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Abstract - This paper reports numerical simulations of selective withdrawal of New-

tonian and polymeric liquids, and complements the experimental study reported in the

accompanying paper [Zhou and Feng, Selective withdrawal of polymer solutions: experi-

ments. J. Non-Newtonian Fluid Mech. submitted (2009)]. We use finite elements to solve

the Navier-Stokes and constitutive equations in the liquid on an adaptively refined unstruc-

tured grid, with an Arbitrary Lagrangian Eulerian scheme to track its free surface. The

rheology of the viscoelastic liquids are modeled by the Oldroyd-B and Giesekus equations,

and the physical and geometric parameters are matched with those in the experiments. The

computed interfacial deformation is in general agreement with the experimental observa-

tions. In particular, the critical condition for interfacial rupture is predicted to quantitative

accuracy. Furthermore, we combine the numerical and experimental data to explore the

potential of selective withdrawal as an extensional rheometer. For Newtonian fluids, the

measured steady elongational viscosity is within 47% of the actual value, apparently with

better accuracy than other methods applicable to low-viscosity liquids. For polymer solu-

tions, an estimated maximum error of 300% compares favorably with prior measurements.
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1 Introduction

Selective withdrawal refers to the drawing of one or both immiscible fluid components from

stratified layers through a tube that is placed close to the interface (Fig. 1). Upon start

of the suction, the interface dips in the center. If the suction rate is low, a steady state

is achieved with a smooth interface. At higher flow rates in liquid-liquid systems, it is

possible to draw out the top fluid as well [1]. Viewing this as an interesting process that

couples interfacial deformation and bulk rheology, we have carried out concerted exper-

imental and computational studies of selective withdrawal in an air-liquid system, with

Newtonian and polymeric liquids. The experimental results, using silicone oils and dilute

polymer solutions, are reported in the accompanying paper [2]. The main findings are: (a)

the interfacial curvature is much greater for the polymer solutions than for a Newtonian

one under comparable conditions, but the deformation is spatially more localized; (b) the

surface of the polymer solutions ruptures at a critical flow rate, when a cusp forms directly

above the suction tube from which a micron-sized air jet emanates toward the tube. No

such critical behavior exists for viscous Newtonian liquids under air.

Thus, viscoelastic polymer solutions behave markedly differently from viscous Newto-

nian fluids in selective withdrawal. We have speculated in [2] that these differences arise

from the viscoelastic stresses near the tip of the interface, where the polymer solution ex-

periences elongational flow. We further speculated that this device may be used as an
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Figure 1: Schematic of selective withdrawal in an axisymmetric flow geometry. The computational
domain is half of the meridian plane shown.
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elongational rheometer if operated in the subcritical state. The force balance, between the

polymer elongational stress and the capillary force, allows one to back out the former from

the surface curvature and known interfacial tension. The present paper aims to substanti-

ate these speculations by quantitative computation. In other words, we seek to confirm the

polymer stress at the tip as the cause for the distinct behavior of polymer solutions, and to

establish the feasibility of using selective withdrawal to measure the extensional viscosity

of dilute polymer solutions.

To justify the impetus for testing new devices for measuring extensional viscosity, we

briefly review the existing methods. The extensional viscosity is difficult to measure because

it is very difficult to produce a purely extensional flow with a constant extensional rate in the

laboratory [3]. There is a rich history of research on this subject, which can be appreciated

through several comprehensive reviews [4–6]. Here, we will discuss three types of extensional

rheometers of wide use today: filament stretching extensional rheometer (FiSER), capillary

thinning extensional rheometer (CTER) and the opposed-nozzle rheometer.

In FiSER, a fluid bridge is formed between two end plates. When the end plates move

apart exponentially, the central portion of the fluid experiences uniaxial elongation at an

approximately constant rate, which can be determined from the thinning diameter of the

fluid cylinder. This, together with the force on the end plate, allows one to calculate the

extensional viscosity [7, 8]. The FiSER is attractive because of the direct control of the

strain rate. But one limitation is that the liquid has to be sufficiently viscous as to form a

smooth and stable filament when stretched. Typically this requires the zero-shear viscosity

to be from 10 to 103 Pa·s. Another issue is the disturbance of the end plates. The flow is not

elongational near the plates, and suffers from a de-adhesion instability at large stretching

rates [9].

CTER is based on the capillary thinning of a liquid filament formed by abruptly sep-

arating two end plates that initially sandwiched a liquid bridge [10]. The diameter of the

filament is recorded until breakup under the combined action of surface tension and ex-

tensional force. From the balance between these forces, one can back out the extensional

viscosity [11–13]. A commercial version of CTER, known as CaBER, has been widely used

in recent years [2, 14–16]. Compared with FiSER, CTER can handle fluids with relatively
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low viscosity. But the extensional rate typically varies during the thinning process, and

there is little control over it. Moreover, complicating factors such as inertia, gravity and

axial curvature necessitate an ad hoc correction factor in order to produce a reasonable

Trouton ratio for Newtonian fluids [11, 17]. Note that both FiSER and CTER report an

elongational stress growth viscosity [18], which is the instantaneous elongational viscosity

as a function of time or strain. Normally, it is difficult to reach steady-state stretching in

terms of the stress growth. In fact, none of the existing devices can readily measure the

steady-state elongational viscosity [4].

The opposed-nozzle device consists of two opposite nozzles aligned and submerged in

the test fluid. When the fluid is drawn into both nozzles at the same rate, an extensional

flow is created at the stagnation point between the nozzles [3, 19, 20]. The elongational

rate is estimated from the flow rate, and the stress from the torque on one of the nozzles.

Then an apparent elongational viscosity can be estimated. The advantage of the opposed-

nozzle device is that it applies to low-viscosity fluids such as dilute polymer solutions. The

disadvantage is that the flow field is rather complex. One has to use a nominal, rather

than local, strain rate. The result also tends to be sensitive to inertia, nozzle size and

separation, and eddies near the nozzles [21]. Finally, the fluid on different streamlines

experiences different strains, with an average strain of order one [22]. It is unclear whether

the measured elongational viscosity should be taken as the transient value corresponding

to the average strain or the steady elongational viscosity at the nominal strain rate. The

latter would be inaccurate since the polymers are unlikely to reach steady stretching at

such a small strain. Even for Newtonian fluids, the opposed-nozzle device gives a Trouton

ratio that deviates much from 3 [3, 20]; typical values range from 2–4 [19] to order 10 [23]

and even 100 [24]. As a result, Dontula et al. [20] recommended using the device as an

“indexer” rather than rheometer.

To sum up, the extensional viscosity of highly viscous liquids can be measured with

relatively high accuracy using filament stretching. For low-viscosity fluids, on the other

hand, an equally satisfactory method does not seem to be available. It is against this

backdrop that we consider the potential of developing the selective withdrawal device into

an extensional rheometer.
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2 Governing equations and numerical methodology

Compared with the traditional fluid-dynamic simulation, the current problem presents two

additional complications: non-Newtonian rheology in the liquid bulk, and the moving and

deforming liquid surface. The rheology is modeled using Oldroyd-B and Giesekus equations.

Together with the Navier-Stokes equations, these are discretized using a fully implicit time-

stepping scheme. The interface is treated as a free surface, and is tracked using an Arbitrary

Lagrangian-Eulerian (ALE) scheme. As these elements have been discussed in the literature,

we give only a brief summary below.

2.1 Governing equations

The flow is governed by the Navier-Stokes equations:

∇ · v = 0, (1)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ ρg +∇ · τ , (2)

where τ is the stress tensor. The polymer solutions used in the experiments are dilute

[2]. Thus, we have used the Oldroyd-B and Giesekus models for their rheology. Writing

τ = τ s + τ p, we have the solvent stress τ s = 2ηsD, with D = (∇v + ∇vT)/2, and the

polymer stress τ p obeying one of the following equations [18]:

τ p + λτ p(1) = 2ηpD, (Oldroyd-B model) (3)

τ p + λτ p(1) + α
λ

ηp
τ p · τ p = 2ηpD, (Giesekus model) (4)

where λ is the relaxation time, ηs and ηp are the solvent and polymer viscosities, and α

is the mobility parameter. The subscript (1) denotes the upper convected time derivative.

The Oldroyd-B model is relatively simple but captures the key features of viscoelasticity.

However, asDe = λǫ̇→ 0.5 in uniaxial elongation, it exhibits a well-known stress singularity.

The Giesekus model has an additional quadratic term that produces shear-thinning and

averts the singular stress blowup in elongational flows [18].
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2.2 Interface tracking using Arbitrary Lagrangian-Eulerian scheme

Mathematically, boundary conditions need to be imposed on interfaces and free surfaces.

But they move and deform according to the flow of the bulk fluids, and their location is not

known a priori. Typically this requires an iterative procedure for coupling the bulk flow

and the interfacial motion. We have adopted a sharp-interface formulation that deploys

grid points directly on the interface, and tracks their motion as a result of the fluid flow and

stresses. Our numerical code is based on an Arbitrary Lagrangian-Eulerian (ALE) scheme

previously developed for simulating bubble growth in polymer foaming [25]. This scheme

employs two coordinates: an Eulerian coordinate (x) and a quasi-Lagrangian coordinate

(X) fixed on a moving mesh. On boundaries, including the free surface, the mesh velocity

conforms to that of the boundary with an optional slip in the tangential direction. As the

boundary nodes move, the mesh in the interior deforms smoothly according to a Laplace

equation:

∇ · (ke∇vm) = 0, (5)

where ke is the inverse of the local element volume [26, 27]. Then the mesh position is

updated every time step according to vm(x, t) = ∂x(X ,t)
∂t

. As all the variables are defined

on the moving grid, the Lagrangian derivatives must be computed as

d

dt
=

∂

∂t
+ v · ∇ =

δ

δt
+ (v − vm) · ∇, (6)

where δ
δt

is the time derivatives defined on the moving grid point: δ
δt

= ∂
∂t
|Xfixed.

2.3 Finite element method

The governing equations are solved in an axisymmetric geometry with an unstructured

triangular mesh, which moves and deforms by the ALE scheme, and is adaptively refined

near large interfacial curvature and coarsened near small curvature. As the result of this,

each boundary segment subtends to roughly the same center angle. In time, the moving

boundary tends to distort the mesh and compromise its quality. Using a quality criterion

based on the aspect ratio of the elements, we re-mesh the computational domain when

needed. A typical mesh is shown in Fig. 2.
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(a) (b)

Figure 2: A typical mesh used in our simulation. (a) The entire computational domain corre-
sponding to half of the meridian plane of the axisymmetric geometry of Fig. 1. The left boundary
is the axis of the suction tube, whose wall is the rectangular protrusion into the flow domain. (b)
Magnified view of the mesh near the free surface. Note that the interface is marked by grid points,
and the resolution is refined near the tip of the interface.

Using the standard Galerkin formalism to discretize the governing equation, we seek

the weak solution (v, p, τ ) using the test functions (ṽ, p̃, τ̃ ), and in their weak form the

governing equations become (taking the Oldroyd-B model for example):
∫

Ω

{[

ρ

(

δv

δt
+ (v − vm) · ∇v − g

)]

· ṽ + (−pI + τ ) · ∇ṽ

}

r dΩ− S = 0, (7)

∫

Ω
−(∇ · v) p̃ r dΩ = 0, (8)

∫

Ω

{

τ p + λ

[

δτ p

δt
+ (v − vm) · ∇τ p − τ p · (∇v)− (∇v)T · τ p

]

−

ηp
[

∇v + (∇v)T
]}

· τ̃r dΩ = 0, (9)

where r is the radial coordinate in the axisymmetric geometry and S is the surface integral

of the stress boundary condition:

S =

∫

∂Ω
n · (−pI+τ ) · ṽ r dS =

∫

∂Ωi

(−pa+κsσ)n · ṽ r dS+

∫

∂Ωτ

n · (−pI+τ ) · ṽ r dS, (10)

where ∂Ωi is the free surface subject to ambient pressure pa, κs is the local curvature, σ

is the surface tension, and ∂Ωτ is part of the boundary of the computational domain on

which stress boundary condition are given. In addition, we also have the weak form of the

Laplace equation for the mesh velocity:
∫

Ω
ke∇vm · ∇ṽm dΩ = 0. (11)
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The simulation is advanced by second-order time stepping toward a steady state. At

each time step, we iterate between solving the fluid flow and updating the surface posi-

tion until convergence. In each iteration, the nonlinear algebraic equations resulting from

Eqs. (7–11) are solved by Newton’s method with delayed updating of the Jacobian. Within

each Newton iteration, the linear system is solved by iterative methods such as the pre-

conditioned generalized minimum residual (GMRES) scheme or the biconjugate gradient

stabilized (BICG-STAB) algorithm. More details of the algorithm and validation with mesh

refinement may be found in Yue et al. [25]. In our computations, the smallest grid size is

typically around 0.1R, R being the radius of the suction tube. This level of spatial resolution

gives a discretization error below 1% in test problems.

As for most viscoelastic flow simulations, our computation is limited by the “high-

Weissenberg number problem”, i.e., the difficulty in achieving convergence at high Weis-

senberg numbers (or Deborah numbers in our nomenclature). This is typically because

sharp gradients of the polymer stresses arise that cannot be adequately resolved numeri-

cally. In our computations, the steepest gradient appears at the lips of the suction tube,

where the shear-rate is high and varies rapidly in space. To alleviate this problem, we in-

troduced a rounding of the inner corner of the lip, with a radius of 1.1% of the tube radius.

This allows us to improve the maximum Deborah number De from 4.1 to above 50. This

is still below some of the experimental values of Zhou and Feng [2], and will pose some

inconvenience in comparing the two.

2.4 Setup of the computational problem

In the computational domain shown in Fig. 1, the air-liquid interface is taken to be a

free surface subject to a constant atmospheric pressure. Fluid enters from the bottom of

the domain where zero-stress boundary condition is imposed. The side wall has no-slip

boundary condition with vanishing velocity. On the axis of symmetry, of course, symmetry

conditions are imposed. We have the following physical parameters: flow rate Q, interfacial

tension σ, liquid viscosity η, density ρ and the gravitational acceleration g. The geometric

parameters are the tube radius R, radius of the tank w, and the two heights L and H

specifying the position of the free surface at the side wall relative to the tip of the tube and
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the bottom of the tank. The main “dependent variables” are the position of the tip, given

by h, and the surface curvature at the tip κ.

If the liquid is viscoelastic, the Giesekus model introduces three model parameters: the

relaxation time λ, the mobility factor α, and the polymer viscosity ηp. Thus, in addition to

the length ratios H/R, L/R and w/R, we have six dimensionless groups:

Ca =
Qη

σR2
(Capillary number), (12)

Bo =
ρgR2

σ
(Bond number), (13)

Re =
ρQ

ηR
(Reynolds number), (14)

k =
ηs
η

(viscosity ratio), (15)

De =
λQ

R3
(Deborah number), (16)

α (mobility factor), (17)

where η = ηp+ηs. In the experiments, the flow Reynolds number is typically very small. In

our simulation, therefore, we keep Re below 10−3 so that the flow is essentially inertialess. In

addition, w and L will be large enough so as to avoid any influence from the side wall and the

bottom of the domain. Thus, we have only one important length scale H/R and a total of

six dimensionless parameters in our system. These may be varied, say, by changing Q, H, g,

λ, ηs and α. Zhou and Feng [2] used an “elasticity number” E = De/Ca to characterize the

experimental fluids. This will also be used when comparing our simulations to experiments.

As the critical state is approached, the interface deforms into a cusp with the local

curvature increasing without bound. This causes the local grid size to decrease toward

zero, and the code diverges. Therefore we cannot simulate the transition from subcritical

to supercritical state. In its stead, we employ a numerical criterion for determining the

critical point in the simulations. With decreasing H at a fixed Q, the steady-state surface

becomes more and more deformed, until at one point, no steady solution can be obtained

and the code blows up. The average between the smallest H that gives a steady solution

and the next H that does not is taken to be the critical H∗ corresponding to the Q value.

In the experiments, the tip curvature κ increases precipitously toward the critical condition.

Thus, the fact that the numerically computable maximum κ depends on mesh resolution

and is in some sense “arbitrary” does not appreciably affect the critical H∗ value.
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Figure 3: The side-wall effect in the simulation. (a) Variation of the water level at the side wall
after the flow starts for four values of the tank radius w. (b) The position of the tip of the interface
indicated by the vertical distance h from the tube. (c) Variation of the tip curvature. The wiggle
on the curve for w = 16R is a numerical artifact due to remeshing.

3 Newtonian results: benchmarking by experiments

The experiment of Courrech du Pont and Eggers [28] on air-oil selective withdrawal provides

an ideal benchmark for our numerical algorithm. They used a tank of square cross-section,

with the side w = 27R wide enough so the results are unaffected by the side walls. To

ensure negligible wall effects in our computations, we have tested four values of the tank

radius w, and Fig. 3 plots the temporal variation of the water level at the side wall and the

position and the curvature at the tip of the interface for each w value. When the width is

large enough (w ≥ 27R), H changes by only about 0.1% from the startup of flow till the
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Figure 4: Comparison between our calculations (filled symbols), our experiment (open symbols)
and the experiment of Courrech du Pont and Eggers [28] (lines). The capillary number Ca is varied
through Q, and for each Ca different steady solutions are achieved by varying H . The Bond number
is fixed at Bo = 0.112.

steady state. Moreover, Figs. 3(b) and (c) show that the side wall exerts little effect on the

interface at the center for w ≥ 27R. Thus w = 27R is used for all subsequent computations.

Figure 4 compares our Newtonian simulations with the experimental data of Courrech

du Pont and Eggers [28] for an air-oil system and with our own experiment described in

Ref. [2]. All material parameters are matched between the three studies. Each point in

Fig. 4 represents a steady state, and the data sets are generated by varying H for a fixed

flow rate Q (or Ca). Increasing H leads to less deformation at the tip, with a smaller

κ and larger h, because the interface is farther from the tube opening. There is nearly

perfect agreement between our simulation and the experiments. Note that we tuned our

computations to match Ca = 9.66 in [28]. But our experimental control is such that we

reached a slightly lower Ca = 9.45. Accordingly the tip curvature is slightly below the two

data sets at Ca = 9.66. In the parameter ranges tested, the numerical and experimental

data seem to suggest a critical condition of κ → ∞ at a finite h value. Because of finite

numerical resolution, our computations cannot access κ > 10−2 µm−1. But additional

evidence shows that a cusp (κ → ∞) is unattainable for the low air-liquid viscosity ratio

considered, and k remains finite [29]. This has been discussed at length in our experimental

paper [2]. To sum up this section, the agreement with Newtonian experiments has validated

our algorithm and code, and thus we are ready to turn to the viscoelastic problem.
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(a) (b)

Figure 5: Steady-state interface profiles in the subcritical regime at several values of the liquid level
H and a fixed Ca = 28.97. (a) Giesekus fluid with mobility factor α = 0.1, viscosity ratio k = 0.7
and Deborah number De = 12.29. (b) Newtonian fluid.

4 Viscoelastic results

4.1 Interfacial deformation in subcritical regime

Figure 5(a) shows the steady-state free surface computed for the Giesekus fluid at a fixed

Ca = 28.97 and different H values. As expected, the interface becomes more deformed with

lowering H. The lowest curve for H/R = 8 is near the critical condition, even though the tip

curvature appears rather mild. If H is lowered further, the steady-state κ increases sharply

until the steady solution is lost. Numerically, the tip of the surface continues to extend and

the computation diverges. For comparison, we plot in Fig. 5(b) the steady-state surfaces for

a Newtonian fluid. The surface shape is qualitatively the same in both cases. However, for

the same H values the surface is more deformed for the Giesekus fluid. Lacking a physical

critical state, the Newtonian process can be computed to lower H with more deformed

surfaces, until the tip curvature becomes too large to be resolved numerically. The lowest

curve at H/R = 7.3 marks the limit of numerical convergence.

A more quantitative study of the viscoelastic effect is given in Fig. 6, which plots the

tip position h and curvature κ as functions of the Deborah number De for Giesekus and

Oldroyd-B fluids. For both models the results are qualitatively the same. As De increases,
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Figure 6: The effect of viscoelasticity, measured by the Deborah number De, on (a) the tip position
h and (b) the tip curvature κ, for Oldroyd-B and Giesekus fluids. The following parameters are
fixed: Ca = 28.97, Bo = 0.112 and H/R = 8. For the Giesekus fluid, α = 0.1 and k = 0.7.

the tip moves progressively downward toward the suction tube; h decreases and the depth of

depression H − h increases. Meanwhile, the tip curvature κ increases monotonically. Both

suggest increasing elongational force in the liquid that pulls the interface down. When

De exceeds a critical value, the tip curvature seems to increase without bound and the

simulation breaks down. As noted before, this is taken to be the critical state, which will be

discussed at length in the next subsection. For the parameters in Fig. 6, the largest De we

have computed is De = 4.1 for Oldroyd-B fluid and 12.29 for the Giesekus fluid. As is well

known, the nonlinear term in the Giesekus model softens the strength of elastic stresses.

Consequently, H −h and κ are smaller than for the Oldroyd-B model at the same De. The

critical state is also delayed to a higher De.

The greater surface deformation of viscoelastic liquids must stem from the polymer

stress. To confirm this, we plot contours of the polymer stresses near the free surface for

the Giesekus fluid at steady state (Fig. 7). The tensile stress τzz − τrr dominates the other

component, and is especially large in the region directly below the tip of the interface. That

is where the flow is essentially uniaxial elongation. Furthermore, because of the vanishing

velocity and long residence time there, the polymer experiences large strain and stretches

to a much larger extent than elsewhere in the domain, thus producing the localized peak in

the elongational stress. This reflects the well-known strain-hardening behavior of polymeric
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(a) (b)

Figure 7: Contours of the normal-stress differences (a) τzz − τrr and (b) τrr − τθθ near the steady-
state surface for H/R = 8 in Fig. 5(a). Ca = 28.97, and the Giesekus fluid has De = 12.29, k = 0.7
and α = 0.1.

liquids, where an elongational stress grows sharply with strain [18]. These considerations

form the basis for the extensional rheometry to be discussed in Section 5.

Figure 8 compares a computed steady-state free surface for the Giesekus fluid with an

experimentally measured free surface for a dilute polymer solution [2]. The Giesekus model

parameters k and α are determined from the shear viscosity of the polymer solution and

solvent. The experimental free surface is more deformed than the numerical prediction; the

depression depth is underpredicted by about 10% and the tip curvature by 50%. Since the

numerical parameters are matched to the experimental ones, the underprediction of surface

deformation points to the Giesekus model not being able to reflect all aspects of the fluid’s

rheology.

4.2 Critical conditions

Computationally, the critical condition is approached by computing the steady solution

for a series of decreasing H values, with the other parameters—De, Ca and rheological

parameters—fixed. Thus, the critical condition is most conveniently marked by a threshold

H∗. Unlike in the experiments, it is difficult to determine the critical h∗ since near the

critical point, h varies steeply with H. Taking the h value for the last steady solution for h∗
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Figure 8: Comparison of the viscoelastic free surface between experiment and simulation. Ca = 2.5
and H/R = 7.36. The experiment uses the so-called “strongly elastic” fluid with elasticity number
E = De/Ca = 22.1 and De = 55.25 [2]. The simulation is for a Giesekus fluid at De = 55.25,
k = 0.2 and α = 0.2.
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Figure 9: The critical liquid level H∗ as a function of Ca at various E values for the Giesekus fluid.
The lines with open symbols are numerical data and the filled symbols are experimental data from
Ref. [2]. For the Giesekus model, α = 0.2 and k = 0.2 match the shear rheology of the experimental
fluid.

is likely to be a gross overestimation. Therefore, we will only discuss the critical condition

in terms of H∗.

Figure 9 plots the critical liquid level H∗ for a range of Ca and four values of the

elasticity number E = De/Ca. Numerical results show that H∗ increases with Ca and
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E, in qualitative agreement with experimental observations (cf. Fig. 10 of Ref. [2]). As

suggested in the experimental study, these trends reflect the fact that increasing either Ca

or E leads to larger elastic stresses pulling down the interface. Thus the critical condition

can be achieved for interfaces that are farther from the nozzle.

A quantitative comparison with experimental data is constrained by the maximum De

computable in the simulations, which is about 55. The largest experimental De is over 200.

As plotted in Fig. 9, the numerical data are limited to low Ca values for strongly elastic

fluids with large E; for E = 22.1, the simulation covers a Ca range that barely overlaps the

experimental range. Nevertheless, there seems to be good agreement between experimental

and numerical data. This is reflected by the similar trend in the H∗(Ca) dependence, which

approximates straight lines in the log-log plot. Thus, both experimental and numerical data

exhibit a power-law dependence on Ca. The slope of these lines increases with E consistently

across all numerical and experimental data sets. For E = 22.1, the Giesekus model captures

the slope of the experimental data accurately, but underpredicts the value of H∗ by some

10%, consistent with the underprediction of surface deformation in Fig. 8.

Finally, we cannot simulate the supercritical state nor the hysteresis. In the experi-

ment, the stability of the air jet depends on its small but non-zero mass and viscosity. In

our computational setup, the air-liquid interface is treated as a free surface, with the air

contributing no force on the interface aside from a constant ambient pressure. When we at-

tempted to start the simulation with an initial condition having a thin air jet, the interface

collapses in a short time and the code breaks down.

5 Measuring the elongational viscosity

To use selective withdrawal as an extensional rheometer, we need to satisfy three pre-

requisites: (a) to ensure that the flow near the tip is elongational; (b) to determine the

elongational stress at the tip; (c) to determine the local strain rate at the tip. In the ab-

sence of direct velocity-field measurements, we will accomplish these objectives using data

from numerical simulations. In the end, the validity of the scheme is established by compar-

ing the measured elongational viscosity against benchmarks for Newtonian and polymeric

liquids.
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(a) (b)

Figure 10: Contours of the flow type parameter ψ in the computed flow field for a Giesekus fluid.
Plot (b) shows details near the tip of the interface. In this case, H/R = 9, Ca = 28.97, De = 12.29,
k = 0.7 and α = 0.1.

5.1 Flow type

Following Singh and Leal [30], we use the flow type parameter to indicate how much of the

deformation consists of extension and rotation:

ψ =
‖D‖ − ‖W ‖

‖D‖+ ‖W ‖
, (18)

where D = (∇v +∇vT)/2 is the strain-rate tensor, and W is a modified vorticity tensor

to maintain frame-indifference [30, 31]: W = Ω −O, where Ω = (∇v − ∇vT)/2 and O is

the local rotation of the strain-rate tensor defined by

Dei

Dt
= O · ei, (19)

D/Dt being the material derivative and ei the eigen-vectors of D. Under this definition,

ψ = 1 for purely extensional flow, 0 for simple shear and −1 for solid-body rotation.

Figures 10 depicts ψ contours in the computed flow fields for a Giesekus fluid. The

magnified view shows that the flow is indeed very close to pure extension in the area below

the tip of the interface. The same holds for Newtonian fluids. Thus our first prerequisite is

satisfied.
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5.2 Force balance

Now let us consider the force balance on the free surface at the tip. On the air side, the

normal stress is the atmospheric pressure pa. On the liquid side, we have pressure p1 and a

viscous or viscoelastic normal stress τzz in the vertical direction. On the interface there is

the interfacial tension σ. Denoting the local curvature by κ, we modify the Laplace equation

as such:

pa = p1 − τzz + 2σκ. (20)

To determine p1, we resort to the momentum equation in the horizontal (or radial in a

cylindrical coordinate system) direction:

ρ

(

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

−
v2θ
r

+ vz
∂vr
∂z

)

=

[

1

r

∂(rτrr)

∂r
+
∂τθr
∂θ

+
∂τzr
∂z

−
τθθ
r

]

−
∂p

∂r
. (21)

Because the flow is axisymmetric, τθr = 0 and ∂/∂θ = 0. Neglecting the inertial terms for

the moment, we have
∂

∂r
(p− τrr) =

τrr − τθθ
r

+
∂τzr
∂z

. (22)

If the flow was homogeneous uniaxial elongation everywhere, τrr would equal τθθ and τzr

would vanish. Under this assumption we integrate from the tip (r = 0) radially outward to

the wall (r = w):

p1 − τrr|r=0 = p2 − τrr|r=w, (23)

where p2 is the pressure at the point on the wall that is level with the tip. Because the side

wall is far from the suction tube (cf. Fig. 3), the local deformation rate is small. So we may

set τrr|r=w = 0 and calculate p2 from hydrostatics:

p2 = pa + ρg(H − h). (24)

From equations (20), (23) and (24), we get the first normal stress difference:

N1 = τzz − τrr = 2σκ+ ρg(H − h). (25)

If the local strain rate ǫ̇ is known, the extensional viscosity can be obtained:

η̄ =
N1

ǫ̇
=

2σκ+ ρg(H − h)

ǫ̇
. (26)
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The determination of ǫ̇ will be discussed in the next subsection. Note that the derivation

above applies equally to Newtonian and viscoelastic fluids.

This equation suffers from potential errors from three sources. The first is the neglect

of inertial terms in Eq. (21). The second is setting τrr = τθθ and τzr = 0 in Eq. (22)

by assuming homogeneous uniaxial elongation. The third is the small-deformation-rate

assumption along the side wall in Eqs. (23) and (24). The first and third turn out to be

insignificant; the Reynolds number is low (10−4 ∼ 10−3), and the shear and normal stresses

at the side wall are indeed negligible (about 0.1% of ρg(H − h)). The second assumption is

on less firm ground, and we will estimate the associated error in the following.

Integrating Eq. (22) without the assumption, we have

p2 − (p1 − τrr) =

∫ w

0

(

τrr − τθθ
r

+
∂τzr
∂z

)

dr, (27)

which may be viewed as the error due to the shear component of the flow. Note that τrr is

indeed equal to τθθ on the axis of symmetry (r = 0) so that the integral does not diverge.

Denoting this error by τsh, we have the following in place of Eq. (26):

η̄ =
N1

ǫ̇
=

2σκ+ ρg(H − h)− τsh
ǫ̇

. (28)

The magnitude of τsh should be dominated by the normal stress difference τrr − τθθ for

small r. The τzr term should be insignificant because away from the centerline, where the

flow contains considerable shear (cf. Fig. 10), the deformation rate dies out quickly. For a

Newtonian fluid, τrr = 2η ∂vr
∂r

and τθθ = 2η vr
r
. Toward the axis of symmetry, the vr(r) profile

has to level to zero slope in a concave shape. Thus, we expect ∂vr
∂r

< vr
r
< 0, τrr − τθθ < 0

and τsh < 0. Compared with Eq. (28), therefore, we expect Eq. (26) to underestimate the

extensional viscosity.

This is borne out by numerical simulations for Newtonian liquids. After achieving a

steady-state interfacial shape in the subcritical regime, the tip curvature κ, depression

depth H − h and the local strain-rate ǫ̇ are extracted from the numerical solution. Then

the “measured” η̄ from Eq. (26) is compared with the true elongational viscosity of the

fluid ηn = 3η. Figure 11 illustrates the error of Eq. (26). Over the entire parameter space

comprising Ca, Bo andH/R, the results confirm our argument that Eq. (26) underestimates
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Figure 11: Testing the simplified Eq. (25) for estimating the extensional stress N1 of Newtonian
fluids. The “measured” η̄, scaled by the known ηn, is plotted against Ca in (a), Bo in (b) and H/R
in (c).

the elongational viscosity. But the magnitude of the error is within 10% for the parameter

ranges covered. Considering that the opposed-nozzle rheometer easily suffers errors of 100%

for Newtonian fluids [20], the results in Fig. 11 is very encouraging.

A similar exercise has been carried out for a Giesekus fluid (Fig. 12). In this comparison,

ηG is the analytical extensional viscosity of the Giesekus model in steady-state elongation

[18]. Now η̄ is overestimated by Eq. (26); the neglected τsh turns out to be positive for the

Giesekus fluid. Evidently this is because the shear away from the axis of symmetry tends

to increase τrr relative to τθθ (cf. Fig. 7b). This effect is particularly noticeable for smaller

H/R values in Fig. 12(b); as the tip gets closer to the nozzle, the region of extensional
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Figure 12: Testing the simplified Eq. (25) for estimating the extensional stress N1 of Giesekus
fluids. The “measured” η̄, scaled by the known ηG, is plotted for (a) a range of De with H/R = 8,
α = 0.1 and k = 0.7; (b) a range of H/R with De = 12.29, α = 0.1 and k = 0.7.

flow shrinks under the tip. For the conditions shown, H/R = 8 is approaching the critical

condition. Nonetheless, the magnitude of the error is within 10% as long as the deformation

is “not too strong”, for a moderate De < 6 or H/R > 8.2. In summary, the simplified force

balance of Eq. (25) can be used with acceptable accuracy to calculate the elongational stress

N1 from the surface force and hydrostatic pressure.

In writing the steady-state elongational viscosity in Eq. (26), we have tacitly assumed

that the polymer has reached steady stretching under the local strain rate at the tip. This

is true in principle since the polymer experiences infinite strain at the tip. In practice,

however, we will measure the tip curvature using three neighboring points found from image

processing [32]. Thus, Eqs. (25) and (26) involve a small but finite volume of liquid. To

estimate the strain sustained by the polymer in this volume, we translate its physical size

(∼ 100 µm) onto the computational domain, and integrate the computed strain rate along

streamlines passing through the volume. The minimum strain, on the outermost streamline,

turns out to be about 7. Compared with prior filament-stretching experiments on dilute

polymer solutions [7], this is sufficiently large for assuming steady-state stretching.
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5.3 Local strain rate

In the absence of direct measurement of the extension rate ǫ̇ at the tip, we develop a

correlation for ǫ̇ from the numerical data in terms of the material and control parameters

of the system. Consider the Giesekus fluid given by Eq. (4). Dimensional analysis shows

the strain rate at the tip to be a function of the six dimensionless groups:

ξ =
ǫ̇R3

Q
= f

(

Ca,Bo,
H

R
, k,De, α

)

. (29)

It would be very difficult to correlate ξ with all the parameters at once. Thus, we will first

develop a correlation for Newtonian fluids, and then generalize it to the Giesekus fluid.

(a) Newtonian correlation

For a Newtonian system, Eq. (29) simplifies to:

ξ = f

(

Ca,Bo,
H

R

)

. (30)

Similarly, the position of the tip h/R can also be expressed in the same three dimensionless

groups. It turns out to be advantageous to rewrite Eq. (30) by using χ = (H − h)/R in

place of H/R:

ξ = f (Ca,Bo, χ) . (31)

As will be shown later, using χ facilitates generalization of the correlation to include vis-

coelastic effects.

Figure 13 plots ξ versus χ on a semi-log scale for a range of Ca and Bo values. All

curves have the same gentle S shape, which we will represent linearly. The slope of the

lines depends on Ca and Bo. After a curve-fitting exercise [32] we arrive at the following

correlation:

log ξ = A(Ca,Bo) +B(Ca,Bo)χ, (32)

with A = (−2.01 + 0.41Bo)Ca0.15 and B = (2.27 + 0.84 logBo)Ca−0.2. Of necessity, this

form is a compromise between algebraic simplicity and fidelity. Its accuracy is examined

in Fig. 14, where the y-axis is the ratio between the strain rate ξc given by Eq. (32) and

the actual strain-rate ξ in the simulation at the same Bo and Ca values. Most of the data
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Figure 13: The dimensionless strain rate ξ at the tip as a function of χ for a Newtonian fluid for
(a) a fixed Bo = 0.112 and a range of Ca values; and (b) a fixed Ca = 28.97 and a range of Bo
values.
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Figure 14: Accuracy of the Newtonian correlation Eq. (32) for the elongational rate.

points fall between 0.7 and 1.3, giving a margin of error of 30%. This is quite accurate in

view of the range of error of prior rheometers.

(b) Viscoelastic correlation

As viscoelasticity enhances the tip curvature and depression depth (Fig. 6), so it also

increases the strain rate at the tip. Under the conditions of Fig. 6, increasing De from 0 to

above 12 causes ǫ̇ to increase by a factor of three for the Giesekus fluid. This dependence

needs to be reflected through De, k and α in Eq. (29).
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Figure 15: Collapse of the viscoelastic data for the tip strain rate onto the Newtonian data at the
same Ca and Bo. Curve I represents Newtonian data for Ca = 28.97 and Bo = 0.224. Giesekus-a is
for the Giesekus model withDe = 12.29, α = 0.1, k = 0.7, and χ varied viaH . Curve II is Newtonian
data at Ca = 28.97 and Bo = 0.112, onto which three viscoelastic data sets fall: Oldroyd-B with
De = 2.05 and χ varied via H ; Giesekus-b with α = 0.1, k = 0.7 for a range of De; Giesekus-c with
De = 8.2, k = 0.7 for a range of α. Curve III is Newtonian data at Ca = 56.83 and Bo = 0.112.
The viscoelastic data Giesekus-d has De = 24.12, α = 0.1, k = 0.7, and χ varied via H .

For reasons that we cannot yet explain, all the viscoelastic data collapse onto the New-

tonian data if plotted as ξ versus χ = (H−h)/R instead of H/R. We have so far computed

Giesekus and Oldroyd-B models at several Ca and Bo values with the following range of

rheological parameters: 0.41 < De < 12.3 and 0.01 < α < 0.1. Figure 15 depicts the

collapse. Clearly, the polymer elongational stress tends to increase the depression depth χ

and the tip extensional rate ξ simultaneously. Meanwhile, increasing the viscous stress (or

Ca) will have similar effects. Our result shows that the same relationship between χ and ξ

holds regardless of the agent—viscous or viscoelastic—that has prompted their change.

Figure 16 examines the error of the correlation Eq. (32) against numerical simulations

for viscoelastic fluids. As in Fig. 14, The y-axis is the ratio ξc/ξ, with ξ being the actual

local strain rate from simulations and ξc is that given by the correlation at the same Ca,

Bo and χ values. In all the cases, the value of ξc/ξ falls between 0.75 and 1.4. Therefore,

Eq. (32) applies to viscoelastic fluids with adequate accuracy.

This has two important implications: (a) The role of the polymer tensile stress in

increasing the local ǫ̇ is fully accounted for by how much the tip is drawn toward the orifice.
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Figure 16: Accuracy of the correlation for elongational rate (Eq. 32) for viscoelastic fluids. The
Oldroyd-B and Giesekus data sets are the same as in Fig. 15.

(b) For the extensional rheometer, the formulas of Eq. (26) and Eq. (32) can be used to

obtain the elongational viscosity of Newtonian as well as viscoelastic liquids. The latter

observation is quite convenient, but its accuracy remains to be confirmed by comparison

with experimental data.

5.4 Benchmarking

To use a selective withdrawal device to measure the elongational viscosity of a liquid in the

laboratory, one measures the interfacial position (in terms of h and H) and the tip curvature

κ for a steady-state surface, uses Eq. (32) to estimate the local strain rate ǫ̇, and Eq. (26)

to obtain the elongational viscosity η̄. This scheme can be benchmarked by performing

the selective withdrawal experiment on a liquid with known elongational viscosity. For

Newtonian fluids, this is straightforward as the Trouton ratio is known to be three. For

polymeric liquids, it is difficult to find a definitive benchmark.

(a) Newtonian fluids

Zhou and Feng [2] used silicone oil for selective withdrawal experiments, which has a

density of 760 kg/m3 and shear viscosity of 12.9 Pa·s at room temperature. The interfacial

tension, measured using the ring method, is 21.3 mN/m. Figure 17 plots the Trouton ratio

of the silicone oil measured by selective withdrawal, over a range of the strain rate ǫ̇ at
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Figure 17: The Trouton ratio of silicone oil measured by selective withdrawal.

three capillary numbers. At each fixed flow rate or Ca, ǫ̇ is changed by varying the surface

location H.

The three data sets for different Ca values more or less coincide. Thus, the measurement

is intrinsic to the fluid rather than affected by the flow situations. This lends confidence to

the validity of the scheme. However, the Trouton ratio ranges from 1.6 to 2.4, indicating that

the scheme underestimates the elongational viscosity by up to 47%. Since the elongational

stress is underestimated by 10% (Fig. 11), and the strain rate is subject to 30% of errors

(Fig. 14), perhaps the magnitude of the error here is not surprising. But it is not clear why

none of the data points exceeds Tr = 3. This level of accuracy compares favorably with

existing devices. For instance, the opposed-nozzle device produced Trouton ratios between

4.5 and 7 for Newtonian fluids in Ref. [20].

(b) Polymer solutions

Benchmarking the selective withdrawal process for polymeric liquids is a subtler affair

since there are no reliable methods to measure η̄, especially for low-viscosity Boger liquids

and at relatively low strain rates [4,33]. Indeed, this was largely the motivation for examin-

ing the selective withdrawal process for this purpose. Possible candidates are the filament

stretching elongational rheometer (FiSER), the capillary breakup elongational rheometer

(CaBER) and the opposed-nozzle device. As explained earlier, selective withdrawal probes
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polymers that undergo large strains at the tip; thus, the measured η̄ corresponds to steady

stretching. In contrast, FiSER and CaBER provides a transient elongational stress growth

viscosity η̄+ as a function of time or strain [18]. Steady-state stretching is seldom attained.

In the opposed-nozzle device, the average strain across streamlines that enter the nozzles is

roughly unity [22], probably insufficient for steady-state stretching.

Under these constraints, we adopt a two-pronged approach. On the one hand, we fit

the shear rheology of our polymer solutions [2] into a Giesekus model. Then the theoretical

elongational viscosity η̄ is calculated, similar to that depicted in Fig. 7.3-8 of Bird et al. [18],

and is used to benchmark the η̄ measured from selective withdrawal. On the other hand,

we take η̄+ data measured by James and Ouchi [34] using FiSER for a rough comparison

with our measurements.

Our experiments have used polyisobutene solutions in polybutene and heptane [2]. For

the benchmarking to be discussed here, we will only use data for the more concentrated

“strongly elastic fluid”. Its relaxation time has been measured by CaBER to be λ = 8.5 s.

The shear rheology has been measured on a Bohlin rotational rheometer, and the polymer

and solvent viscosities, as appear in the Giesekus model, are ηp = 16.75 Pa·s, ηs = 4.25 Pa·s

at 21◦C, with a viscosity ratio k = 0.2. The mobility factor α is obtained from fitting the

shear-thinning at larger shear rates: α = 0.2.

Figure 18 compares η̄ measured by selective withdrawal with the theoretical value of

the Giesekus model. First, as in the Newtonian benchmark, the data sets for three Ca

values roughly collapse onto one master curve. Second, the measured η̄ values are within a

reasonable range of the theoretical prediction. The data fall below the Giesekus curve for

ǫ̇ < 0.1 s−1, and overshoot it for higher strain rates. Over the entire range, the difference

between the two is within a factor of 3. If the Giesekus benchmark is taken to be the

true elongational viscosity of the fluid, this margin of error is quite acceptable in view of

the poor accuracy of existing methods [4, 20, 33]. For example, the opposed-nozzle device

yielded an η̄ more than one order of magnitude smaller than that measured by fiber spinning

[4, 35]. Schweizer et al. [35] attributed this to the spatial inhomogeneity of the flow field,

where polymers on streamlines away from the stagnation point experiences short residence

time and modest stretching. Contraction flows also produced an order of magnitude of
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Figure 18: Comparison of the elongational viscosity measured by selective withdrawal with the
theoretical value of the Giesekus model. For each data set of fixed Ca, ǫ̇ is varied experimentally
via H .

underestimation for Boger fluids [33]. The comparatively close agreement in Fig. 18 also

confirms our argument that the polymer near the tip experiences large strain and steady-

state stretching. Finally, the measured η̄ increases with ǫ̇ as does the theoretical curve,

albeit at a greater slope. This trend is consistent with prior measurements of Boger fluids,

e.g. using opposed nozzles [20,35] and contraction flows [33], although the absolute values

are not comparable.

Figure 19 shows the FiSER measurements of η̄+ for the polymer solution used in our

experiment. Apparently no steady stretching is approached in these tests. This is similar to

CaBER measurements. In fact, the FiSER data agree fairly closely with the CaBER data

reported in [32]. Besides, FiSER is limited to much higher strain rates than the selective

withdrawal device. For these reasons, it is not a pertinent benchmark for the selective with-

drawal device. The only connection we could make between FiSER and selective withdrawal

measurements is a rather tenuous one. If we extrapolate the selective withdrawal data of

Figs. 18 following the power-law trend to ǫ̇ = 3 or 9 s−1, we get η̄ values on the order of

104 Pa·s, close to the maximum transient elongational viscosity attained in the FiSER data

(Fig. 19). Of course, this should not be construed as a validation. The fact remains that

there does not exist a good benchmarking device capable of doing similar measurements as

the selective withdrawal device.

28



D. Zhou & J. J. Feng, J. Non-Newtonian Fluid Mech. 165 (2010) 839–851

strain

η

0 1 2 3 4 5 6

101

102

103

104

105

ε = 3 s-1

ε = 9 s-1

Figure 19: The transient elongational stress growth viscosity η̄+ of our experimental fluid measured
at 27◦C by filament stretching at two extension rates ǫ̇ = 3 s−1 and 9 s−1 [34].

6 Conclusion

This paper presents numerical simulations of selective withdrawal to complement the ex-

perimental work in the accompanying paper [2]. There are two main results from this

effort:

(a) We have elucidated the effects of viscoelasticity on interfacial deformation during

selective withdrawal, including the depth of the depression and the tip curvature in the

subcritical regime and the critical condition for jet formation.

(b) We have demonstrated the possibility of using selective withdrawal to measure the

steady-state elongational viscosity of polymer solutions.

Regarding (a), the numerical computations show the correct trend in terms of increased

deformation due to elastic stresses, and identified strain-hardening as the key mechanism at

work. The limitations to this part of the results are the failures to reach the higher Deborah

numbers in the experiment and to simulate the interfacial rupture. The former is a long-

standing problem for viscoelastic computations, and newer schemes such as the logarithmic

formalism offer hope of approaching higher Deborah numbers [36]. The latter problem is

intrinsic to the sharp-interface formulation of the ALE method, and can only be remedied

by alternative formulation of the interface, e.g., via diffuse-interface models [37,38].
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Regarding (b), we have examined the factors key to the success of this strategy, including

the local flow type and the normal stress and strain rate at the tip, and compared the

accuracy of the measurement with existing methods of extensional rheometry. Based on

these, we have reached the preliminary conclusion that selective withdrawal can potentially

be used as an extensional rheometer. Its maximum error of 47% for Newtonian fluids is

superior to opposed-nozzle devices [20]. For polymer solutions, no definitive benchmark

exists. But an estimated maximum error of about 300% compares favorably with opposed-

nozzle and contraction flow devices [33,35].

As an extensional rheometer, the selective withdrawal device has several unique ad-

vantages. Because the elongational stress and strain rate are sampled within a very small

region surrounding the stagnation point, the procedure measures a steady-stretching elonga-

tional viscosity. None of the existing devices can access steady stretching readily. Moreover,

thanks to its transducer-free scheme for determining the elongational stress, selective with-

drawal can test low-viscosity liquids, and access much lower strain rates than other devices.

Finally, the device is relatively immune to complicating factors such as inertia, spatial

inhomogeneity and filament sagging common to other devices [11,20].

We must note that our work on (b) suffers from two limitations. First, we have no

direct measurement of the local strain rate at the tip. Consequently, we have to resort to

numerical data to develop a correlation for the tip strain rate. This should be remedied

in the future by direct PIV measurements of the local flow field [39], which may confirm

and refine the correlation, and generalize it to wider parameter ranges. Second, there

are no definitive benchmarks for polymer solutions to firmly establish the accuracy of the

selective withdrawal protocol. Indeed, this is owing to the lack of a device capable of similar

measurements, and speaks indirectly to the value of such a rheometer. Further investigation

should aim to remove these uncertainties and optimize the design of the device.
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