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Enhanced slip on a patterned substrate due to depinning of contact line
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We perform numerical simulations of a shear flow over a periodically patterned substrate with
entrapped gas bubbles. A diffuse-interface model is employed to handle the liquid-gas interface
deformation and the three-phase contact line. Depending on the shear rate and the pattern geometry,
four flow regimes are observed. The contact lines can be pinned, depinned, or eliminated depending
on the competition between the shear force and the surface tension. The effective slip length is found
to be dependent on the morphology of the menisci and hence on the shear rate. In particular, the
bubbles are transformed into a continuous gas film when the shear rate is larger than a critical value,
resulting in a significantly enhanced slip length proportional to the liquid-gas viscosity ratio. The
present results have interesting implications for effective slip on superhydrophobic surfaces.

© 2009 American Institute of Physics. [doi:10.1063/1.3254253]

I. INTRODUCTION

Recent development of micro- and nanofluidic devices
has prompted a re-examination of the fluid-solid boundary
condition, and there is mounting evidence from experiments
as well as numerical simulations for slippage on solid
walls."” From a practical viewpoint, wall slip may be desir-
able because of reduction in flow resistance or undesirable
because of suppressed dispersion or mixing.

The amount of wall slip is commonly represented by the
slip length b, defined using Navier’s law,

vS=b’j/W” (1)

where vy is the slip velocity and 7, is the shear rate at the
wall. Typically, b is on the order of a few tens of nanometers
on smooth surfaces,” and is too small to produce a signifi-
cant modification of the microscale flow. Experimenters have
achieved much greater slip on two types of modified sub-
strates: smooth hydrophobic surfaces®’ and microtextured
surfaces with topological patterns such as posts, grooves, and
cavities.® In the former case, it is believed that nanobubbles
are entrapped on the surface because of the poor wettability
and they play a central role in generating large slip.gf11 In the
latter case, the surface texture is designed expressly to pro-
duce micron-sized bubbles or a gas layer, and such “super-
hydrophobic” surfaces are often likened to the lotus leaf. In
both cases, the low-viscosity gas bubbles act as a lubricant so
that the liquid can slide on them, resulting in large slippage.
Of course, such slippage should be regarded as “apparent” or
“effective” slip due to the interface with a low-viscosity gas,
and differs from the true slip between the liquid and solid
molecules.'? With optimal designs, micropatterned substrates
have exhibited slip length of tens and even hundreds of
microns,13’14 and a number of experimental,ls_17
computational,lg_20 and theoretical®'"* studies have been de-
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voted to superhydrophobicity and the associated large slip-
page.

A somewhat controversial aspect of such bubble-induced
slip is how b depends on the imposed shear rate y. Most
experiments performed in microchannels showed an essen-
tially constant b, unaffected by )'/.13’16’23’24 However, Choi
et al.* observed a linear increase in b with v on smooth
hydrophobic surfaces. What seems to distinguish this study
from the others is that they have used particularly small
channel heights (~1 wm) and therefore achieved higher
shear rates y~10°/s. In addition, experiments performed
with the atomic force microscope (AFM) and the surface
force apparatus (SFA) have also reported strong increase in b
with ¥ at high shear rate.*® In both the AFM and SFA setup,
two solid walls are squeezed toward each other to induce
drainage flow in the narrow gap at shear rates as high as y
~ 10*/s. However, it is unclear at present whether the appar-
ent slip in the AFM and SFA experiments is of the same
origin as in shear flows in microchannels. In fact, Lauga and
Brenner” and Steinberger et al.*® demonstrated that the in-
creasing hydrostatic pressure during squeezing flows,
coupled with the compressibility of the gas phase, can ac-
count for the apparent dependence of b on 7.

Since the slippage is induced by the gas bubbles, it is
reasonable to expect b to depend on the morphology of the
gas-liquid interface. There seems to be no experimental ob-
servation or data in the literature on how the interfacial mor-
phology affects the apparent slip. Besides the small spatial
dimensions, the scarcity of experimental results may be be-
cause of the very high shear rates required to deform small
substrate-bound bubbles.”! To our knowledge, the only in-
vestigation so far is the lattice-Boltzmann simulation of
Hyvéluoma and Harting27 of a shear flow over an entrapped
bubble. With the contact line pinned on the solid substrate,
their results show that the bubble deformation due to external
shear causes the slip length b to decrease significantly with
v. This contradicts experimental data showing b increasing
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liquid

FIG. 1. Schematic of the flow geometry. The dashed lines mark the compu-
tational domain, which is periodic in the horizontal direction.

with '5/.4’28 Therefore, the question of how bubble-induced

apparent slip depends on the shear rate appears to be unre-
solved.

Here we propose a mechanism based on shear-induced
depinning of the contact line which may explain the shear
enhancement of slip over bubbles. This is based on the fol-
lowing physical picture. A bubble pinned onto the edges of
surface roughness will be deformed at high flow rates. If the
substrate is hydrophobic, the contact lines may be depinned
relatively easily to allow the bubble to spread or even slide
along the substrate, thereby augmenting the apparent slip.
This scenario is explored by performing two-dimensional
(2D) simulations of a shear flow over a periodic topology,
with low-viscosity bubbles being trapped in equally spaced
rectangular grooves.

Il. PROBLEM SETUP AND NUMERICAL METHOD

Consider a Newtonian liquid confined in a microchannel
of height H with a smooth upper wall and a roughly pat-
terned lower wall, as illustrated in Fig. 1. In two dimensions,
the roughness is represented by spatially periodic ridges or
grooves. The width and depth of the groove are /, and A,
respectively, and the ridge width is /,. We assume the liquid-
solid contact to be in the Cassie state with gas bubbles
trapped in the grooves. The volume of the entrapped gas is
prescribed by the equilibrium “protrusion angle” 6,. Under
flow, the protrusion angle will deviate from 6, and differ
between the contact lines upstream and downstream of the
groove. The gas is treated as an incompressible fluid with a
viscosity u, that is much smaller than the liquid viscosity u;.
Inertia is negligible and the liquid-gas density ratio plays no
role. The flow is driven by the upper wall moving in its own
plane with a constant velocity U, and the lower wall being
stationary.

This setup ensures the presence of entrapped bubbles
that protrude into the liquid. As will be seen shortly, the
protruding menisci play key roles in the phenomena of inter-
est here. As such, we should point out several assumptions
implied by this setup. First, real surface textures may consist
of pillars or cavities. Our geometry assumes the 2D counter-
part of the latter. Thus, the bubbles are bounded and isolated,
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in contrast to the interconnected gas network formed by
pillars.8 Second, we have neglected loss of the gas into the
liquid by diffusion or vapor condensation. In reality, such
mechanisms tend to deplete the gas pocket and diminish the
effects to be discussed.” Finally, we have assumed a suffi-
cient amount of trapped gas such that the meniscus protrudes
into the liquid. If the meniscus is flat or even concave (6,
=0), no contact line depinning occurs and the gas cannot
greatly enhance apparent slippage. In reality, the amount of
gas trapped in cavities depends on how the liquid is applied
over the substrate, and has a critical effect on superhydro-
phobicity and slippage.29

The computational domain is the unit cell enclosed by
the dashed line in Fig. 1, and periodic boundary conditions
are employed at the inlet and the outlet. To obtain the appar-
ent slip length b, we calculate the average shear rate at the
upper wall, y,,, and then determine the slip length by

b= (ﬁ— I)H, 2)
Pov

where y,=Uy/H is the nominal shear rate of a Couette
flow.”’

The liquid-gas interface and the moving contact line are
modeled by a diffuse-interface method.***' We introduce an
order parameter ¢ such that ¢=1 in the liquid and ¢=-1 in
the gas. The position of the interface is given by ¢=0 and ¢
varies smoothly across the interface. The convection and dif-
fusion of ¢ are governed by the Cahn—Hilliard equation

i—‘f+v.v¢=v.(Mvc), (3)

where M is the mobility, v is the velocity vector, and G
=N[-V2¢+(¢*>— 1)/ €] is the bulk chemical potential. \ is
the mixing energy density and € is a measure of the interface
thickness; in equilibrium they are related to the surface ten-
sion o by
=
2V2 N\
=—". 4

o= (4)
In the absence of inertia, the flow is governed by the conti-
nuity equation and a modified Stokes equation,

V-v=0, (5)

-Vp+V-(uVv)+GV =0, (6)

where p is the pressure, M:%(1+¢),ul+%(l—¢),ug, and the
GV ¢ term represents the contribution of the surface tension.

The wettability of the substrate is described by a wall
energy f, that discriminates between the two fluid
components,

¢(3 - ¢2) n O+ o-gs
4 2 7

Ju(@) == o cos bs (7)
where 6g is the static contact angle determined by Young’s
equation g,,— =0 cos by, 0;; and o, being the liquid- and
gas-solid interfacial tensions, respectively. Then the follow-
ing boundary conditions may be imposed on the solid
substrate:>2
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v=v,, (®)
n-VG=0, 9)
A -V +f () =0, (10)

where v,, is the wall velocity and n is the outward normal
vector to the wall (pointing from the fluid into the wall). The
second condition represents zero mass flux through the sub-
strate, and the third is a natural boundary condition arising
from variation of the wall energy. It implies rapid wall
relaxation so that the fluids are at equilibrium with the solid,
and the dynamic contact angle remains at the equilibrium
value 05.30

The governing equations together with the boundary
conditions are numerically solved with a finite-element pack-
age AMPHI, which employs unstructured triangle elements
and adaptive meshing. The detailed algorithm was discussed
by Yue et al.>® and extensive validations were performed.

The geometry is described by the following length ra-
tios: h/l,, H/l,, and W=I/l,. In equilibrium, the liquid-gas
interface is a circular arc with protrusion angle 6,. The mac-
roscopic physical parameters can be combined into three di-
mensionless numbers: the capillary number Ca=w,;yl,/ o,
the viscosity ratio m=pu,/pu,, and the equilibrium contact
angle f. The diffuse-interface model introduces two addi-
tional dimensionless numbers: the Cahn number Cn=¢//,
and S=\Mu*/l, with u*= me' These indicate, respec-
tively, the interfacial thickness and the Cahn-Hilliard diffu-
sion length relative to the macroscopic length /,, with the
diffusion length being the counterpart of the “slip length” in
sharp-interface models for contact lines.****

In the computations to be presented, we have fixed
hil,=1, H/l,=4, 6,=45°, and 65=120°. The large static con-
tact angle is motivated by the fact that experiments typically
use hydrophobic substrates to ensure the Cassie state. The
role of wettability on depinning is easy to anticipate [cf. Eq.
(11)] and thus we did not examine other 6y values. The vis-
cosity ratio between water and air is on the order of 50, and
we have used m=25 for all the computations except those
reported in Fig. 11 for m=50. Cn and § values are dictated
by the requirements to achieve the sharp-interface limit and
to accurately capture the effective slip length.35 We have
used §=0.01 in all the simulations, and determined the ap-
propriate Cn values through numerical experiments to be dis-
cussed shortly. Thus, the main control parameters are Ca and
W, and the numerical results are presented largely as a para-
metric study in the (Ca, W) plane. The initial condition has a
linear shear flow in the channel, stationary gas in the
grooves, and the equilibrium interfacial shape.

lll. RESULTS
A. Sharp interface limit

When using the diffuse-interface model to compute in-
terfacial flows, a key concept is the sharp-interface limit.*>
Real interfaces for common fluids have a thickness of na-
nometers, and usually cannot be resolved in macroscopic
flow computations. Thus, one uses unrealistically large val-
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FIG. 2. Variation of the slip length b with the Cahn number Cn at W=0.5
and two capillary numbers Ca=0.1 and 1.

ues for the capillary width € or the Cahn number Cn. This is
permissible if Cn is small enough such that the numerical
results no longer depend on it. That is when the sharp-
interface limit is attained, where the diffuse-interface theo-
retical framework is consistent with the classical Navier—
Stokes description.

For interfacial flows without contact lines, the sharp-
interface limit is typically approached at Cn~0.01.* Mov-
ing contact lines complicate the issue considerably, and the
existence of a sharp-interface limit has been established only
based on empirical evidence as opposed to analytical proof.
For Couette and Poiseuille flows with a transverse interface,
Yue et al. found that the location of the menisci converges
to a unique solution after Cn falls below a threshold Cn®
~4S, and suggested this as the criterion for achieving the
sharp-interface limit.

For our problem, this criterion turns out to be too lax.
Even though the position of the liquid-gas interface appar-
ently converges for Cn<45=0.04, the slip length b contin-
ues to vary appreciably, as shown in Fig. 2. For the two
smallest values tested, Cn=0.0015 and 0.0025, b differs by
less than 2% for both Ca=0.1 and 1, the smallest and largest
capillary numbers covered in this study. Thus, we have taken
Cn=0.0025 to be the threshold for the convergence of the
slip length, and used it in all calculations reported hereafter.

The reason that b requires a more stringent Cn criterion
than previously suggested has to do with the geometric setup
of the problem, and differs somewhat for the two Ca values
in Fig. 2. Ca=0.1 corresponds to the so-called regime I (see
Sec. III B for details) with a pinned and slightly deformed
bubble. In this regime, the slippage is small and very sensi-
tive to minute errors in the interfacial location. One source of
error is spontaneous shrinkage due to global energy minimi-
zation, which is especially limiting here since the gas bubble
is small relative to the surrounding liquid.37 Thus, smaller Cn
is needed for capturing the slip length accurately. The in-
crease in b with increasing Cn in Fig. 2 reflects the fact that
more severe bubble shrinkage at higher Cn amounts to de-
crease in the protrusion angle, which is known to increase
the slip length in this regime.27’38
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FIG. 3. Phase diagram showing four different flow regimes in the Ca-W
plane. The symbols indicate the individual simulations and the solid lines
delineate the boundaries between the regimes. Regimes I-III are steady and
regime IV is periodic.

The curve for Ca=1 corresponds to regime III, with a
thin, continuous gas film covering the solid substrate and
producing a much larger slip. The thickness of the gas film &
is far less than the groove width /,. To compute b accurately,
as it turns out, we must require €<< 9, a much more stringent
condition than €<</,. Otherwise the interfacial diffusion in-
creases the effective viscosity inside the gas film and artifi-
cially dampens slippage. This also explains the decrease of b
with Cn for Ca=1 in Fig. 2, in contrast to the Ca=0.1 curve.

B. Flow regimes

A detailed parametric investigation of the shear flow
over the patterned substrate is performed by varying W and
Ca. We observe four flow regimes, depicted by the phase
diagram of Fig. 3. Regimes I-III are steady, while regime IV
is time periodic.

1. Regime I with pinned contact line

The shear flow exerts a hydrodynamic force on the gas
bubble via a pressure normal to the interface and a tangential
viscous stress. In the rest of the paper, this hydrodynamic
force will be called the “shear force” for brevity. When the
shear rate is small, e.g., Ca=0.1, the shear force is much
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FIG. 5. Steady regime II at W=1 and Ca=0.73, with the downstream con-
tact line depinned and shifted downstream.

weaker than the capillary force. The bubble is only slightly
deformed such that the local protrusion angle 6 increases on
the downstream side of the bubble and decreases on its up-
stream side [Fig. 4(a)].

The pinning of a contact line on sharp corners reflects
the degeneracy of the local force balance. It is easy to see in
Fig. 4(b) that the contact line is pinned at a 90° protruding
corner provided that the protrusion angle # and contact angle
6 satisfy the following:8’39

90° < 0+ 6 < 180°, (11)

which in our case (#3=120°) translates to —30° < 6<<60°.
Outside this range, the pinning becomes unstable; if the con-
tact line moves off the sharp corner onto the flat substrate,
the local balance among the interfacial forces will favor con-
tinued motion in that direction. Thus a contact line can be
depinned if the shear force due to the external flow becomes
strong enough to drive € outside the range of Eq. (11). These
simple considerations also anticipate the role of substrate
wettability. Hydrophobicity lowers the threshold for depin-
ning on the downstream side of the cavity and facilitates the
spread of the gas bubble on the substrate.

2. Regime Il with depinned contact line

As the shear rate and hence the driving force increase,
the bubble deforms more and more until the protrusion angle
6 downstream of the bubble exceeds the threshold 180°—#6q
[see Eq. (11)]. The contact line downstream then depins and
slides on top of the ridge (Fig. 5). Meanwhile the contact line
upstream of the bubble remains pinned because the substrate
is poorly wetting for the liquid. This asymmetry can be eas-

liquid

(a)

(b)

FIG. 4. (a) The steady regime I at W=1, Ca=0.1, with the contact line pinned at the edges of the ridge. The menisci are indicated by the thick solid curves
while the streamlines by the thin lines. Note the recirculation in the gas. (b) Schematic illustrating the condition for contact line pinning. The dashed curves

represent the thresholds of depinning given by Eq. (11).
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FIG. 6. Schematic illustrating the instability of the meniscus that prompts
the transition from regime II to regime III or IV.

ily understood from Eq. (11) and Fig. 4(b). As the depinned
contact line moves downstream, the bubble effectively
spreads on the substrate. This reduces the height of the pro-
truding bubble and the shear force on it. Moreover, the asym-
metry in the protruding angle becomes more pronounced,
thus increasing the net capillary force that resists further
spreading. Therefore, if the shear rate is not too high, a new
force balance is attained and the contact line stops at a small
distance downstream of the corner. This steady flow is re-
gime II, depicted in Fig. 5 for W=1 and Ca=0.73.

Referring to Fig. 3, we note that with W=1, the shear
rate at Ca=0.73 is very close to the upper bound of regime
II. Further increase in Ca will not lead to steady solutions
with ever increasing displacement of the contact line down-
stream. Rather, the steady solution loses stability in a cata-
strophic change of the interfacial morphology. Two conse-
quences are possible. If the ridge is not too wide (W
=<1.05), the contact line rapidly moves downstream and
merges with the pinned contact line of the next bubble, form-
ing a continuous gas film covering the top of the ridge. A
steady-state solution is then achieved (regime III below). If
the ridge is wider (W= 1.05), the gas film is itself unstable,
and periodically breaks up at the upstream corner of the ridge
(regime 1V).

The destabilization of regime II amounts to a loss of
steady position for the downstream contact line, and can be
qualitatively understood from the force balance on the me-
niscus. Consider the control volume enclosed by the dashed
line in Fig. 6. We assume that the length of the control vol-
ume L is much larger than its thickness d so that the enclosed
gas can be regarded as a thin film. For the thin-film meniscus
to be steady, the following force balance must be satisfied:

Fg+Fp+F,=0(l+cos b), (12)

where F; and F, are the shear forces exerted by the liquid
and the solid, respectively, the latter due to the recirculation
within the gas, as shown in Fig. 6. F), is the force due to the
pressure difference. F; can be estimated from the external
shear as Fy ~ w;¥L. Assuming unidirectional flow in the
film with zero net mass flux, one easily obtains F,=F /2.
The capillary pressure has negligible effect since d <<L. Thus
the meniscus is governed primarily by the balance between
the shear force and the surface tension. However, this bal-
ance is unstable. If the contact line is perturbed toward the
downstream, the length of the film increases and so do the
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FIG. 7. The steady-state regime III at W=1 and Ca=1. The meniscus is
flattened by the shear force to form a continuous gas layer.

shear forces. As the surface tension remains the same, the
force balance is broken and the contact line would continue
to advance. Conversely, a small shift of the contact line up-
stream would lead to continual receding of the meniscus. The
upshot of this analysis is that the contact line cannot have a
steady position far downstream of the corner so as to render
the meniscus a thin film. It will be either fairly close to the
corner, as in regime Il (Fig. 5), or rapidly moving down-
stream to produce regime III or I'V.

The force balance of Eq. (12) also informs the intuition
that hydrophobicity should assist the spread of the gas film.
Together with the contact line depinning criterion discussed
above, this suggests that hydrophobicity facilitates the tran-
sitions from regime I to II and from regime II to III or I'V. As
will be shown in Sec. III C, these transitions are accompa-
nied by increased apparent slippage.

3. Regime Il with continuous gas film

Regime III features a continuous gas layer on top of the
solid ridge as illustrated in Fig. 7. Thus, the liquid is com-
pletely insulated by the gas layer from the solid substrate.
Typically, the liquid-gas interface bulges slightly on top of
the solid ridge but overall stays rather flat. The thickness of
the gas film above the ridge 6 may be estimated from volume
conservation for the gas. The initial volume of the bubble is
Bx(6p)+1gh, with x(80)=(26,—sin 26,)/(8 sin* fy). In re-
gime III, the gas volume in the unit cell under a flat interface
would be (I,+1,)5+1,h. Equating the two yields

. X(ao)l

5= )
1+wW?#

(13)

Two points are notable about this equation. First, for typical
W and 6, values, the thickness of the gas film is much less
than lg. In our diffuse-interface model, therefore, the interfa-
cial thickness must be compared to the local length scale 9,
not the global scale [, or H. This is the reason, as pointed out
before, for the much more stringent criterion on Cn for at-
taining a converged value for the slip length b (see Fig. 2).
Second, the amount of available gas (or the static protrusion
angle 6)) determines the thickness &, which in turn deter-
mines the stability of the gas film and the boundary between
regimes III and IV in Fig. 3. A larger 6,, for instance, stabi-
lizes the gas film and favors regime III.
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FIG. 8. Snapshots of the periodic regime IV for Ca=1 and (a) W=1.1; (b)
W=2. Time has been made dimensionless by %,.

t=26.0

4. Regime IV with periodic bubble detachment

The steady flow regimes discussed above cannot be ob-
served when both Ca and W are large, as shown in Fig. 3.
Instead, the flow evolves to a periodic regime IV in this
parametric region. Depending on the ridge width W, regime
IV can be manifested by one of two periodic scenarios (Fig.
8). For relatively narrow ridges (e.g., W=1.1), a continuous
gas layer forms temporarily after the advancing contact line
coalesces with the downstream bubble [r=13.6 of Fig. 8(a)].
However, the gas layer is unstable and breaks up at the up-
stream edge of the ridge. After that, the gas meniscus on top
of the ridge moves rapidly downstream, driven by capillary
and shear forces, and merges into the downstream groove.
This process then starts anew and produces a time-periodic
behavior.

For W=2, the ridge is so wide that a continuous gas film
cannot be formed. The “finger” of gas on top of the ridge
detaches from the upstream groove before its advancing
front merges into the downstream groove [r=21.0 of Fig.
8(b)]. Thus an isolated gas bubble is produced and it slides
on top of the ridge owing to the shear force. Eventually, the
bubble coalesces with the gas pocket in the downstream
groove and the process repeats itself. Evidently, the boundary
between the two periodic scenarios depends on the initial
amount of gas or the static protrusion angle 6,; other condi-
tions being equal, larger 6, is conducive to the first while
smaller 6, to the second.

To some degree, the initial condition affects which flow
regime is realized at a certain Ca. Our discussion of flow
regimes follows an increasing Ca. If one starts with a gas
film as in regime III and gradually reduces Ca, the film will
remain linearly stable, in the absence of gravity, even as the
external flow vanishes. Such a scenario can be considered a
kind of hysteresis but is not very interesting in our context.
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FIG. 9. The slip length b as a function of Ca at W=0.5.

The transitions between regimes I and II, and between II and
IV, are governed by a clear-cut force balance at the contact
line, and no hysteresis is expected.

C. Slip length

As stated at the beginning, the slip being considered here
is an “apparent” slip due to the presence of low-viscosity gas
that cushions the liquid from the solid substrate. Thus, the
amount of slippage should be determined to a large extent by
the shape and position of the gas-liquid interface, which in
turn depends on the capillary number and the geometric pat-
tern on the substrate, among other things. In the following,
we will examine the slip length b in the four flow regimes
parametrized by the capillary number Ca and the ridge-
groove length ratio W.

1. Effect of Ca

Figure 9 plots the slip length b as a function of the cap-
illary number Ca for a relatively narrow ridge with W=0.5.
With increasing Ca, the system traverses the three steady
flow regimes in turn. In regime I (roughly Ca=0.4), the slip
length is small and essentially constant, indicating an inde-
pendence on the shear rate when the shear rate is relatively
low. In this regime, the only effect of the flow is to deform
the interface slightly. In regime II, there is a marked increase
in b with increasing shear rate. This reflects the gradual ad-
vance of the depinned contact line downstream. Thus, the
fraction of the substrate exposed to the liquid decreases with
Ca, and more liquid can slide on top of the gas.

The small slip length in regime I is in agreement with
prior numerical results at low Ca.2"8 However, the rise of b
for larger Ca forms an interesting contrast with the finding of
Hyvéluoma and Harting.27 This is because in their setup the
contact line is always pinned by the edge of the cavity, and at
larger Ca the meniscus is deformed severely by the shear
force, with a prominent hump on its downstream side jutting
into the liquid. This amounts to additional roughness resist-
ing the liquid flow. Thus, their slip length decreases with the
shear rate and even becomes negative for large Ca (see their



102102-7 Enhanced slip on a patterned substrate

Fig. 3). In our computations, the shear force on the meniscus
is alleviated by depinning and displacement of the down-
stream contact line before the interface deforms greatly.

The discontinuous transition from regime II to III is ac-
companied by a discontinuous jump in b by a factor of 18
(Fig. 9). Within regime III, the slip length is once again
independent of the shear rate, similar to regime I. The jump
is evidently due to the formation of the gas film that com-
pletely covers the top of the ridge, thus preventing any
liquid-solid contact. The magnitude of the jump and the con-
stant b in regime III depends on W and the viscosity ratio m,
and a scaling relationship will be derived in Sec. III C 2. The
significant slip of regime III is reminiscent of water-
lubricated pipelines for transporting crude 0il,*” both bring-
ing about remarkable reduction in wall friction. For example,
a slip length b=31, corresponds to a 43% drag reduction for
the flow geometry considered. Such enhanced slippage may
be beneficial to delivering liquids through narrow microflu-
idic channels.

When W is sufficiently large, the periodic regime IV
prevails at higher Ca, and imparts different features to b, as
illustrated in Fig. 10. Similar to Fig. 9, the slip length is
mostly constant in regime I, increases with the shear rate in
regime II, and experiences a steep increase at the transition
from regime II to regime IV. In regime IV, b varies periodi-
cally [Fig. 10(b)], with sharp peaks coinciding with intervals
when the solid substrate is completely enveloped in gas [cf.
Fig. 8(a)]. Thus, the data points in Fig. 10(a) are based on
averaging over a period 7. First, note that in comparison with
regime III (Fig. 9), b in regime IV is much smaller. This is
evidently because the liquid is not completely insulated from
the solid substrate for much of each period. Second, b exhib-
its a significant increase with Ca in regime IV, in contrast to
regime III. At lower shear rate or Ca, the meniscus moves
more slowly and the period T is longer [Fig. 10(b)]. Thus,
the spikes of b, corresponding to the temporary full coverage
of the solid by the gas, take up a smaller fraction of 7, with
the result of a smaller mean slip length. Finally, the period T
tends to infinity as Ca approaches the lower bound of regime
IV. The b spikes become so infrequent that their contribution
to the averaged slip length tends to nil. This argument sug-
gests that b should vary continuously at the transition be-
tween regimes II and IV, again in contrast to the II-IIT tran-
sition. At larger W values, the periodic scenario of Fig. 8(b)
prevails, with slightly different time-periodic behaviors of b.
This will be discussed in Sec. III C 2.

2. Effect of W

To investigate the effect of substrate pattern on slip, we
varied W in each flow regime with a fixed Ca. In Fig. 11(a),
regimes I and II are realized at two Ca values, Ca=0.1 and
0.6. In Fig. 11(b), on the other hand, regime III transitions
into IV with increasing W at the same Ca=1. Note that in
regime IV, b is the mean slip length averaged over a period.
In all cases, b decreases monotonically with W. For regime I,
the decrease is easily understood since a larger W corre-
sponds to a larger solid-area fraction of the substrate. For
regime II, the same reason holds. Moreover, a larger W re-
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FIG. 10. (a) The slip length b as a function of Ca at W=1.1. In regime 1V,
b is averaged over one period. (b) Time history of b in regime IV for Ca
=0.9 (dashed line), 1 (solid line) and W=1.1. Time is made dimensionless
by %.

duces the liquid velocity near the substrate. This hampers the
downstream displacement of the contact line and further en-
larges the solid exposure to the liquid. For regime III, b is
closely related to the thickness of the gas film §[Eq. (13)] on
top of the solid ridge, a thinner film at larger W correspond-
ing to a smaller slip length.

Regime IV deserves special attention because of the pe-
riodic nature of the interfacial evolution. Note first that the
transition from regime III to IV, at W=~ 1.05 in Fig. 11(b),
results in a large and discontinuous drop in b. This is evi-
dently owing to the loss of a continuous gas film that covers
the solid in all times. Within regime IV, b continues to de-
cline gradually with W. This can be understood from the
temporal variation of b in Fig. 12. For the relatively narrow
W=1.1, b has a single peak in each period due to the tran-
sient appearance of a continuous gas film [cf. Figs. 8(a) and
10(b)]. For W=1.4 and 2, however, two much lower peaks
appear in each period, corresponding to the detachment of
the gas bubble from the upstream groove and its subsequent
merging into the downstream groove [Fig. 8(b)]. As the ridge
widens, not only does the period lengthen but the peaks of
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FIG. 11. The slip length b as functions of W. (a) Ca=0.1 (squares, regime I)
and Ca=0.6 (triangles, regime II). The solid curve depicts Eq. (14) with «
=0.14 for regime L. (b) Ca=1 (squares, regimes III and IV). The solid curve
represents Eq. (15) with 8=0.57, while the dashed curve Eq. (16) for B
=0.71 and £=0.88. The filled squares give b at an elevated viscosity ratio
m=50, W=0.5 and (a) Ca=0.1, (b) Ca=1.

the slip length also become lower. Both factors contribute to
the decline of the averaged b with W.

A more quantitative understanding can be gained via b
~ W scaling relationships. If the liquid-gas interface is flat
(6,=0°) and bears zero shear stress, the slip length can be
calculated analytically.m’41’42 However, due to the meniscus
curvature and the gas dissipation, no analytical solution is
available in our case. For regime I, we borrow a scaling
relationship that Ybert et al.”? developed for the limit of
large W and zero protrusion angle,

_ o
T+ W

b [ (14)

¢
where « is a fitting parameter. This is based on averaging the
finite slip over the groove and the zero slip over the solid
ridge. When applied to our geometry, the parameter « ac-
counts for the protruding meniscus. Figure 11(a) shows that
a=0.14 provides a reasonable representation of the numeri-
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FIG. 12. Time history of the slip length b in regime IV for Ca=1 and typical
values of W.

cal results; the agreement is excellent for wider ridges with
W>1.

Similarly, a scaling relationship can be derived to de-
scribe the decrease in b with W in regime III. As Fig. 7
shows, the liquid-gas interface is mostly flat in this regime
and moves with a velocity V that is essentially constant.
Thus, the slip length b can be estimated from the effective
shear stress on the horizontal plane flush with the top of the
ridge. For the part over the solid ridge, the shear stress in the
thin gas film may be approximated as 7,=u,V/d, provided
that W is not too small. For the part over the groove, the
shear stress is reduced because of the circulating vortex un-
derneath, and can be written as T,= BT, with S<<1 being an
ad hoc constant. Now the mean shear stress on the horizontal
plane flush with the ridge can be obtained as 7,=(7,l;
+ 7l ) (I+1,) = (VI 8)(W+B)/(W+1). Since the mean
shear stress can also be written as w;V/b, we arrive at the
following equation for the slip length b:

=%%%g% (15)

where Eq. (13) has been used for 8. The constant B8 can be
determined by equating the model prediction to the com-
puted b at the maximum W=1 for regime III: 8=0.57. With
this the scaling law is plotted in Fig. 11(b) as the solid curve,
which adequately represents the trend of the numerical data.
The quantitative overprediction of b amounts to underesti-
mating the mean shear stress. This may be due to the omis-
sion of the “end effects” for the gas film and waviness of the
gas-liquid interface, both being more pronounced for nar-
rower ridge with relatively small W. Accounting for such
corrections by a second fitting parameter &, a modified scal-
ing relationship

_ mx(6)

CEW+pBE (16)

fits the data very well in regime III, even for small W values.
In this case the best fitting parameters are $=0.71 and &
=0.88.
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The scaling for regimes I and III differs markedly in the
role of the viscosity ratio m. In Eq. (15), for regime 111, b is
proportional to m, while in Eq. (14), for regime I, b does not
explicitly depend on m. So far, the reported simulations all
have m=25. To check the m dependence, we have doubled
the viscosity ratio to m=50 and solved the problem for W
=0.5. The computed slip length is denoted by the solid
squares in Fig. 11. In regime I, the slip length is very close to
that of m=25 and thus insensitive to the viscosity ratio. In
contrast, the slip length is approximately doubled in regime
III in accordance with Eq. (15).

D. Concluding remarks

We have performed numerical simulations of the effec-
tive slippage of a viscous liquid over a textured substrate
with entrapped microbubbles protruding into the liquid. The
diffuse-interface model not only captures the liquid-gas in-
terface accurately but also handles the moving contact line
efficiently. The most important finding is that depinning and
subsequent movement of the contact line on the solid can
greatly enhance the apparent slippage on patterned sub-
strates. More specifically, the results can be summarized as
follows.

(a) Depending on the capillary number Ca and the solid-
to-cavity length ratio W, three steady and one time-
periodic flow regimes may appear. At low shear rates,
the deformation of the menisci is small and the contact
lines remain pinned at the corners of the cavity (regime
I). Higher shear rates can depin the contact line down-
stream of the gas bubble and move it progressively
downstream (regime II). At even higher shear rates, the
depinned contact line merges into the downstream
bubble, producing a continuous gas film cushioning the
liquid from the substrate (regime III). If both Ca and W
are large, the gas film loses stability and undergoes
cycles of breakup and recoalescence, leading to a time-
periodic flow (regime IV).

(b) The apparent slip length b is shear independent in re-
gime I but increases with Ca in regime II after the
contact line depins. The transition to regime III or IV is
accompanied by a giant increase in b. In the steady
regime III, b is again shear independent. In the periodic
regime IV, b continues to increase with Ca. Scaling
relations may be derived for some of the regimes that
capture the dependence of b on the liquid-gas viscosity
ratio and the geometric parameter W.

Note that these results depend on sufficient amount of
gas being trapped in isolated cavities. In an experiment, less
gas may be trapped initially or the gas may escape into the
liquid by diffusion.”’ I the meniscus does not protrude into
the liquid, transition to the gas film cannot occur and neither
can the enhanced apparent slippage. Moreover, substrate tex-
tures made of posts or pillars allow the trapped gas to be
interconnected, and the mechanism for slippage and super-
hydrophobicity will be different on such substrates.

As stated at the outset, this work was motivated chiefly
by the disagreement among previous work on the shear de-
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pendence of the apparent slip. The trend predicted—b being
shear-independent at low Ca and increasing with Ca at
higher Ca—is consistent with experimental evidence. For ex-
ample, experiments in microfluidic channels typically pro-
duce a constant b for shear rates y<< 102 s‘1,13’24 but an in-
creasing b for y~ 10 s71.* The increase in b with Ca also
agrees qualitatively with the AFM experiments of Zhu and
Granick.®*®

A more quantitative comparison with experiments is
hampered by a mismatch of parameters. Given the small di-
mensions in microfluidic devices, exceedingly high shear
rates are needed to produce Ca high enough to deform the
menisci. For instance, taking our bubble length scale to be
l,=1 pum for a water-air system with liquid viscosity wu,
=10"3 Pas and surface tension o=72 dyn/cm, our shear
rate 7 should range from 10° to 107 s~! for 0.1 <Ca<1. In
most experiments, the achievable shear rates are much lower.
Therefore, our computations probably explain why the shear
dependence of the slip length has not been detected in most
experiments. As for the observed b(Ca) dependence at larger
Ca,**® the role of contact line depinning and motion remains
to be ascertained.

New experiments can be designed to probe the param-
eter range relevant to contact line depinning and motion.
Coarser textures and greater gas fraction will be beneficial."*
The requirement on shear rate can also be relaxed by using
liquids of higher viscosity. For example, taking glycerol
(u;=1.5 Pas and 0=64 dyn/cm) as the test liquid, the cor-
responding shear rates can be reduced to 10°~10* s~!, which
is comparable with those achieved in the experiments of
Steinberger et al.*® and Choi et al.,* although they used less
viscous liquids. We hope that the present work will motivate
new experiments to investigate the mechanism of contact
line depinning and further clarify the dependence of apparent
slip on shear rates.
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