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Diffuse-interface models may be used to compute moving contact lines because
the Cahn–Hilliard diffusion regularizes the singularity at the contact line. This
paper investigates the basic questions underlying this approach. Through scaling
arguments and numerical computations, we demonstrate that the Cahn–Hilliard
model approaches a sharp-interface limit when the interfacial thickness is reduced
below a threshold while other parameters are fixed. In this limit, the contact line has
a diffusion length that is related to the slip length in sharp-interface models. Based
on the numerical results, we propose a criterion for attaining the sharp-interface limit
in computing moving contact lines.

1. Introduction
The moving contact line is a difficult problem in interfacial fluid dynamics, since the

conventional Navier–Stokes formulation runs into a non-integrable stress singularity
(Dussan 1979). The crux lies in the interplay between large-scale hydrodynamics
and the local molecular processes, which determines the dynamic contact angle and
the velocity of the contact line. Existing theories attempt to capture one aspect of
the physics and replace the others by modelling. For example, macroscopic models
circumvent the stress singularity by replacing the local dynamics by the Navier slip
conditions (Zhou & Sheng 1990; Haley & Miksis 1991; Spelt 2005) or a ‘numerical
slip’ (Renardy, Renardy & Li 2001; Mazouchi, Gramlich & Homsy 2004). Microscopic
models seek to compute the dynamic contact angle from the kinetics of fluid molecules
jumping on the solid over an activation energy (Blake 2006). Molecular dynamics
(MD) simulations probe still smaller length and time scales at the contact line (Koplik,
Banavar & Willemsen 1988; Thompson & Robbins 1989; Qian, Wang & Sheng 2003).
However, none of these encompasses the widely disparate length scales. More in-depth
discussion of the outstanding issues can be found in recent reviews (Pismen 2002;
Blake 2006; Qian, Wang & Sheng 2006b).

This paper concerns a ‘mesoscopic’ approach to the moving-contact-line problem
using the so-called diffuse-interface or phase-field theory, originally proposed by
van der Waals (1892). The interface is treated as a diffuse layer through which the
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fluid properties vary steeply but continuously. By expanding the density distribution
function in space and then truncating and integrating the intermolecular forces, one
coarse-grains the microscopic physics at the contact line into fluid–fluid and fluid–
substrate interaction energies. These are then incorporated into the hydrodynamics
via a variational procedure (Pismen 2002). On this mesoscopic scale, the motion of the
contact line occurs naturally as diffusion across the interface driven by gradients of the
chemical potential or concentration. There is no longer a singularity. Meanwhile, being
a continuum theory, the diffuse-interface model is capable of computing macroscopic
flows in complex geometry. Because of these attractive features, several groups have
applied the Cahn–Hilliard version of the model, called the CH model hereafter, to
contact-line problems, e.g. Seppecher (1996), Jacqmin (2000), Villanueva & Amberg
(2006), Khatavkar, Anderson & Meijer (2007), Ding & Spelt (2007) and Huang,
Shu & Chew (2009).

But there are difficulties, both conceptual and technical, facing this approach.
When the CH model is used to compute interfacial flows without contact lines, the
underlying assumption is to approach the so-called sharp-interface limit (Caginalp &
Chen 1998; Lowengrub & Truskinovsky 1998). Mathematically, this relates the diffuse-
interface picture to the classical Navier–Stokes description of internal boundaries of
zero thickness. Computationally, this provides a sort of ‘convergence criterion’ for
diffuse-interface computations, which typically use interfaces much thicker than the
real ones (Khatavkar, Anderson & Meijer 2006). The hydrodynamic results become
definite and meaningful only if they no longer depend on the interfacial thickness,
that is to say when the sharp-interface limit is reached (Yue et al. 2006).

For the moving-contact-line problem, however, the sharp-interface limit has not
yet been firmly established (Wang & Wang 2007). This is a severer deficiency than
would be for non-contact-line problems. For the latter, the diffuse interface is chiefly
a numerical device for capturing moving interfaces (Yue et al. 2004); the Cahn–
Hilliard diffusion within the interfacial region is of little interest and indeed dies out
as the interface gets thinner. For a moving contact line, however, the Cahn–Hilliard
diffusion embodies key molecular processes that determine the contact-line speed
and the dynamic contact angle. Does this picture have a well-defined sharp-interface
limit? If yes, is this limit physically meaningful?

A survey of the literature shows that these questions have never been seriously
studied before. Prior computational work is concerned primarily with implementing
the Cahn–Hilliard formalism in algorithm and reproducing ‘qualitative’ features of
the process. The objectives of the present study are to (a) establish the sharp-interface
limit for the moving-contact-line problem, (b) demonstrate a connection between
this limit and the conventional idea of slip and (c) provide practical guidelines for
attaining that limit computationally.

2. Theoretical model
Consider a system of two nominally immiscible Newtonian fluids in contact with

each other and with a solid surface (figure 1). We introduce a scaled ‘concentration’
φ such that in the two-fluid bulks φ = ±1 and the fluid–fluid interface is given by
φ = 0. Denoting the fluid domain by Ω and the solid surface by ∂Ω , we write the
free energy of the system as

F =

∫
Ω

fm(φ, ∇φ) dΩ +

∫
∂Ω

fw(φ) dA, (2.1)
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Figure 1. A static contact line viewed in (a) the sharp-interface model and (b) the diffuse-interface
model: n is the outward normal to the wall and ξ is the normal to the interface; other symbols are
defined in the text.

where the fluid–fluid mixing energy (Cahn & Hilliard 1958)

fm(φ, ∇φ) =
λ

2
|∇φ|2 +

λ

4ε2
(φ2 − 1)2 (2.2)

and the wall energy (Cahn 1977; Jacqmin 2000)

fw(φ) = −σ cos θS

φ(3 − φ2)

4
+

σw1 + σw2

2
. (2.3)

In fm, λ is the mixing energy density and ε is the capillary width, and in equilibrium
the fluid–fluid interfacial tension is given by

σ =
2
√

2

3

λ

ε
. (2.4)

The wall energy is designed so that away from the contact line, fw(±1) gives the
fluid–solid interfacial tensions σw1 and σw2 for the two fluids, which determine the
static contact angle θS through Young’s equation σw2 − σw1 = σ cos θS . In equilibrium,
minimizing F shows that φ contours are parallel lines intersecting the wall at the angle
θS . Along the normal to the interface ξ , φ retains its characteristic hyperbolic-tangent
profile, undisturbed by fw . Note that with this energy formulation, it is numerically
difficult to accurately reproduce a θS close to 0◦ or 180◦, and the model cannot handle
precursor films.

A variational procedure (Jacqmin 2000; Qian, Wang & Sheng 2006a) leads to the
bulk chemical potential G = λ

[
−∇2φ + (φ2 − 1)φ/ε2

]
and a ‘body force’ B = G∇φ

that is the diffuse-interface equivalent of the interfacial tension (Yue et al. 2006). Now
we can write out the Navier–Stokes and Cahn–Hilliard equations for the CH model:

∇ · v = 0, (2.5)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ ·

[
μ

(
∇v + (∇v)T

)]
+ G∇φ, (2.6)

∂φ

∂t
+ v · ∇φ = ∇ · (γ ∇G). (2.7)

In the momentum equation, the density ρ and viscosity μ are algebraic averages of
the fluid components. The Cahn–Hilliard equation describes the convection-diffusion
of the species, with a diffusive flux proportional to the gradient of G, the coefficient
γ being the mobility parameter. These are supplemented by the following boundary
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Figure 2. Steady (a) Couette and (b) Poiseuille flows of two immiscible fluids, viewed in a reference
frame attached to the steadily moving contact line: θD is the microscopic dynamic contact angle and
θM is a suitably defined apparent contact angle. Through (2.10), we assume fluid–solid equilibrium
on the substrate and θD = θS .

conditions on the solid substrate ∂Ω:

v = vw, (2.8)

n · ∇G = 0, (2.9)

λn · ∇φ + f ′
w(φ) = 0, (2.10)

where vw is the wall velocity. The second condition, zero flux through the solid wall,
is self-evident. The no-slip condition implies that the motion of the contact line is
entirely due to the Cahn–Hilliard diffusion. It is possible to introduce a slip velocity
here (Qian et al. 2006b), which would allow more freedom in fitting the data and
perhaps also a better representation of the true physics. Given the objectives of the
present work, however, it seems reasonable to restrict the number of parameters
to a minimum. Equation (2.10) is the natural boundary condition arising from the
variation of the wall energy fw . It represents a local equilibrium at the wall and
constrains the dynamic contact angle θD to the static value θS to the leading order
(Jacqmin 2000). This condition may be generalized to include wall relaxation and
to allow θD to deviate from θS . Though a key idea to molecular-kinetic modelling
and MD simulations (Qian et al. 2003, 2006b; Blake 2006), we will not consider wall
relaxation in this work.

3. Dimensionless groups
We consider steady Couette and Poiseuille flows in a reference frame in which the

walls are in motion but the interface is stationary (figure 2). The former corresponds to
shearing between two parallel planes, while the latter corresponds to the displacement
of one fluid by another in a capillary tube. The length of the computational domain
is 4W for Couette flow and 6W for Poiseuille flow; these are sufficiently long such
that the interface does not affect the inflow and outflow conditions. As contact-line
dynamics is most significant for slow flows, we neglect inertia. Then the independent
parameters of the problem are channel width or tube radius W , velocity V , component
viscosities μ1 and μ2, static contact angle θS , mixing energy density λ, capillary width
ε and interfacial mobility parameter γ . Note that σ is given by (2.4). Out of these,
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five dimensionless groups can be constructed:

Ca =
μ1V

σ
(capillary number), (3.1)

μ∗ =
μ2

μ1

(viscosity ratio), (3.2)

Cn =
ε

W
(Cahn number), (3.3)

S =

√
γμ1

W
, (3.4)

θS (static contact angle). (3.5)

In the literature, a Péclet number Pe = V Wε/(γ σ ) is sometimes used instead of S

(e.g. Villanueva & Amberg 2006; Khatavkar et al. 2007). It will soon become clear
that S reflects the diffusion length scale at the contact line and is therefore more
appropriate for our purpose.

The key observable of the problem is the interfacial shape and in particular the
apparent contact angle θM . For Couette flow (figure 2a), θM is defined as the angle
of interfacial inclination at the centre of the channel (Thompson & Robbins 1989).
For Poiseuille flow (figure 2b), the interface assumes a spherical shape at the centre,
and we define θM by extrapolating the spherical cap to the walls (Hoffman 1975;
Fermigier & Jenffer 1991): θM = cos−1(W/R), R being the radius of the spherical cap.
Now θM can be expressed as a function of the dimensionless groups:

θM = f (Ca, μ∗, θS, Cn, S). (3.6)

Among these, Ca , μ∗ and θS are the same as in sharp-interface models, while Cn and
S, which represent interfacial thickness and the Cahn–Hilliard diffusion respectively,
are specific to the CH model. Their values are not easily assessed for real materials
and hence are somewhat uncertain, and their roles in the moving contact line will
be the focus of the rest of the paper. First, we examine the relationship between S

and Cn in order to achieve the sharp-interface limit. This establishes a protocol that
ensures convergence of the numerical result towards a definite solution. Second, we
compare the sharp-interface limit with the theory of Cox (1986) to show that this
limit is physically meaningful.

These are accomplished by numerical computation and scaling arguments. The com-
putation uses Galerkin finite elements on an adaptive triangular grid that adequately
resolves the interfacial region. The Navier–Stokes and Cahn–Hilliard equations are
integrated using a second-order accurate, fully implicit time-marching scheme. Details
of the numerical algorithm and validation can be found in Yue et al. (2006).

4. The sharp-interface limit
Real interfaces have a thickness of the order of nanometres. Thus, to simulate the

dynamics of a 1 mm drop while resolving the Cahn–Hilliard diffusion within a 1 nm
interface, the diffuse-interface method would have to bridge six decades of length
scales. This is much beyond the capability of current computers and algorithms.
Fortunately, the diffuse interface between two ‘bulk fluids’ mathematically converges
to a unique sharp-interface limit when Cn → 0, and this limit can be attained
for Cn = O(10−2) in practice. This is amply computable, especially with the help
of adaptive meshing (Yue et al. 2006). Such an upper bound on Cn restricts the
physical size of the problems that can be simulated. Nevertheless, the existence of the
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Figure 3. Convergence of the moving contact line to the sharp-interface limit with decreasing Cn .
(a) Steady interfacial shapes in Couette flow for three Ca values with S = 0.01 and θs = 90◦ fixed.
(b) Couette flow for three θS values with S = 0.01 and Ca = 0.02 fixed. (c) Poiseuille flow with
Ca = 0.02, S = 0.01 and θs = 90◦ fixed. In all plots, x is the flow direction. For Couette flows, the
walls are at y = 0 and 1. For Poiseuille flows, the tube wall is at y = 0 and the centre at y = 1. In
all cases, viscosity ratio μ∗ = 1.

sharp-interface limit ensures that computations using sufficiently small Cn produce
physically meaningful, converged solutions that can be compared with experiments
and sharp-interface calculations.

If the fluid–fluid interface intersects a solid wall and forms a contact line, the
situation becomes much murkier. Previous computations used Cn ranging from
5 × 10−3 to 0.3 (e.g. Jacqmin 2000, 2004; Ding & Spelt 2007), but the question of
convergence to a sharp-interface limit was never raised. Using matched asymptotic
expansions in Cn , Wang & Wang (2007) probed the limiting behaviour near the
contact line. To the leading order, the outer solution prevailing outside the interface
is shown to behave regularly, with no diffusion-induced slip on the wall. The inner
solution, which would have given the diffusive flux at the contact line and hence
the contact-line speed, was not given. Thus, it remains unclear whether a unique
sharp-interface limit exists for the CH model for the moving contact line.

4.1. Numerical results

Through numerical experiments, we have gathered empirical evidence for the existence
of the sharp-interface limit and have developed a practical guideline about achieving
it using finite Cn . Figure 3 demonstrates that when Cn is reduced while all other
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Figure 4. Variation of the apparent contact angle in Couette flow with Cn (representing the
interfacial thickness) and S (representing the mobility parameter): θS = 90◦, Ca = 0.02, μ∗ = 1 and
ΔθM is defined as θM − θS .

parameters, including S, are kept constant, the interface converges to a unique shape.
This has been verified for Couette and Poiseuille flows at several Ca , θS and μ∗ values.

From figure 3, it seems reasonable to take Cnc = 0.01 or 0.02 to be the threshold
for convergence to the sharp-interface limit; these values are consistent with those for
flows without contact lines (Yue et al. 2006). However, a more careful examination
shows that Cnc varies with S. In figure 4, we plot the apparent contact angle θM

with decreasing Cn for four different S values. For the largest S = 3.16 × 10−2, θM is
constant for all Cn values tested, and so Cnc > 0.04. For the smallest S = 10−3, on
the other hand, even the smallest Cn = 5 × 10−3 is too large for convergence. Based
on convergence for the two intermediate S values, we propose

Cnc = 4S (4.1)

as a guideline for approaching the sharp-interface limit. With μ∗ around 1, we have
tested other values of Ca and θS , also in Poiseuille flows. This threshold applies in all
these cases. For μ∗ values far from unity, the factor 4 must be modified to include
μ∗ because S is defined using μ1, but μ2 contributes to the dynamics as well. We will
return to this point at the end of § 4 and suggest an ‘effective viscosity’ for formulating
the threshold Cnc.

It may seem natural that the sharp-interface limit should be approached by
reducing Cn while keeping S constant. But this contrasts with a scaling idea in
the literature. In simulating interfacial flows without contact lines, many reasoned
that since the diffuse-interface model uses an artificially thick ε, the Cahn–Hilliard
mobility parameter γ should be adjusted somehow to compensate for it (Jacqmin
1999). Therefore, γ should obey a scaling law with respect to ε for the model to
yield consistent results at different ε values and to attain the sharp-interface limit. A
power-law scaling γ ∼ εn has been proposed, with the index ranging from n = −1
to n = 2 for different flow situations (Khatavkar et al. 2006; Yue, Zhou & Feng
2007). For the moving-contact-line problem, Jacqmin (2000) used γ ∼ ε but did not
offer a justification or verification. In fact, figure 3 of his work indicates a lack of
convergence towards a steady-state interface when γ and ε approach zero at the
same rate. We have tested the different power laws for the Couette flow geometry,
and figure 5 shows unequivocally that only γ ∼ ε0 or S ∼ Cn0 leads to convergence
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Figure 5. Testing the scaling laws γ ∼ εn (i.e. S ∼ Cnn/2) for steady interface shapes in Couette
flow: Ca = 0.02, θs = 90◦ and μ∗ = 1 are fixed, while Cn and S are varied with respect to the
baseline Cn = 0.01 and S = 0.01. (a) n = −1; (b) n = 0; (c) n = 1; (d ) n = 2.

to the sharp-interface limit. With Cn → 0, n = −1 tends to produce a limiting
behaviour of a vertical interface (figure 5a), with perfect slip at the contact line as
the Cahn–Hilliard mobility tends to infinity. Conversely, the interface for n = 1 or 2
tends to a ‘immobilized contact line’ with zero slip (figure 5c, d ), as Cahn–Hilliard
diffusion vanishes. The latter corresponds to the asymptotic analysis of Jacqmin
(2000), where the inner solution collapses as ε → 0 and γ → 0. As explained later,
the curves in figure 5(a , c, d ) may be seen as corresponding to different ‘effective slip
lengths’.

4.2. Scaling arguments

We now offer scaling arguments that explain why the sharp-interface limit is
approached by S ∼ Cn0 but not the other power laws. It is well recognized that
the diffuse interface has two inherent length scales: ε representing the interfacial
thickness and a much larger length scale over which the Cahn–Hilliard diffusion
takes place (Chen, Jasnow & Viñals 2000; Jacqmin 2000; Briant & Yeomans 2004).
We will call the latter the diffusion length lD . Thus, φ varies over ε, while the
chemical potential G and flow velocity u vary over lD (see the Appendix for a detailed
explanation). One can derive scaling relationships for G and lD at the contact line
from force and mass balances ((2.6) and (2.7)). Note that p varies sharply across the
interface, but outside lD it is essentially a constant. Thus, ∇p drops out if we integrate
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respectively. The thick line describes the location of interface.

(2.6) along the wall from x = −lD to lD (cf. figure 2):∫ lD

−lD

(
G

∂φ

∂x
+ μ

∂2u

∂x2

)
dx = 0, (4.2)

where we have omitted inertia. Using the maximum Gmax to represent the magnitude
of G and noting that φ varies over order one, we obtain

Gmax ∼ μV

lD
. (4.3)

For brevity, we have used the same μ to denote the characteristic viscosity near the
interface; it may be one of the component viscosities or their average. Similarly,
integrating the Cahn–Hilliard equation (2.7) along the wall from x = −lD to x = lD
produces a balance between the convective flux across the interface vφ ∼ V and the
diffusive flux γ ∇G ∼ γGmax/ lD:

V ∼ γGmax

lD
. (4.4)

Combining the above scalings, we get

lD ∼ √
γμ (4.5)

and

Gmax ∼ μV
√

γμ
. (4.6)

Note that in our nomenclature, we have assigned the bulk values of φ to ±1. Other
authors have adopted different conventions, say with φ = ±α in the bulk phases
(Jacqmin 2000). Then the diffusion length should be written as

√
γμ/α.

These scalings support the observations that the sharp-interface limit is approached
by keeping S (or γ ) constant while reducing Cn (or ε). Neither Gmax nor lD depends
on ε. Therefore, there is no need to compensate for a thicker ε by adjusting the
Cahn–Hilliard diffusion. The scaling has been verified by our numerical simulations.
With Cn decreasing from 0.01 to 0.0025 and S = 0.01 and Ca = 0.02 fixed, G

contours around the contact line stay essentially unchanged (figure 6), as does the
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velocity field. This unique converged solution is the sharp-interface limit. Besides, we
have varied V and γ systematically to confirm (4.6), which in dimensionless form
may be written as

Gmax

σ/W
∼ Ca

S
. (4.7)

Figure 7 clearly demonstrates the proportionality of Gmax with Ca/S.

4.3. Diffusion length

The significance of the diffusion length lD warrants further discussion. First, (4.5) is
the same as suggested by Jacqmin (2000) based on dimensions. But it differs from the
scaling derived by Briant & Yeomans (2004),

lD ∼ (γμε2)1/4, (4.8)

which is based on balancing the viscous and interfacial forces ‘locally’ at a spatial
point. This ignores the order-one effect of ∇p, which we have handled by integrating
in (4.2).

Second, Jacqmin (2000) showed that in the asymptotic limit of Ca → 0, lD → 0
and ε/ lD → 0, lD can be related to the ‘slip length’ ls in the sharp-interface analysis
of Cox (1986). Note that Jacqmin’s limit is an immobile contact line, as he required
both γ and ε approaching zero; it is not the sharp-interface limit as defined here.
Nevertheless, our computations show that this connection between lD and ls holds in
our case as well. In fact, it extends to the entire range of Ca , up to the critical value
for wetting failure. This is illustrated in figure 8 in terms of the apparent contact
angle θM . Cox (1986) expressed θM in a celebrated formula:

g(θM, μ∗) = g(θS, μ
∗) + Ca ln(δ−1), (4.9)

where g is a complex but known function given in the original paper and δ = ls/W

is the ratio between the slip length and the macroscopic length. If we equate our
S = lD/W to Cox’s δ, then the CH model predicts θM (Ca) curves in close agreement
with Cox’s formula. The physical meaning of this correspondence can be made more
precise by studying the local flow field surrounding the contact line (figure 9). For all
Ca , S and θS values tested in Couette and Poiseuille flows, the stagnation point always
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Figure 9. Steady-state velocity field near the contact line in Poiseuille flow: θS = 98◦, μ∗ = 0.9,
Ca = 0.02, Cn = 0.01 and S = 0.01. The solid lines are the level sets of φ = ±0.9, and the black dot
indicates the stagnation point. Note that the level sets of φ are essentially parallel curves once the
sharp-interface limit is attained. Over a larger length scale, the flow field manifests the characteristic
wedge-flow pattern of Huh & Scriven (1971).

sits at approximately the same distance (D ≈ 2.5lD) from the wall provided that Cn
is small enough to attain the sharp-interface limit. This distance is consistent with
the calculations of Jacqmin (2000). If one views the flow between the wall and the
stagnation point as ‘slip’ of the contact line, then D ≈ 2.5lD bears the concrete meaning
of the slip length. Furthermore, if we equate 2.5lD with Cox’s slip length ls (or in
dimensionless form δ = 2.5S), then Cox’s formula falls almost precisely on the Cahn–
Hilliard prediction (figure 8). This confirms more quantitatively the correspondence
between D = 2.5lD and the slip length ls in the sharp-interface context.

To further elucidate the connection between lD and ls , we explore the asymptotic
behaviour of the apparent contact angle in the CH model as lD decreases towards
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Figure 10. Verification of the logarithmic behaviour of θM in the CH model. The computation is
for a Poiseuille flow with Cn = 0.005, μ∗ = 0.9 and θS = 98◦. The best linear fitting has a slope of
k = 0.94.

zero. To guarantee that the interfacial thickness falls in the sharp-interface limit for
the smallest lD tested, we choose Cn = 0.005 instead of Cn = 0.01. Figure 10 clearly
shows the logarithmic divergence of Cox’s formula, and both numerical data sets
fall on the same straight line. Note that the slope k = 0.94 is slightly below Cox’s
formula (k = 1), and the intercept corresponds to − ln(1.5S) rather than − ln(2.5S).
Nevertheless, the CH model manifests an asymptotic behaviour that largely agrees
with Cox’s formula.

Finally, the physical picture for lD – as the Cahn–Hilliard diffusion length as well
as the effective slip length – gives additional meaning to the threshold Cnc (4.1)
for attaining the sharp-interface limit. Since Cn/S = ε/ lD , requiring this ratio to be
below an upper bound amounts to requiring the diffusion length to be ‘resolved’ by
an adequate number of the capillary width ε. This is reminiscent of the finding of
Zhou & Sheng (1990) in their sharp-interface calculations with slip models that one
needs a sufficient number of grid points inside the slip region to ensure accuracy of the
solution. What is surprising is the numerical factor Cnc/S = 4. In the physical picture
of the diffuse interface, one expects lD to be much larger than ε. Thus, Cnc = 4S is a
remarkably forgiving criterion. It implies that the Cahn–Hilliard result converges to
the sharp-interface limit for interfaces as thick as many times of lD .

So far, we have presented results for viscosity ratio μ∗ equal or close to one. For
highly dissimilar viscosities, the diffusion length lD has to be modified to include μ∗.
Calculations show that the stagnation point in figure 9 migrates towards the less
viscous component and the solid wall, with a recirculating eddy on the less viscous
side, similar to the findings of Sheng & Zhou (1992). Thus, stronger shear takes
place in the less viscous region, and the result is more sensitive to the lower viscosity.
Figure 11 shows that the observation D ≈ 2.5lD still holds if we use an ‘effective
viscosity’ μe =

√
μ1μ2 to define lD =

√
μeγ . The redefined lD retains its connection

to the stagnation point and hence to the slip length ls for all values of μ∗ tested.
Furthermore, numerical tests confirm that the criterion for convergence to the sharp-
interface limit, ε = 4lD or Cnc = 4S (4.1), remains valid if lD and S are redefined using
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Figure 11. Position of the stagnation point as a function of viscosity ratio in Poiseuille flow: D
is the distance between the stagnation point and the wall; lD is redefined as lD =

√
μeγ , where

μe =
√

μ1μ2 is the effective viscosity; θS = 90◦; Cn = 5 × 10−3. The symbols represent different
schemes in varying the viscosities and S. The circles are for a fixed Ca = 0.01, with the open and
closed circles at S = 0.01 and 0.02, respectively. The squares correspond to Ca/μ∗ = 0.01 being
fixed, with the open and closed squares at S/

√
μ∗ = 0.01 and 0.02, respectively.

μe. Therefore, all conclusions drawn from equal-viscosity systems can be extended to
unequal-viscosity systems by replacing μ with μe.

5. Conclusions
Diffuse-interface models regularize the stress singularity at the moving contact line

and offer a straightforward route for conducting flow simulations. For the results
to be meaningful and useful, however, such simulations must produce definite and
converged results in a self-consistent way. Through theoretical analysis and numerical
simulations of the CH model, we have clarified and explained the behaviour of the
model and have produced practical guidelines for numerical simulations. The main
results can be summarized as follows.

(a) The CH model has a sharp-interface limit that is approached by reducing the
interfacial thickness while keeping all other parameters fixed.

(b) There is a deep connection between the CH model and the theory of Cox
(1986). The CH model predicts a diffusion length scale for the contact line lD =

√
γμ,

which corresponds to the slip length ls in the Cox theory. It is this lD , rather than the
interfacial thickness, that controls the contact-line dynamics.

(c) To attain the sharp-interface limit, the capillary width of the interface should
satisfy ε < 4lD . This is recommended as a guideline for producing convergent results
for the moving contact line.

As a local model for the contact line, the CH model enjoys two advantages over the
Cox model. First, it replaces the ad hoc slip condition with Cahn–Hilliard diffusion
that can, to a good degree, be interrogated for physical insights. Thus, the CH model
employs a deeper phenomenology, which, through the notions of viscous bending
and wall relaxation, integrates hydrodynamic and molecular-kinetic ideas and is
therefore more comprehensive than the Cox model. Second, the diffuse interface is
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also a computational tool for interfacial flows. Unlike the asymptotic Cox theory, for
example, the CH model applies to large-scale flows at finite Ca in complex geometries.

As compared with slip-based computations using other interface-capturing schemes,
a unique advantage of the CH model is that it captures the interface and regularizes
the moving contact line by using a single scalar φ field.

A potential limitation of the CH model for computing moving contact lines, and to
a lesser degree for computing other interfacial flows, is the need to use artificially large
ε and lD values. Real interfaces have a thickness of the nanometre scale. Typical slip
and diffusion lengths at the contact line are roughly in the same range. Thus, if the
macroscopic scale of the problem exceeds say hundreds of microns, the span of length
scales becomes too wide for today’s computing capability. This raises new questions.
Is it possible for the CH model to quantitatively predict macroscopic behaviour of
moving contact lines by using numerically manageable ε and lD? If so, what are the
upper bounds for these parameters? These questions should be investigated in future
work.
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Appendix. Length scale of chemical potential G

Although often assumed in the literature, the fact that G varies over a length scale
different from φ has apparently never been justified explicitly. Here we provide a
simple explanation.

Across a planar interface at equilibrium, G = 0 everywhere and φ assumes a
hyperbolic-tangent profile (Yue et al. 2004):

φ(x) = φ0(x) = tanh

(
x√
2ε

)
, (A 1)

where x is the coordinate in the direction perpendicular to the interface and x = 0 at
the centre of the interface.

Now we impose a slow flow (Ca = μV /σ � 1) that distorts the interface, as in the
devices in figure 2. Let us write

φ = φ0 + φ1, (A 2)

where φ1 accounts for the deviation of φ from φ0; φ0 has the length scale ε, but it
amounts to G = 0 and does not contribute to the length scale of G. So the length
scale of G depends mostly on φ1. Under slow-flow conditions, φ1 is related to the
interface curvature κ (see equation (11) of Yue et al. 2007):

φ1 ∼ κε. (A 3)

The balance between capillary force σκ and viscous force μV/l, where l is the length
scale for the variation of the flow, determines the magnitude of κ . Away from the
contact line, l is the macroscopic length W , and thus κ ∼ Ca/W . In the contact-line
region of size ∼lD , the interface curvature because of viscous bending is κ ∼ Ca/lD .
As κ varies over the length scale lD , so do φ1 and G.

The upshot is that G has a length scale different from φ because of the higher-order
nonlinear effects. For a general non-planar interface without contact line, G ∼ σκ
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depends on the local curvature of the interface. As κ varies on a macroscopic length
scale, G varies over the same macroscopic length scale rather than ε.
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