and the three layers of image particles are all assigned the prescribed velocity profile

uin. Thus, the fluid particles immediately downstream of the entry layer are preceded by

four particles upstream, all bearing the prescribed velocity uin, and the boundary deficiency

problem is solved. The Neumann condition n · ∇φ = 0 (or n · ∇p = 0 for the homogeneous

scheme) is easily implemented by assigning the φ (or p) value of an entry-layer particle onto

its images upstream.

When a particle of the entry layer moves beyond L0 downstream of the inlet, it be-

comes an interior particle and its upstream image particle becomes part of the entry layer.

Meanwhile, another image particle is injected far upstream to be the third image particle.

3.3.3 Exit

Under certain circumstances, it is possible to treat the exit the same way as the entry,

with a prescribed velocity profile. For instance, this is reasonable for Poiseuille flow in a

straight channel and for more complex channel flows with an exit far downstream of flow

disturbances. We have tested these cases in numerical experiments. However, the natural

boundary condition (Eq. 17) is more appropriate in most cases.

We will deal with the simple case of equilibrated pressures at the exit (i.e., no suction

or blowing), so that the normal stress balance of Eq. (17) reduces to a simple Neumann

condition for the velocity n · ∇u = 0. To compensate for the boundary deficiency at the

exit, we again copy the last layer of fluid particles (the exit layer) onto three layers of image

particles downstream of the exit with spacing L0, each bearing the same velocity as their

progenitor in the exit layer. Now the velocity of the near-exit fluid particles can be updated

as for the inner particles, and the viscous stress and velocity divergence can be evaluated

in the standard way. For pressure, we impose the Dirichlet conditions p = 0 and φ = 0

at the exit for the homogeneous and rotational schemes, respectively. To implement this,

the image particles downstream of the exit take on p or φ values extrapolated from the

upstream particles, which are incorporated into the discretization of the Poisson equation

by properly modifying the matrix.
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When a particle of the exit layer crosses the outlet boundary, it ceases to be a fluid

particle and becomes an image particle, bearing the same velocity. Meanwhile the upstream

fluid particle becomes part of the exit layer. The p or φ value of the new image particle is

again extrapolated from the upstream fluid particles with the condition that p = 0 or φ = 0

at the exit.

Finally, we mention a boundary-deficiency issue in computing ∇ · ũ for the rotational

scheme, which appears in the Poisson equation for φ and at the end of the correction

step when extracting the physical pressure p from φ (Eq. 11). Computing ∇ · ũ near

the boundaries requires ũ for the dummy or image particles outside the domain. At the

entry and exit, we assign the ũ value of the entry or exit layer to the image particles as

described above, and thus ∇ · ũ can be computed. Near solid boundaries, however, using

the linearly extrapolated velocity for dummy particles, as is done in implementing the no-

slip boundary condition, would produce large spurious pressure on the dummy particles

and corrupt the solution near the solid. This is because the pressure correction scheme in

Eq. (11) is designed for fluid particles and does not account for the peculiar property of the

dummy particles in ostensibly carrying a velocity but not really moving. Instead, it is more

reasonable to assign ũ = 0 on the dummy particles inside solid walls in computing ∇ · ũ.

Numerical experiments show that this more accurately predicts the pressure field near solid

walls. Interestingly, the homogeneous scheme is very insensitive to ũ values on the dummy

particles. The pressure field differs only by some 2% between the two choices. This may be

because in the homogeneous scheme, pressure pk+1 is computed directly from the Poisson

equation with no further correction by ∇ · ũ.

3.4 Tensile instability

The SPH representation of a fluid of constant and uniform density relies on a more or less

uniform distribution of the particles. Because of how the particles interact via the kernel

function, however, clustering of particles is liable to arise, especially when the material is

subject to tensile deformation. This gives rise to the well-documented tensile instability [6].

An example from our own computations is illustrated in Fig. 2(a) for flow around a square

cylinder to be discussed in detail in section 4.3.
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Figure 2: (a) Tensile instability caused by the particles forming anisotropic strings in flow around
a square cylinder. (b) The particle shifting approach [22] largely removes the undesirable clustering
and maintains a more or less uniform particle distribution.

Among the various remedies proposed in the literature [6,21,22,29,30], we have found the

particle shifting strategy of Xu et al. [22] most effective and efficient for our ISPH projection

scheme. Originally proposed by Nestor et al. [30] for a Finite Volume Particle Method, the

idea consists in shifting particles slightly away from their streamlines and correcting their

velocity and pressure according to a first-order interpolation. The direction and amount

of shifting are determined from the arrangement of nearby particles, and we have adopted

the formula of Xu et al. [22]. Figure 2(b) shows that this scheme effectively suppresses the

formation of particle strings and averts the onset of tensile instability.

4 Numerical results

4.1 Poiseuille flow driven by body force in periodic domain

As a baseline, we compute the transient development of a Poiseuille flow in a straight

channel driven by a body force. The SPH simulation is set up in the usual way as in

the literature [9], with the pressure gradient set to zero, and periodic boundary conditions

imposed on both ends of the domain. Thus, n · ∇p does vanish on all boundary segments,

and the homogeneous and rotational projection schemes become identical for this simple

problem. We have two objectives. The first is to validate our code for both projection

methods against this benchmark problem, which has an analytical solution [9]. The second is
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Figure 3: Development of the Poiseuille velocity profile in time: comparison between SPH simulation
and the analytical solution. Two numerical solutions are shown, corresponding to initial particle
spacing L0 = 0.05H and 0.1H . Time is made dimensionless by H/U0.

to examine the accuracy of the solution with increasing numbers of particles, and determine

the necessary level of spatial resolution.

The channel has a width H and a length 2H. The length may seem small, but has

no effect on the solution as no streamwise variation is detected in the solution. Initially

the particles are arranged in a uniform square pattern of spacing L0, with zero initial

velocity. At t = 0, the particles start to move under a constant body force g. The temporal

development of the velocity profiles is recorded and compared with the analytical solution.

The final steady-state centerline velocity U0 = gH2/(8ν) corresponds to a Reynolds number

Re = U0H/ν = 1.

Figure 3 compares the computed velocity profiles at four times with the analytical

solution, the last one t = 1 approaching steady state. In this unidirectional flow, the

particles on the same streamline move with identical velocity, and each data point in the plot

corresponds to one such row of particles. Length, velocity and time are made dimensionless

by H, U0 and H/U0, respectively. Numerical solutions at two spatial resolutions are shown;

initial particle spacing L0 = 0.05H and L0 = 0.1H correspond to a total of 1120 and 360

particles. Note first the excellent agreement between the SPH solutions and the analytical

solution. This serves as a validation of our methodology and code. Second, the numerical
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(a) (b)

Figure 4: Deviation of the computed pressure field p(r) from the analytical solution pA(r) (i.e., a
linear distribution along the flow direction). (a) Homogeneous projection scheme. (b) Rotational
projection scheme. The pressure error has been scaled by 1

2
ρU2

0
and zeroed at the center of the

domain.

solutions at both spatial resolutions are practically indistinguishable; this suggests that

L0 = 0.1H is sufficient for such a simple problem. Finer resolutions are required for more

complex flow geometries, as will be shown shortly.

4.2 Fully developed Poiseuille flow with open boundaries

To investigate the effect of the pressure Neumann boundary condition in the homogenous

and rotational schemes, we simulate the steady-state Poiseuille flow in a straight channel

with entry and exit boundary conditions. The channel width and length are both H. The

velocity and pressure boundary conditions are imposed as described in section 3.3. Specifi-

cally, the velocity assumes a parabolic profile at the inlet:

uin(y) =
U0

H2
(H2 − 4y2), (30)

and vanishes on the side walls. The Reynolds number Re = U0H/ν = 1. On both the inlet

and side walls, p or φ, in the two projection schemes respectively, satisfies the homogeneous

Neumann condition. At the exit, the velocity has zero normal gradient, and the Dirichlet

conditions p = 0 and φ = 0 are imposed for the homogeneous and rotational schemes. For

this calculation we used a total of 2000 particles with L0 = 0.025H, which provides sufficient

resolution.

Once the initial transient dies out, both schemes accurately reproduce the parabolic

velocity profile throughout the domain, and their difference lies in the pressure field. To
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illustrate the pressure boundary layers clearly, we subtract the analytical linear pressure

distribution from the computed pressure field to produce a pressure error, with its value

zeroed at the center of the domain for a clearer view. Figure 4 depicts the two-dimensional

distribution of such pressure errors for the two schemes using a snapshot of the SPH par-

ticles. As expected, the homogeneous scheme produces a prominent boundary layer at the

entry (Fig. 4a). However, there is also appreciable error at the exit. Unlike at the entry,

the p = 0 condition here and the linear extrapolation of p for downstream image particles

are consistent with the expected linear pressure profile. Thus the exit error arises from a

different source than the entry boundary layer; it is due to errors in the velocity since a

weaker Neumann condition n · ∇u = 0 is imposed at the exit. In Fig. 4(b), the rotational

scheme effectively eliminates the entry boundary layer, and reduces the maximum error by

an order of magnitude. Note that even in this case, the entry and exit tend to produce

larger errors due to extrapolation for the image particles outside the domain. Given the

analytical pressure gradient in a Poiseuille flow dp/dx = 8µU0/H
2 and the domain length

of H, the scaled pressure drop between the entry and exit would be 16/Re = 16. Relative

to this, the maximum pressure error in Fig. 4(a) for the homogeneous scheme amounts to

0.3%, which is quite acceptable. The rotational scheme has a maximum error of about

0.04%.

The results have clearly demonstrated the pressure boundary layer suffered by the ho-

mogeneous projection scheme and the capacity of the rotational scheme to eliminate it. But

for this simple problem, the ill effect is small and limited to a small area of the domain, and

does not seriously corrupt the quality of the solution on the whole. This is no longer the

case for flow around solid objects, where the incorrect pressure boundary condition seriously

compromises quantities of physical interest such as the drag force.

4.3 Channel flow past a square cylinder

The last problem of our numerical experimentation is the flow around a square cylinder

in a two-dimensional channel (Fig. 1). As a test of the rotational projection scheme, this

problem is attractive for several reasons. First, flow around obstacles is known to cause

difficulties for WCSPH schemes [11]. The artificial pressure is liable to large spurious oscil-

lations near the solid surface, thus hampering an accurate computation of the drag. Such
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problems are where the ISPH, with the rotational pressure boundary condition, is poten-

tially most advantageous and useful. Second, this is an oft-used benchmark problem in the

literature for testing the capability of various numerical methods to accurately calculate

the pressure and velocity fields and the drag force [31, e.g.]. For the geometry and param-

eters of our SPH simulation, we have carried out a high-resolution finite-element solution

as a benchmark. Finally and most interestingly, Lee et al. [11] have computed a similar

problem using ISPH. In their setup, the fluid flow is driven by a body force in a channel

containing the square cylinder, on which the homogeneous Neumann condition is imposed

for the pressure. Periodic boundary conditions are used between the inlet and the outlet;

this necessitates a very long section downstream of the obstacle to allow the flow to relax to

the same condition at the inlet. Even with such precautions, the calculated drag coefficient

is nearly 40% lower than their finite-volume benchmark. Thus, solving this problem using

our schemes provides an opportunity to investigate the benefits of the non-homogeneous

Neumann boundary condition on pressure.

The geometry of the problem is schematically shown in Fig. 1. The channel width is

H and its length is 3H, and a square cylinder of side D = H/8 is situated at the center

of the channel. Thus, the entry is at x = −12D and the exit at x = 12D. The geometry

and length scales are modeled after similar computations of Breuer et al. [31] and Lee

et al. [11]. Initially SPH particles are deployed on a regular square lattice of side L0. The

square cylinder is represented by wall particles and interior dummy particles at the same

spacing. The boundary conditions are imposed as explained in section 3.3, with a parabolic

velocity at the entry and zero normal-velocity-gradient at the exit. For the homogeneous

projection scheme, p = 0 at the exit and n · ∇p = 0 on the other three sides of the channel

and on the surface of the square cylinder. For the rotational scheme, we require φ = 0 at

the exit and n ·∇φ = 0 on all the other boundary segments. The sharp corners of the square

cylinder tend to cause spurious disturbances to the pressure of nearby particles. This is

alleviated by local smoothing: in computing the pressure gradient ∇pk in the prediction

step, the corner pressure is assumed equal to that of the nearest wall particle.

In presenting results in the following, we scale length by the width of the square cylinder

D, velocity by the centerline velocity U0, time by D/U0 and pressure by 1
2ρU

2
0 . Most

computations to be reported below correspond to a Reynolds number Re = U0D/ν = 1.
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Higher Re results will be compared with prior studies in subsection 4.3.3. As a benchmark,

we have solved the same problem using our in-house finite-element software AMPHI [32].

The finest finite-element mesh size is approximately 0.06D and a total of 39973 elements

are used. Mesh refinement shows that this spatial resolution is sufficient; doubling the total

number of elements causes a 0.7% change in the drag.

4.3.1 Convergence with number of SPH particles

To examine how the SPH results depend on spatial resolution, we have carried out compu-

tations using the rotational projection scheme at five spatial resolutions, with L0 = H/40,

H/58, H/80, H/120 and H/160 and the total number of particles being 5490, 11664, 21300,

46260 and 79860, respectively. The results are then compared with the finite-element (FE)

solution to establish convergence with respect to increasing particle numbers, and to deter-

mine the level of resolution needed for an accurate solution that does not depend on the

number of particles. The SPH solutions at the five spatial resolutions show the same qual-

itative trend. Starting with zero velocity throughout the domain except for the parabolic

velocity profile imposed at the entry, the flow develops in time and approaches a steady state

at t ≈ 1. This “steady state”, of course, is in an average sense that allows fluctuations due

to the motion of individual particles. In the following, we will mostly discuss steady-state

results.

First, we examine how the drag on the square cylinder converges with increasing spatial

resolution. The drag force fd, along the flow direction (x), is computed by integrating the

pressure and viscous stresses around the surface of the square cylinder:

fd =

∫

Sx

(

−p+ 2µ
∂u

∂x

)

nxdy +

∫

Sy

µ
∂u

∂y
nydx = −

∫

Sx

pnxdy + µ

∫

Sy

∂u

∂y
nydx, (31)

where Sx refers to the left and right faces of the cylinder with nx = ±1 being the x

component of the outward normal vector, and Sy the top and bottom faces of the cylinder

with ny = ±1 being the y component of the outward normal. The viscous normal stress

vanishes at the solid surface Sx because ∂u/∂x = −∂v/∂y = 0. We use the pressure of the

surface particles on the square cylinder for p. The viscous stress (or velocity gradient) is

evaluated using fluid and wall particles as well as dummy particles inside the cylinder, the
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Figure 5: Temporal evolution of the drag coefficient CD and its components due to pressure and
viscous friction. The spatial resolution is at L0 = H/80 with 21300 particles. The drag coefficient
is scaled by the finite-element benchmark value CFE

D
and time is made dimensionless by D/U0.

latter bearing velocity linearly extrapolated from that of the fluid and wall particles. This

is known to produce the shear stress accurately on solid walls [27]. A drag coefficient is

then defined as

CD =
fd

1
2ρU

2
0D

2
. (32)

As an example, Fig. 5 shows the temporal variations of the drag force and its pressure

and viscous components at a spatial resolution of L0 = H/80. Note that the forces have

been made dimensionless into drag coefficients, which are then scaled by the drag coefficient

CFE
D computed by finite elements under the same conditions. The steady state is attained

around t = 1. The subsequent fluctuations are small, with a magnitude on the order of 2%

of the mean. The total drag coefficient falls below the finite-element benchmark by some 5%

at this spatial resolution, and the pressure contribution is about twice that due to viscous

friction.

A time-averaged drag has been computed over a time period after attaining the steady

state (1 ≤ t ≤ 10) to smooth out the fluctuations associated with the passage of individual

particles around the cylinder. Figure 6 depicts this averaged drag coefficient for the five

particle numbers in terms of its deviation from the FE benchmark CFE
D . For the rotational
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Figure 7: (a) The centerline velocity profile u(x) computed by finite elements. (b) Deviation of the
SPH velocity profiles from the FE profile computed using increasing numbers of particles.

scheme, CD oscillates around CFE
D and tends to converge to the latter as the number of

particles increases. The maximum deviation is 5%. At the finest resolution, with 79860

particles, the drag is predicted within 2% of the benchmark. For comparison, CD computed

using the homogeneous scheme is also plotted and will be discussed in the next subsection.

Now we examine convergence of the velocity and pressure fields inside the computational

domain. The time-averaged centerline profiles of the horizontal velocity u(x), computed
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and zeroed at the exit of the channel (x = 12D).

using increasing numbers of particles, are compared with the FE profile in Fig. 7. In

this and subsequent centerline profiles, the time-averaging is done as follows. We record

the longitudinal position x, velocity u and pressure p of particles within 0.025L0 of the

centerline for a time period. Then we divide the centerline into a number of bins of equal

width and average the u and p for particles within each bin to produce the centerline profiles.

For clarity we omitted the results for 11664 and 46260 particles, as they conform to the

same trend of convergence. The convergence with increasing number of particles is evident,

with the maximum error relative to the characteristic velocity U0 being around 7% for 5490

particles, 1% for 21300 particles and below 0.5% for 79860 particles.

The convergence with increasing number of particles is also shown by the pressure pro-

files of Fig. 8. The greatest errors in pressure occur immediately upstream and downstream

of the square cylinder. Relative to the FE pressure drop across the obstacle, the maximum

pressure error in SPH computations drops from about 13% for 5490 particles to 5% for

21300 particles and finally to 3% for 79860 particles. Note that this is several times greater

than the velocity errors. But in comparison with the weakly compressible SPH scheme,

the pressure is more accurately computed by a wide margin; WCSPH underpredicts the

centerline pressure behind the square cylinder by up to 30% [11].

Based on the above discussions, it is clear that the SPH result converges with increas-

ing number of particles, and L0 = H/80, with 21300 particles, provides sufficient spatial

resolution. Results presented hereafter are all for 21300 particles.
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Figure 9: Comparison between (a) velocity profiles and (b) pressure profiles along the centerline
computed by homogenous and rotational schemes. We plot the deviation of the SPH results from
the FE benchmarks in Figs. 7(a) and 8(a).

4.3.2 Superiority of the nonhomogeneous pressure boundary condition

To ascertain the superiority of the rotational scheme over the homogeneous one for flows

more complex than unidirectional channel flows, we have used both schemes to simulate the

channel flow around the square cylinder at a spatial resolution of L0 = H/80, with 21300

particles. For both schemes, the overall behavior of the solution is the same. Starting

with the parabolic velocity profile at the entry and zero velocity in the domain, the flow

undergoes an initial transient before reaching a steady state. Although the transient is not

of interest here, we note that the rotational scheme is more robust and allows twice as large

a time step than the homogenous scheme without incurring numerical instability. This is a

potential benefit for simulating transient flows.

The time-averaged centerline velocity and pressure profiles are compared between the

two schemes in Fig. 9, using the FE profiles of Figs. 7(a) and 8(a) as the baseline. The

maximum velocity error is roughly 2% for the homogeneous scheme, and 0.8% for the

rotational scheme. Similarly the pressure error relative to the FE pressure drop across the

cylinder (Fig. 8a) decreases from roughly 9% for the homogeneous scheme to 5% for the

rotational one. For the homogeneous scheme, the larger errors at the front and the back

of the square cylinder can be ascribed to the homogeneous Neumann boundary condition

dp/dn = 0. At the entry of the channel, there is a pressure boundary layer similar to
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Figure 10: Pressure profile along the front (a) and the back (b) of the square cylinder computed by
finite elements and the homogenous and rotational schemes. In all three computations p is zeroed
at the exit.

Fig. 4(a). But its magnitude is so much smaller than that at the solid cylinder as to be

invisible in the plot.

We further compare the rotational and homogeneous schemes by the pressure distribu-

tion along the front and back faces of the square cylinder (Fig. 10). For the SPH results,

each data point represents the time-averaged pressure on a wall particle. Within the central

part of the solid surface, roughly −0.2 < y/D < 0.2, both SPH profiles stay fairly close to

the FE profile. The velocity is low immediately upstream and downstream of the cylinder,

and there is no recirculating eddy at Re = 1. Thus, p is relatively uniform in these “dead

zones”. At the corner regions, however, the FE solution features sharp peaks in the front

and valleys in the back, corresponding to the rapid turning of the streamlines. To a good

degree, the rotational scheme captures these features while the homogeneous scheme misses

out completely. But note the oscillations in the rotational profiles, indicative of the greater

sensitivity of the scheme to errors in enforcing the solenoidality of the velocity.

This difference in the surface pressure bears directly on the computed drag force on the

cylinder. As the homogeneous scheme underpredicts p at the front and overpredicts it at the

back, it produces a drag that is between 10% and 27% below the correct value in Figure 6,

depending on spatial resolution. In contrast, the prediction of the rotational scheme falls

within 5%. Based on the results discussed in this subsection, we may conclude that the

rotational scheme, with the physically consistent nonhomogeneous Neumann condition for

pressure, has accomplished the goals set out at the beginning of this work.
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4.3.3 Higher Reynolds numbers

So far we have discussed numerical results at Re = 1 for flow around the square cylinder.

This problem was chosen partly because Breuer et al. [31] and Lee et al. [11] have pub-

lished similar simulations using finite volume, lattice-Boltzmann and SPH methods. Their

computations are for Reynolds numbers up to a few hundred. In the following, we present

computations using the rotational projection scheme at higher Reynolds numbers and com-

pare them with prior results as another test of the nonhomogeneous Neumann condition for

pressure.

We have obtained accurate steady-state solutions at Re = 5, 10, 20, 30 and 50. The

rotational projection scheme works equally well in all cases; the nonhomogeneous pressure

boundary condition (Eq. 14) is apparently unaffected by the increasing inertia. However,

higher Re does put a more stringent demand on the SPH scheme itself. For example,

increasing the flow speed reduces the allowable time step via the CFL condition. At higher

Re, fine wake structures may develop that demand higher spatial resolution, and a longer

wake will require a longer domain. Both increase the magnitude of the computation and slow

down convergence in our iterative solver for the pressure Poisson equation. In addition, we

have also noticed that the simulation tends to become noisier at higher Re. For example, for

Re = 1 there is no need to apply the XSPH velocity smoothing among neighboring particles

[7], a remedy often used in the literature, especially in WCSPH scheme [9]. For Re ≥ 20,

however, we notice small spatial fluctuations in the wake of the cylinder that can be removed

by velocity-smoothing with an XSPH coefficient of 0.02. Finally, the natural boundary

condition at the exit, Eq. (17), tends to generate small lateral velocity disturbances at

higher Re. The Dirichlet boundary condition is generally more rigid than the Neumann

condition, and this observation is not specific to SPH. For Re above 10, therefore, we have

imposed the parabolic Poiseuille velocity profile at the exit. That the domain length is

sufficient for this profile to develop at the exit has been confirmed separately by finite-

element computations.

The highest Reynolds number that we have tested is Re = 100, at which the SPH scheme

fails to yield a converged solution. One expects an oscillating wake with vortex shedding in

this case. Our scheme seems to incur a numerical instability with the oscillation growing in
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Figure 11: Drag coefficient CD on the square cylinder as a function of the Reynolds number Re. The
SPH computation with the rotational scheme uses 68000 particles. The lattice-Boltzmann results of
Breuer et al. [31] are shown for comparison.

time, until the implicit solver for pressure fails. This may indicate that the wake now requires

finer temporal and spatial resolutions and a longer domain length. Both the homogeneous

and rotational schemes fail at this Re, suggesting that the failure is due to factors other than

the projection scheme and pressure boundary condition. Therefore we have not investigated

this further. In the following, we will compare the steady-state solutions, obtained using

the rotational projection scheme, with those in the literature.

Figure 11 compares the drag coefficient on the square cylinder with previous predictions

of Breuer et al. [31] using lattice-Boltzmann method, for Re up to 50. Our computational

geometry is matched to that of [31], with H = 8D. Our domain length is 32D, shorter than

their 50D, but the results are insensitive to this. In general, the SPH drag tends to fall

slightly below that of the lattice-Boltzmann drag; the percentage error ranges from 2% for

Re = 1 to under 7% for Re = 50. This is consistent with the accuracy noted in Figs. 5 and

6. Therefore, we consider the agreement satisfactory.

In a slightly different geometry, with a channel width H = 5D and a length of 32D,

Lee et al. [11] computed the flow around the square cylinder using WCSPH and ISPH,

and compared the results with a finite-volume benchmark. At Re = 30, they obtained

a pressure drag coefficient Cp
D = 2.46 by finite volume. The ISPH yielded Cp

D = 1.55,
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a 37% underprediction, which is consistent with the error of our homogeneous scheme in

Fig. 6. The WCSPH scheme predicted a much larger Cp
D = 6.49, symptomatic of the

spurious pressure in the weakly compressible treatment. Under identical conditions, our

SPH method with the rotational scheme predicts Cp
D = 2.14, much closer to the benchmark

than their ISPH using the homogeneous projection scheme. Note that Lee et al. [11] defined

Re and Cp
D using the average velocity, and we have converted their values according to our

definitions using the centerline velocity at the entry.

5 Conclusions

In this work, we have implemented a rotational projection scheme to compute incompressible

flows using SPH. The main difference from conventional projection schemes is a nonhomo-

geneous Neumann boundary condition for the pressure Poisson equation that is consistent

with the momentum balance. This resolves a well-known difficulty in projection schemes

wherein imposing an artificial boundary condition of vanishing normal pressure gradient

produces pressure boundary layers at the inlet and outlet to flow domains and on solid

surfaces.

Applying the rotational projection scheme to two-dimensional channel flows and flow

around a square cylinder, we have demonstrated that the new pressure boundary condition

removes the spurious pressure boundary layers and markedly improves the accuracy of the

solution. In particular, it predicts a drag coefficient on the cylinder within 7% of the correct

value for Reynolds numbers up to 50, as compared with errors on the order of 20% incurred

by the artificial pressure boundary condition.

Our numerical experimentation has shown the rotational projection scheme as robust,

accurate and efficient in dealing with open boundaries and flow around solid obstacles.

Based on these findings, we recommend it as a superior algorithm to the homogeneous pro-

jection scheme in computing truly incompressible flows using SPH. This removes a short-

coming in the formalism that has at times limited SPH simulations to periodic boundary

conditions and hampered accurate evaluation of the pressure and drag force on solid ob-

stacles. Although the scheme needs to be tested in more complex flow situations, it has
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shown promise in extending the capacity of incompressible SPH to interesting and important

problems previously inaccessible to SPH.
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