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Abstract

We report simulations of gas-liquid two-phase flows in microchannels pe-
riodically patterned with grooves and ridges. A constant effective body force
is applied on both fluids to simulate a pressure-driven creeping flow, and a
diffuse-interface model is used to compute the interfacial evolution and the
contact line motion. Depending on the body force, capillary force and the
level of liquid saturation, a number of flow regimes may appear in the corru-
gated microchannel: gas flow, blockage, liquid flow, bubble-slug flow, droplet
flow, annular flow and annular-droplet flow. A map of flow regimes is con-
structed for a set of geometric and flow parameters starting from a prescribed
initial configuration. Some of the regimes are new, while others have been
observed before in straight tubes and pipes. The latter are compared with
previous experiments in terms of the regime map and the holdup ratio. The
transition among flow regimes shows significant hysteresis, largely owing to
the pinning of the interface at sharp corners in the flow conduit. Hystere-
sis is reduced if the sharp corners are rounded. Under the same operating
conditions, different flow regimes can be realized from different initial con-
ditions. The roles of geometry and wettability of the channel walls are also
elucidated.
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1. Introduction

Traditionally, interfacial flows in pores of microscopic dimensions are
studied in the context of displacing oil by water in enhanced oil recovery
(Marle, 1981; Lenormand et al., 1988). More recently, such flows have taken
on new significance in applications such as microfluidics (Joanicot and Ajdari,
2005; Atencia and Beebe, 2005; de Loos et al., 2010) and proton-exchange
membrane (PEM) fuel cells (Soares et al., 2005; Zhang et al., 2006; Nam
et al., 2009). The small spatial dimensions have several implications. For one,
gravity and inertia are often negligible since the Bond number and Reynolds
number are much below unity. Meanwhile, capillarity plays a much more
important role. This is manifested not only by a curvature-related pressure
difference between the two phases, but also by detailed features of the interfa-
cial dynamics, including interfacial deformation and rupture and the motion
of three-phase contact lines on the solid wall.

The prevailing theoretical treatment is a lumped-parameter approach.
A common basis for most models is an “extended Darcy’s law”, with the
capillary pressure either taken as the driving force for the flow or as a resis-
tance to be overcome in capillary breakthrough (Wang, 2004; Djilali, 2007).
This is then supplemented by two empirical correlations: an effective per-
meability expressed in terms of the saturation and the Leverett J-function
relating the capillary pressure to the saturation (Kumbur et al., 2007). The
main shortcoming of this approach is its empiricism; it is not based on hy-
drodynamic principles and concrete flow mechanisms. In fact, conflicting
assumptions have been made in the literature regarding the driving force of
the flow (Wang, 2004; Litster et al., 2006), to produce contradictory predic-
tions. Because of the small dimensions and complex flow geometry, direct
observation of the interfacial dynamics is difficult. Thus there is little solid
experimental data to guide the modeling efforts.

Hence comes the motivation for the present study. By accurate numerical
simulation, we elucidate the detailed fluid dynamics on the pore length scale.
The flow geometry consists in an axisymmetric tube with periodic expansion
and contraction. These simulate the pore chambers and throats in typical
porous medium (Cerepi et al., 2002). An axial pressure gradient is applied to
drive a gas and a liquid down the conduit. The focus will be on the interfa-
cial morphology under different flow conditions, which will be categorized in
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terms of flow regimes. In this connection, we briefly review the flow regimes
known in gas-liquid flows in smooth tubes and pipes.

The gas-liquid flow regimes have been summarized into maps in terms
of the superficial gas and liquid velocities (Mandhane et al., 1974; Taitel
and Dukler, 1976; Taitel et al., 1980; Barnea et al., 1980). In macroscopic
pipes and tubes, on the order of 1 cm in diameter, three categories of flow
regimes have been reported: separated (e.g., annular and stratified flows),
intermittent (e.g., slug and churn flows), and distributed (e.g., bubbly and
droplet flows). Microchannels , with a diameter on the order of 1 mm or less,
have received much attention recently (Hassan et al., 2005). The shrinking
length scale causes some subtle changes in the flow regimes. For example,
in horizontal microchannels, the stratified regime is never seen because the
importance of gravity is much reduced by the small dimensions (Damianides
and Westwater, 1988; Fukano and Kariyasaki, 1993). Mishima et al. (1993)
also reported suppression of the churn flow regime in small channels. This
probably reflects the declining role of inertia, as churn flows prevail for the
highest flow rates for both the gas and the liquid. Aside from these, the
familiar bubbly, slug, churn and annular flow regimes are seen, and the regime
map is qualitatively the same as in larger tubes (Hassan et al., 2005; de Loos
et al., 2010).

Our work differs from the above in several aspects. First and foremost,
we strive for a fully-resolved hydrodynamic computation of the fluid dy-
namics and interfacial evolution on the scale of the pores. The aim is to
establish an understanding of the mechanisms producing the flow regimes
from first principles. This contrasts with the existing literature that relies
almost exclusively on experimental observations. Second, we adopt a geo-
metric and mechanical setup of the problem relevant to water transport in
the gas-diffusion medium of PEM fuel cells (Djilali, 2007; Nam and Kaviany,
2003), which differs from previous studies. For one, we adopt a periodically
corrugated axisymmetric flow conduit to simulate the geometry of complex
pores with pore chambers and pore throats. In addition, we consider pore
sizes on the order of 10 microns (Schulz et al., 2007), much smaller than the
tubes and pipes of existing studies. As a result, interfacial tension is expected
to dominate gravity and inertia. Moreover, the flow is driven by an external
pressure gradient applied to both components. This way, the gas and liquid
flow rates are not control parameters but outcomes of the fluid dynamics.
Finally, we give special attention to the wetting properties of the solid walls.
In gas-diffusion medium, hydrophobic coating is frequently applied to facili-
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Figure 1: Schematics of the periodic flow geometry. The top of the domain is the
axis of symmetry, and periodic boundary conditions are imposed between the left
and right sides. Initially the liquid rests in the groove representing a pore chamber.

tate water removal (Kumbur et al., 2007). In the two-phase flow literature, a
few authors have experimented with modifying the wettability of the smooth
surface of tubes (Barajas and Panton, 1993; Cubaud et al., 2006).

The main results of the present study are the following. We have con-
structed a flow regime map for gas-liquid flows in the corrugated channel
geometry. Interestingly, we have detected significant hysteresis in the tran-
sitions among flow regimes, and different flow regimes can be realized un-
der identical conditions if starting from different initial morphologies. The
regimes are understood as outcomes of the interfacial dynamics, including
pinning of the contact line at sharp corners, wetting and dewetting on solid
surfaces, and rupture and coalescence of the interface. Where comparable,
the flow regimes are in remarkable agreement with previous experiments.

2. Problem setup and methodology

Consider an axisymmetric corrugated microchannel that is periodically
patterned with grooves and ridges (Fig. 1). The motivation for having the
corrugation is to model the contraction and expansion in micropores con-
tained in a porous medium. Therefore, the narrow part of the flow conduit
over the ridge represents the pore throat with radius Rt and length Lt, and
the wide part in the groove the pore chamber with radius Rc and length
Lc. From these, we define three length ratios α = Lc/Lt, β = Rc/Rt and
γ = Lt/Rt.

The prominent features of the fluid dynamic problem include the defor-
mation and movement of the interface, the three-phase contact line, and the
surface wettability. These will be handled in a diffuse-interface framework
using the Cahn-Hilliard model (Jacqmin, 2000; Yue et al., 2006; Zhou et al.,
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2010). A phase-field variable φ is introduced as the order parameter for the
gas-liquid system, such that φ = 1 in the liquid and φ = −1 in the gas. The
position of the interface is given by φ = 0, with φ varying steeply but con-
tinuously across the interface. The advection and diffusion of φ are governed
by the Cahn-Hilliard equation

∂φ

∂t
+ u ·∇φ = M∇2G, (1)

whereM is the mobility constant for Cahn-Hilliard diffusion, u is the velocity
vector and the chemical potential G = λ[−∇2φ + (φ2 − 1)φ/ε2] arises from
the variation of the system free energy with respect to φ (Yue et al., 2004;
Feng et al., 2005). In this expression, λ is the mixing energy density and ε is
the capillary width representative of the interfacial thickness. In equilibrium,
λ and ε are related to the surface tension σ:

σ =
2
√
2

3

λ

ε
. (2)

For the flow in microscopic pores of interest here, estimation from typ-
ical pore sizes and operating conditions in the gas diffusion medium gives
Reynolds and Bond numbers on the order of 10−2 (Zhang et al., 2006; Koido
et al., 2008). Thus, we neglect gravity and inertia and focus on creeping
flows in which capillary forces play an important role. Now one can write
out the continuity and momentum equations for the two-phase system in a
unified form as follows:

∇ · u = 0, (3)

∇p = ∇ · [µ(∇u+∇u
T)] +G∇φ, (4)

in which G∇φ is the diffuse-interface representation of the interfacial tension,
and

µ =
1 + φ

2
µl +

1− φ

2
µg (5)

is the effective viscosity that varies across the interface between those of the
liquid µl and gas µg. Now the gas-liquid interface is no longer a boundary
that requires boundary conditions. Equations (3) and (4) are solved together
with the Cahn-Hilliard equation (1).

We will consider flow through the periodic geometry of Fig. 1 driven
by a constant pressure gradient. It is convenient to replace the prescribed
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pressure drop over one period of the channel by a constant body force B

acting on both components along the flow direction such that the pressure
will be periodic as well as the velocity field. Thus, Eq. (4) will be modified
as

∇p = ∇ · [µ(∇u+∇u
T)] +G∇φ+B, (6)

and the magnitude of the effective body force B will be a key control param-
eter for the flow problem.

The initial condition typically has the liquid and gas at rest in the domain,
with a certain initial configuration for the gas-liquid interface. For example,
the liquid may initially occupy the pore chamber as shown in Fig. 1. This
initial configuration specifies the liquid saturation S in the pore, defined as
the volume fraction of the liquid relative to the entire pore volume. The
saturation S is an important control parameter of the problem, and remains
constant for the duration of each flow simulation. Under the constant driving
force B, both components start to flow and eventually a steady, time-periodic
or quasi-periodic flow pattern establishes itself.

Periodicity is imposed on u, p and φ between the left and right boundaries
of the axisymmetric computational domain depicted in Fig. 1. The top of the
domain is the axis of symmetry on which we impose symmetry conditions
∂/∂r = 0 and ur = 0. On the solid substrate, the following conditions are
used:

u = 0, (7)

n ·∇G = 0, (8)

λn ·∇φ+ f ′

w(φ) = 0, (9)

where n is the unit normal vector pointing from the fluid into the wall. Of
these, the first condition asserts zero slip and that the contact line motion is
solely due to Cahn-Hilliard diffusion. The second denotes zero flux through
the walls. The third is the diffuse-interface specification of the wetting angle.
It is the natural boundary condition arising from the variation of the wall
energy fw:

fw(φ) = −σ cos θs
φ(3− φ2)

4
+
σls + σgs

2
, (10)

which is the interfacial energy between the fluids and the solid substrate
(Jacqmin, 2000; Yue et al., 2010). In the fluid bulk phases, fw recovers σls
and σgs, the liquid-solid and gas-solid interfacial tensions, which determine
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the static contact angle θs via Young’s equation σ cos θs = σgs − σls. Equa-
tion (9) implies an equilibrium between the fluid components and the wall,
such that the dynamic contact angle θd remains at the static value θs up to
the leading order. By replacing the natural boundary condition of Eq. (9) by
a dynamic equation specifying how fast the interfacial profile equilibrates on
the solid substrate, one may introduce a θd that increases when advancing
and decreases when receding (Yue et al., 2010; Yue and Feng, 2011b). For
the purpose of the present study, we need a simple contact-line model with
a minimum of model parameters. Thus, we have left out the dependence of
the dynamic contact angle on flow.

The most important dimensionless control parameter is F = BL2/σ,
where the characteristic length L is chosen to be the throat radius (Rt).
This can be seen as an effective Bond number as B is an effective body force.
Alternatively, if one thinks of the pressure gradient as producing a character-
istic speed for the viscous flow in the channel, F may be viewed as a capillary
number. Two other dimensionless parameters are the liquid saturation S and
liquid-gas viscosity ratio k = µl/µg. In addition, the diffuse-interface model
introduces two “mesoscopic” parameters, the Cahn number Cn = ε/L and
the parameter Λ = ld/L. The former is the ratio between the interfacial
thickness and the macroscopic length, while the latter between the diffusion
length ld = (µlµg)1/4M1/2 and L (Yue et al., 2010; Yue and Feng, 2011b).
These must be chosen judiciously based on the following considerations.

For diffuse-interface methods to produce accurate results, one must at-
tain both “model convergence” and “mesh convergence” (Yue et al., 2006;
Zhou et al., 2010). The former requires that the interface be thin enough to
approximate the sharp-interface limit, and the latter that the thin interface
be resolved by a sufficient number of grid points. In previous publications,
we have validated the algorithm against sharp-interface computations, and
suggested guidelines in choosing ε and Cn (Yue et al., 2004, 2006; Zhou et al.,
2010). For the current geometry, numerical experimentation has confirmed
these guidelines.

The diffuse-interface model regularizes the contact-line singularity by
Cahn-Hilliard diffusion, and the mobility M largely determines the veloc-
ity of the contact line. There are several interesting questions about this
approach, which have been investigated at length in separate studies (Yue
et al., 2010; Zhou et al., 2010; Yue and Feng, 2011a,b). For our purpose
here, we only note that the diffusion length ld is a counterpart of the slip
length commonly used in sharp-interface models (Yue et al., 2010). In the
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simulations presented here, we have used Cn = 0.01 and Λ = 0.01, which
according to our previous studies are sufficient for the sharp-interface limit
(Gao and Feng, 2009; Yue et al., 2010).

We solve the governing equations with the boundary conditions using an
in-house finite-element package AMPHI (Yue et al., 2006; Zhou et al., 2010).
It employs unstructured triangular elements that are adaptively refined and
coarsened as the interface moves. An implicit time-marching scheme is used,
with Newton iterations at each time step. Yue et al. (2006) and Zhou et al.
(2010) have presented detailed descriptions of the numerical method and
performed extensive validations. In the problems simulated here, we have
done mesh-refinement tests as well to ensure that the numerical results have
converged with the grid size. In particular, the interfacial curvature is accu-
rately computed so that no parasitic flow is detectable. For the results to be
presented, the fine grid size at the interface is ε/2, and the bulk grid size is
around 5ε.

3. Results

A large number of flow regimes have been observed in our simulations, and
hysteresis is a prominent feature in the transition between regimes. Related
to hysteresis is the observation that under identical material, geometric and
operating conditions, different regimes can be reached starting from different
initial conditions.

To present this rather complex picture in a systematic way, we will first
describe all the observed regimes reached from a certain initial condition
at different operating parameters S and F . A flow regime map can thus
be constructed in the (F, S) plane. Next, we will discuss hysteresis in the
sense of dependence on the flow history, with F being decreased or increased
gradually for a fixed S, and on the initial condition. This history dependence
turns out to be closely related to our corrugated geometry, and we will explore
the effect of replacing the sharp corners by rounded ones. Finally, we examine
the role of solid wettability on the flow pattern.

3.1. Flow regimes

First we construct a map of flow regimes for a “baseline” setup of the
problem. We fix the geometric parameters at α = 1, β = 2 and γ = 2, the
wetting angle at θs = 135◦, and the liquid-gas viscosity ratio at k = 18. The
geometric parameters are chosen with a view of actual pore geometries (e.g.,
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Figure 2: Schematic illustration of the condition for contact line pinning. The
solid curve is the gas-liquid interface, and the dashed curves indicate its limiting
positions before the contact line depins from the corner.

Cerepi et al., 2002). We have varied them within a modest range, but will
not present the results below as they add little new physics. The θs and k
values correspond to typical operating conditions in the gas-diffuse medium
of PEM fuel cells, with water and air at 80◦C. Initially the liquid sits entirely
in the pore chambers, as depicted in Fig. 1. The maximum realizable liquid
saturation is then constrained by the depinning of a contact line at the sharp
corner, or by the liquid meniscus reaching the axis of symmetry and thus
forming a liquid bridge. As illustrated in Fig. 2, the Gibbs criterion for
pinning at the 90◦ corner requires (e.g., Oliver et al., 1977):

θs − 90◦ < θ < θs. (11)

With the large contact angle θs = 135◦ in our case, the maximum satura-
tion is S = 0.78 corresponding to the geometric condition of the liquid arc
reaching the top of the computational domain. With less liquid, the interface
lowers and may depin from the corner. So the minimum S is zero. At each
prescribed S, the interface initially assumes a shape of a circular arc. Then
a constant body force F is applied to initiate the flow, which evolves into a
well-established pattern that is recorded as a regime.

For the baseline setup of the problem, all the flow regimes observed are
depicted in Fig. 3 in the F–S parameter space. For the lowest values of
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Figure 3: Flow regime map for the baseline model. Note that the columns of
symbols are spaced for clarity and not according to the exact S values.

the driving force F , one of two states prevails depending on the level of
saturation. For low S, the liquid mostly stays within the pore chamber or
groove of the channel. The gas flow in the middle is not strong enough to
drive the liquid into the pore throat. This is the regime of gas flow, shown in
Fig. 4. Pinning of the interface at the downstream corner of the pore chamber
prevents the liquid from wetting the pore throat. For higher saturation,
even the gentle driving force is able to cause the liquid meniscus to raise a
crest, which merges in the center of the conduit to form a liquid bridge that
completely blocks the gas flow. This blockage regime is depicted in Fig. 5.
Though not obvious in the plot, the liquid bridge is slightly asymmetric fore
and aft, with differing pinning angles at the corners. The net force due to
interfacial tension balances the driving force F .

With increasing F , two routes of evolution are possible depending on S.
For the lowest saturation (S = 0.2 in Fig. 3), the liquid remains in the groove
even for the strongest driving force. The gas flow regime persists. For higher
S, a series of flow regimes are observed with increasing F . We will illustrate
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Figure 4: The gas flow regime achieved for a low saturation (S = 0.38) under
a gentle driving force F = 0.25. The meniscus is circular at the start of the
simulation, with no flow (t = 0). It deforms moderately in the steady state (t =
43.6). The upper edge of the plots corresponds to the axis of the pore.

Figure 5: Development of complete blockage in the microchannel at F = 0.001 and
S = 0.75.

Figure 6: Development of the liquid flow regime with F = 0.75 and S = 0.38.
Because of the axisymmetry of the geometry, as the liquid moves from the cham-
ber into the pore throat, its projected area on the meridian plane being plotted
increases even though its volume is conserved.

them by using S = 0.38.
The first transition gives rise to the liquid flow regime depicted in Fig. 6.

The liquid is drawn from the pore chamber into the throat and forms a liquid
bridge spanning the cross section much like in the the blockage regime. But
now the greater F deforms it and moves it downstream until it merges with
the liquid bridge of the next period. This produces a continuous liquid stream
in the middle of the pore, with a gas pocket trapped in the chamber. At
higher S, the blockage regime of Fig. 5 gives way to the liquid flow regime
via a similar process.

A still higher F produces the bubble-slug flow regime (Fig. 7). In the
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Figure 7: Development of the bubble-slug regime at F = 1.75 and S = 0.38.

Figure 8: Development of the annular flow regime at F = 3 and S = 0.38.

literature, bubbles are sometimes defined as gaseous blobs having an effective
diameter below 75% of the tube diameter, and slugs as larger ones (de Loos
et al., 2010). In our context there is no need to distinguish them. This regime
resembles the liquid flow regime except for the discrete gas bubbles or slugs
carried along the center of the conduit. Compared with Fig. 6, the stronger
F elongates the liquid bridge axially so as to create a lamella oriented more
or less along the flow direction (t = 12.7). When the undulation of the
lamella causes a secondary coalescence in the center, a gas bubble or slug is
entrapped (t = 17). The flow evolves into a time-periodic pattern with the
passing of the bubble or slug through the pore. The gas pocket entrapped
in the corner of the chamber maintains an essentially constant shape with
recirculation inside.

If F is increased further, the annular flow regime prevails for most of
the saturation values tested (Fig. 8). Similar to the bubble-slug regime, the
liquid moves out of the pore chamber into the pore throat. The fast gas flow
spreads the liquid lamella downstream, keeping it close to the solid ridge and
preventing the formation of a liquid bridge. When the lamella connects with
the remaining liquid in the chamber (t = 10.9), a continuous liquid annulus
is formed that encloses the gas flow in the core. Two variations of this are
the droplet flow and annular-droplet flow regimes, which appear respectively
for very low and very high saturations. At low S, there is not enough liquid
to form a continuous annulus. Instead, some of the liquid is torn off by the
gas stream to form droplets (Fig. 9a). At higher S, the abundance of liquid
is such that both the annulus and droplets are created (Fig. 9b).
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Figure 9: Variants of the annular flow regime: (a) droplet flow at F = 3 and
S = 0.31; (b) annular-droplet flow at F = 3 and S = 0.75. Both are time-
periodic configurations, and the liquid film on the ridge in (a) has stopped moving
downstream.

3.2. Hysteresis and dependence on initial configuration

In constructing the map of flow regimes in Fig. 3, we have always started
from the initial condition depicted in Fig. 1, with a prescribed amount of
liquid sitting in the pore chamber. With zero initial velocity, a prescribed
body force is suddenly applied to both components, and the flow evolves till
a robust pattern emerges, which may be steady or time-periodic.

By hysteresis, we refer to how the flow regime realized depends on the
history of varying the control parameters. If we start inside a certain regime,
say annular flow, and decrease F in small steps, will we reach the bubble-slug
flow and the other regimes successively that lie below in the map? What if
we start from the gas flow regime at a small F , and then gradually increase
F ? Will the boundary between regimes shift depending on whether a pa-
rameter is increased or decreased? If we start from different initial states,
and suddenly impose the same control parameters, will we arrive at different
final states?

To probe these questions, we have tested two saturation values, S = 0.31
and S = 0.71. In each case, we ramp up the flow by increasing F gradually
starting from an initial condition in the gas flow or blockage regimes. This
is called the forward path. We then ramp down the flow, starting with the
end state of the forward path, by decreasing F gradually. This will be the
backward path. Figure 10 compares the forward and backward paths with
the regimes realized from the baseline model (i.e., starting from the standard
initial condition of Fig. 1) taken from the regime map of Fig. 3. While the
baseline model predicts multiple regimes, the forward path encounters only
one transition: from gas flow (for S = 0.31) or blockage (for S = 0.71) to the
liquid flow regime. Then liquid flow persists, not only till the highest F on
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(a) (b)

Figure 10: Hysteresis or path dependence of the flow regimes at saturation S = 0.31
(a) and S = 0.71 (b). Other parameters are the same as have produced the flow
regime map in Fig. 3.

the forward path, but also on the entire backward path, down to F as small
as 10−3. Therefore, the flow regimes show an exceedingly strong dependence
on the history of changing F , so much so that the term “hysteresis” becomes
somewhat inappropriate as it typically refers to the delay of a transition, not
its utter absence.

The dominance of the liquid flow regime can be rationalized from the
interfacial morphology. Once the pore throat is completely filled with liquid
and the gas is sealed within the pore chamber (last frame of Fig. 6), the
throughput of the pore is entirely liquid. Varying the driving force F mostly
changes the liquid flow rate, with a minor effect on the shape of the interface
and the recirculation within the gas. In particular, the interface is pinned at
the upstream corner, and there is no mechanism to liberate the gas from the
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(a)

(b)

(c)

Figure 11: Dependence of flow regimes on the initial configuration. (a) Droplet
flow develops from a liquid bridge initially wetting the upstream wall of the pore
chamber. (b) Bubble-slug flow develops from a liquid bridge initially in the mid-
dle of the pore chamber. (c) Annular-droplet flow develops from a liquid bridge
initially attached to the downstream wall of the pore chamber. F = 3, S = 0.38,
and the other conditions are the same as in the baseline model.

confinement of the pore chamber. Therefore transition to other flow regimes
is not possible. This contrasts with the setup of the baseline model, with gas
initially in the central region of the pore.

To further demonstrate the effect of the initial configuration on the final
flow regimes, we start with a liquid bridge spanning the entire cross section
of the pore chamber at different axial positions (first frames of Fig. 11a,b,c),
all having the same saturation S = 0.38. When the same body force F = 3
is imposed, the flow evolves into three different regimes: droplet, bubble-
slug and annular-droplet flows. None is identical to the annular flow regime
obtained from the baseline setup (Fig. 8).

In these particular cases, the final outcome depends on whether the initial
liquid bridge adheres to parts of the chamber walls. In Fig. 11(a), a liquid
sheet remains attached to the upstream corner of the pore chamber and
coats the pore throat as well. Figure 11(c) is similar but has the liquid sheet
attached to the downstream side of the chamber. In Fig. 11(b), the liquid
bridge never wets these parts of the chamber; it is readily stretched into
the throat and eventually detaches entirely from the base of the chamber.
Although these details are specific to the initial morphologies tested, their
implication is general: initial morphology can affect the flow regimes achieved
under identical operating conditions. We have tested other initial conditions
at different operating conditions with the same upshot. For brevity we will
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not show the detailed results.
In the simulations presented here, hysteresis stems from the fact that in-

terfacial tension and contact-line pinning at corners set up energy barriers
between possible interfacial morphologies. A transformation would require
high-cost interfacial elongation and contact-line depinning. Thus, the inter-
facial morphology can be remarkably stable and insensitive to changes in
operating conditions. An overarching observation is that the hysteresis and
missing flow regimes owe much to the corrugated geometry in our microchan-
nel. This explains why prior studies in smooth tubes and pipes of various
sizes have not reported hysteresis (Taitel and Dukler, 1976).

3.3. Geometric effect: rounded corners

Given the prominent role of the corrugated geometry in determining the
flow regimes and transitions, a natural question is what if we remove the
sharp corners and make the constriction gradual and smooth. This has been
tested by replacing the solid ridge in the baseline model, with α = 1, β = 2
and γ = 2, by a rounded semi-circle. All other conditions are the same as the
baseline model with sharp corners. Note that our mesh generator approxi-
mates curved boundaries by short line segments. Numerical experimentation
has shown that with sufficiently fine division, this presents no spurious effects.

Starting from the same initial morphology with liquid resting in the
pore chamber, imposing different F values leads to different regimes in the
rounded-corner geometry. These regimes are compared in Fig. 12 with those
in the sharp-corner geometry for a fixed S = 0.38. Whereas gas flow gives
rise to liquid flow when F exceeds 0.5 with sharp corners, the rounded ge-
ometry produces a core-annular morphology with a liquid core enclosed in a
gas shell, called the shell flow regime (Fig. 13). Absent the sharp corner to
pin the interface and anchor the liquid onto the ridge, as shown previously in
Fig. 6, the liquid eventually detaches from the solid protrusion, which is hy-
drophobic with θs = 135◦. Thus a gas shell is formed that entirely insulates
the liquid from the solid walls. This is reminiscent of the lubrication scenario
in oil-water core-annular flows (Joseph and Renardy, 1993) and apparent slip
on textured substrates (Gao and Feng, 2009).

As F increases to 1, the shell flow gives way to a droplet flow regime
(Fig. 14). In the pore with sharp corners, a similar droplet regime (Fig. 9a)
occurs at the highest F for relatively low S, above the bubble-slug regime (see
Fig. 3). With the rounded corners and absent corner-pinning, on the other
hand, the liquid detaches from the hydrophobic solid readily at relatively low
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Figure 12: Flow regimes in the baseline model with rounded corners, compared
with those taken from the flow map of Fig. 3 with sharp corners. S = 0.38 and all
other conditions are the same as in Fig. 3.

Figure 13: Development of the shell flow regime with rounded corners at F = 0.5
and S = 0.38.

flow rates. The detachment is complete in the sense that no residue film is
left on the solid. As F increases further, the bubble-slug and annular flow
regimes appear in succession. These are similar to those observed in the
sharp-cornered pores.
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Figure 14: Development of the droplet flow regime with rounded corners at F = 1
and S = 0.38.

(a) (b)

Figure 15: Hysteresis in micropores with rounded corners. At S = 0.38, forward
and backward paths are traced by increasing F gradually and then decreasing it,
starting from (a) the gas flow regime and (b) the droplet flow regime. The regimes
achieved from the baseline model with rounded corners (Fig. 12) are shown for
comparison. Other parameters are the same as in the baseline model.

To probe hysteresis in the geometry with rounded corners, we again follow
a forward path by increasing F gradually, waiting for the flow regime to
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develop fully at each increment, and then a backward path by decreasing F
gradually. Figure 15 compares the flow regimes encountered thus with those
predicted by the baseline model with the fixed initial configuration. Starting
from the gas flow regime (Fig. 15a), we have a transition to the shell flow
regime at F = 0.5, as in the baseline model. However, no other transitions
exist on the forward path. On the backward path, the shell flow regime
persists until F = 0.1, below which it gives way to liquid flow. This picture
resembles Fig. 10(a), with two differences. First, the liquid flow regime is
replaced by the shell flow regime. Second, there is an additional transition on
the backward path, to the liquid flow regime. When starting from the droplet
regime at F = 1.25 (Fig. 15b), no transition takes place on the forward path.
On the backward path, the droplet regime persists down to F = 0.75 before
turning into shell flow, which in turn transforms to liquid flow below F = 0.1.
This last transition is the same as in Fig. 15(a).

To summarize the hysteresis in geometry with rounded corners, we see
more transitions on the downward path than with sharp corners. In this
sense, the dependence on history is lessened in comparison with the sharp-
corner geometry. Without interface pinning on sharp corners, liquid flow is no
longer the dominant regime. In its stead, shell flow or droplet flow becomes
more prominent. In all cases, the dominance of a flow regime is thanks to
the fact that once it is formed, further variation of F tends only to vary the
liquid and gas flow rate, with little effect on the interfacial morphology.

3.4. Wettability of the solid

The tendency for the liquid or gas to adhere to the solid wall is funda-
mentally important to the flow situations being studied. The wetting angle
reflects the energetic cost of detaching each fluid component from the solid
substrate, and directly affects the shape of the interface and more subtly the
motion of the contact lines (Yue et al., 2010; Yue and Feng, 2011b). The
corrugated pore geometry amplifies these effects, e.g., in the pinning of the
interface at corners, the detaching of the liquid from the pore chamber and
its reattaching to the pore throat.

The effect of wettability is highlighted in Fig. 16, where three wetting
angles are compared in a pore with sharp corners. In the hydrophilic pore
(a), the liquid spreads along the ridge and eventually forms a continuous film
covering the solid, yielding the annular flow regime. In the neutrally wetting
case (b), the spreading of the liquid film is slower. More importantly, once
the liquid reaches the downstream corner of the ridge, the interface is unable
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(a)

(b)

(c)

Figure 16: Effect of wall wettability on the interfacial evolution. (a) Annular flow
in hydrophilic pore, θs = 70◦; (b) gas flow in neutrally wetting pore, θs = 90◦; (c)
droplet flow in hydrophobic pore, θs = 135◦. All other parameters are the same:
F = 2, S = 0.6, with geometrical parameters α = 0.5, β = 2, γ = 2.

to depin from the corner. Thus, a liquid finger is produced at the corner
that cannot merge with the liquid in the pore chamber. A gas flow regime
results. Finally, in the hydrophobic pore (c), detachment of a liquid drop
occurs shortly after the start of the flow, leading to the droplet flow regime.
The liquid attached to the wall assumes a morphology similar to that of (b).

4. Comparison with previous experiments

There exists a wealth of experimental observations on gas-liquid flows in
smooth tubes and pipes, mostly of larger sizes, but more recently also of
diameters below 1 mm. Before comparing our results with those, we note
four important differences in the geometric and physical setup of our study.

(a) Previous experiments control the gas and liquid flow rates and ascribe
flow regimes to these rates. Our setup is such that a prescribed pressure
gradient (or body force) is applied to drive both components. Therefore
the gas and liquid flow rates are outcomes of the simulation rather than
control parameters.
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(b) Our geometry features a pore chamber and throat, in contrast to the
smooth tubes and pipes studied before. This turns out to be an impor-
tant factor in determining the interfacial behavior and the flow regimes.

(c) Previous experiments often employ high flow rates for both compo-
nents, sometimes with turbulent flows. Therefore, inertia is an impor-
tant factor. Our computations concern much smaller length scales and
inertia is negligible. Thus the flow regimes are all for creeping flows.

(d) Gravity is important in larger tubes, and vertical, horizontal and in-
clined pipes have to be studied separately. Here gravity has negligible
effects, again thanks to the small length scales.

A survey of the literature shows that bubbly, intermittent, churn and
annular flows are the four basic regimes in smooth straight pipes (Taitel
and Dukler, 1976; Taitel et al., 1980; Hassan et al., 2005). For macroscopic
horizontal pipes, a fifth regime, stratified flow, also appears.

Of these, churn flows and stratified flows are not seen in our simulations.
Even in microscopic smooth pipes, the lack of inertial and gravitational effects
is known to suppress these regimes (Fukano and Kariyasaki, 1993; Mishima
et al., 1993). Therefore, their absence in our simulations is not a surprise.
All the other regimes appear in our microchannel flow, albeit in somewhat
modified forms. Intermittent flows consist in gas slugs or plugs moving in
the middle of the pipe, being carried by the continuous liquid phase. In
our simulations, we have lumped these configurations and the bubbly flows
into our bubble-slug regime. The distinction between “bubbles”, “slugs”
and “plug” is merely the size of the gaseous inclusion. Annular flows are
also observed in our simulations, along with its variant forms of droplet and
annular droplet flows.

Gas flow, liquid flow, blockage and shell flow are observed here but not in
previous studies. These novel regimes are all owing to the special geometry of
our microchannel. For example, if the minor phase is entirely trapped in the
pore chamber, it does not contribute to the total flow rate. Thus, only one
component flows, as in the gas flow or liquid flow regimes. If the driving force
is weak, a liquid bridge covering the entire cross section can be anchored at
the corners of the throat, thereby blocking flow of either component. These
three regimes are facilitated by the pinning of the interface at sharp corners
that preclude one or even both components from flowing. With rounded
corners, the shell flow regime appears thanks to the lack of interface-pinning
and the hydrophobicity of the solid. Although it is essentially an annular
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flow with a liquid core enclosed in a gas sheath, it has never been reported
previously. In a straight tube, this configuration would be unsustainable
because of the Rayleigh instability.

As our control scheme prescribes F and S with the gas and liquid flow
rates as outcome, it is interesting to compare quantitatively our map of flow
regimes with those in the literature in terms of the superficial gas and liquid
flow rates. We have attempted such a comparison for the sharp-cornered
baseline model. Obviously this is feasible only for those regimes that appear
in both settings, i.e., the bubble-slug and annular flow regimes. To obtain
the gas and liquid flow rates QG and QL, we time-average one period of the
unsteady bubble-slug regime. For steady annular flows, this is unnecessary.
Defining an effective pore radius Re based on the volume of void in each
period of the pore:

R2
e =

R2
cLc +R2

tLt

Lc + Lt
= R2

t

αβ2 + 1

α + 1
,

we can compute the superficial gas and liquid velocities using the effective
cross-section area Ae = πR2

e : VG = QG/Ae and VL = QL/Ae. Thus we may
convert our dimensionless results into dimensional superficial velocities in the
two flow regimes once the physical properties of the two fluids and the pore
size are specified.

For an experimental benchmark, we have chosen the study of Hassan
et al. (2005). These authors conducted air-water flow experiments in straight
circular tubes of diameters on the order of 1 mm, and integrated their data
with those in the literature to produce flow regime maps for horizontal and
vertical microchannels of comparable sizes. For air and water flowing through
a micropore with Re = 0.5 mm, our flow regimes are compared with the map
of Hassan et al. (2005) for vertical tubes in Fig. 17. In our simulations so far,
we have lumped bubbles and slugs into one regime. For the purpose of this
comparison, we distinguish them by the criterion of de Loos et al. (2010);
slugs are thus gas blobs longer than 75% of the effective diameter of the
channel. Thus defined, our bubble-slug boundary is somewhat to the right of
the experimental boundary. With VG increasing further, the experimenters
saw churn flow, which is absent in our inertialess computation. Instead we
have annular flow, which occurs in the experiments further to the right.
Owing to the many differences in the problem setup, the degree of similarity
in Fig. 17 is intriguing. Note also that in our parameter space explored here
(cf. Fig. 3), the gas velocity varies over a much wider range than the liquid
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Figure 17: Flow regime map in terms of the superficial velocities: comparison of
our numerical prediction with the experiment of Hassan et al. (2005). Symbols
are our results and solid lines indicate regime boundaries of Hassan et al. (2005)
separating the regimes indicated at the bottom.

velocity. As the same body force is applied to both phases, this discrepancy
reflects the differing viscosities as well as the fact that in the two regimes
plotted, the liquid stays in contact with the solid while the gas does not.

Another important parameter in two-phase flows is the holdup ratio h,
which is defined as the ratio of superficial velocities divided by the ratio of
volume fractions. The gas holdup, for example, is

hG =
VG/VL

(1− S)/S
.

Obviously, when two phases are homogeneuously mixed and move with the
same local velocity, the superficial velocities scale with the volume fractions
and hG = hL = 1. Thus, the holdup ratio reflects the interfacial morphology
and the relative motion of the two phases. Figure 18 compares our numerical
predictions of the gas holdup with the experimental data of Triplett et al.
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Figure 18: Gas holdup ratio as a function of the homogeneous gas fraction: com-
parison between our numerical prediction and the experiment of Triplett et al.
(1999). The computations are for Re = 0.5 mm and the experimental data are for
a circular tube of inner diameter 1.09 mm.

(1999). These authors ran air-water flows in straight circular and non-circular
tubes of diameters around 1 mm, and documented the flow regimes, void
fractions and frictional pressure drops. From the void fraction and superficial
velocities, hG can be obtained as a function of the homogeneous gas fraction,
HG = QG/(QG + QL). Again there is remarkably close agreement between
the simulation and measurement. In both cases, the gas holdup hG tends to
increase with the homogeneous gas fraction HG, a trend well documented in
the literature (Cubaud and Ho, 2004).

5. Conclusion

This computational study was motivated by the desire to understand the
local hydrodynamics of gas-liquid flows through porous medium and microflu-
idic channels. To make the problem tractable, we simplified the geometry
into axisymmetric tubes with periodic constrictions. Thus, we retained the
features of pore chambers and pore throats, but disregarded connectivity and

24



branching of pores. This simplification allowed us to carry out a detailed in-
vestigation of the interfacial evolution under creeping-flow conditions. Using
a diffuse-interface model, we were able to compute interfacial deformation,
breakup and coalescence from hydrodynamic principles, and delineate var-
ious flow regimes based on the control parameters. Within the parameter
ranges explored in this work, the main results can be summarized as follows.

(a) Starting from an initial condition with the liquid resting inside the
pore chambers, the following flow regimes may appear depending on
the pressure gradient, the liquid saturation and the pore geometry: gas
flow, blockage, liquid flow, shell flow, bubble-slug flow and annular flow.
Annular flow has two variants: droplet flow and droplet-annular flow.
These may be represented by a flow regime map on a plane extended
by the liquid saturation along one axis and the nondimensionalized
pressure gradient along the other.

(b) Bubble-slug flows and annular flows are similar to those previously
observed in straight tubes and pipes of macroscopic and smaller sizes.
But the gas flow, blockage, liquid flow and shell flow regimes are new.
Their appearance reflects to a large extent the geometric features of
the flow conduit.

(c) For bubble-slug and annular flows, the current results are compared
with previous experiments. Considering the differences in geometric
setup, flow-control schemes and parameter ranges, the agreement is
remarkably close in terms of the boundaries between flow regimes and
the holdup ratio.

(d) The flow regimes are highly sensitive to initial conditions and flow
history. Depending on whether the driving force is imposed abruptly
or ramped up or down gradually, some of the flow regimes do not
appear. This can be considered an extreme form of hysteresis. Different
flow patterns can result from different initial conditions under identical
control parameters. The dependence on flow history is largely due to
interface pinning at corners, and the hysteresis effect is alleviated by
rounding the sharp corners of the constriction.

(e) Wettability of the solid surface plays an important role in shaping the
final flow configuration. Generally, hydrophilicity toward the liquid en-
courages adherence of a liquid film along the walls, whereas hydropho-
bicity promotes detachment of the liquid and formation of drops in the
axial region.
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The significance of these results lies in that they form the basis for under-
standing two-phase flows in complex geometries, and contribute to a more
rational treatment of such flows in applications. More specifically, we en-
vision improving the traditional Leverett approach to porous media flows,
either by basing it on a firmer theoretical basis or by replacing certain ad hoc
elements in it. Toward this aim, ongoing work probes how the concept of
relative permeability can be interpreted and calculated from hydrodynamic
principles, and how the capillary pressure, based locally on pore size and cur-
vature of the meniscus, acts to drive liquid flow or resist it until an external
pressure effects a capillary breakthrough.

In view of the simplifications and limitations of the current study, we
identify several outstanding issues to be tackled. First, the flow geometry
needs to be represented more faithfully by accounting for branching and
connection of micropores. This would call for a truly three-dimensional com-
putation. Second, the pore size distribution must be taken into account in
predicting macroscopic properties such as permeability and pressure-flow-
rate relationships. Finally, it would be preferrable to design a setup for the
flow simulation such that the local saturation evolves as a result of the flow,
as opposed to being prescribed as a control parameter. The former more
closely approximates gas-liquid flows in porous media.
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