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I. INTRODUCTION

A compound drop consists of an inner drop enclosed in a shell of an immiscible liquid.
When a large number of compound drops are suspended in another liquid medium, the re-
sulting mixture is known as a double or multiple emulsion. Water-in-oil-in-water (W/O/W)
emulsions have received much attention since they were proposed as a drug delivery vehicle
for insulin (Engel et al., 1968). Previous studies on W/O/W emulsions have been mostly
concerned with formulation and stabilization (Jiao and Burgess, 2003; Onuki et al., 2004;
Bozkir and Hayta, 2004), and relatively little has been done on the deformation and mor-
phological evolution of compound drops in flow fields. The latter process is practically
important since shear-induced burst of the oil shell is an important mechanism for drug re-
lease (Muguet et al., 2001). The hydrodynamics of the multiple interfaces is also central to
the preparation of multiple emulsions, either through intense shearing in a mixer (Goubault
et al., 2001) or through compound jet breakup in microfluidic devices (Utada et al., 2005;
Zhou et al., 2006). Finally, compound drop dynamics is relevant to the deformation and
migration of eukaryotic cells, with the inner drop representing the cell nucleus suspended
in the cytoplasm (Kan et al., 1998; Khismatullin and Truskey, 2005; Jadhav et al., 2005).

For the most part, fluid mechanical studies of compound drops have dealt with three
types of flow geometries: translation in a quiescent fluid (Johnson and Sadhal, 1985), dy-
namics in extensional flows (Stone and Leal, 1990; Kan et al., 1998), and dynamics in shear
flows (Stroeve and Varanasi, 1984; Smith et al., 2004). In particular, Kan et al. (1998) in-
vestigated the deformation, relaxation and breakup in uniaxial elongation, and interpreted
the coupling between the inner drop and the outer shell in terms of two time scales. If the
relaxation time of the inner drop matches that of the shell, the compound drop will behave
like a homogeneous one. Toose et al. (1999) incorporated non-Newtonian rheology into
the shell fluid and computed the deformation of the compound drop in elongational flow.
More recently, Smith et al. (2004) constructed a phase diagram depicting the morphology of
daughter drops after shear-induced breakup at various values of the capillary number and
interfacial tension ratio between the inner and outer surfaces. Notably, all prior work has
been done in homogeneous far-field flows. Little is known about compound drop deforma-
tion caused by inhomogeneous flows in confined geometries, as may be relevant to transport
of cells and vesicles in microcirculation and drug delivery using multiple emulsions.

Simulating the deformation of a compound drop is a computational challenge because
of the two moving and deforming interfaces. Recently, we have developed a diffuse-interface
method that accounts for the moving interfaces in a variational framework (Yue et al., 2004;
Feng et al., 2005). Implemented using finite elements with adaptive meshing, the method
has been applied successfully to several problems in drop dynamics (Yue et al., 2006a,b).
In particular, we simulated the deformation of a simple drop through a contraction in a
pressure-driven pipe flow (Zhou et al., 2007). This note represents an application of the
same methodology to compound drops deformation. The geometry is a prototype for entry
of eukaryotic cells into capillaries or micropipettes (Wiggs et al., 1994; Hochmuth, 2000)
and the transport of double emulsions (Garti, 1997). It generates a mixed-type flow having
shear and extensional characters in different regions, and is thus an extension of prior studies
in simple shear and uniform elongational flows.
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II. THEORY AND NUMERICAL METHODS

We treat the interface between two nominally immiscible fluids as a thin but finite mixing
layer characterized by a capillary width ǫ and a Ginzburg-Landau mixing energy in terms of
a phase field φ (Lowengrub and Truskinovsky, 1998). In such a diffuse-interface framework,
the scalar field φ determines the position of the interface, and the governing equations can
be written uniformly throughout the two-phase system. The interfacial tension arises from
the mixing energy density, and appears in the momentum equation as a forcing term. A
more detailed discussion of the advantages and disadvantages of the diffuse-interface model,
vis-à-vis the classical sharp-interface model and other interface regularization methods, can
be found in the literature (Lowengrub and Truskinovsky, 1998; Yue et al., 2004; Feng et al.,
2005).

Since a compound drop consists of three fluid components separated by two interfaces, a
general diffuse-interface representation requires the introduction of an additional phase field
and additional interaction energies. The resulting theoretical model is rather complex and
cumbersome for numerical computations (Kim et al., 2004). In this initial study, therefore,
we have limited ourselves to the W/O/W type of compound drops made of two rather
than three fluid components. Then the conventional phase-field description is adequate as
the innermost and outermost fluids are identical. This simplified model allows exploration
of the fundamental hydrodynamic mechanisms, but precludes a comprehensive parametric
study of general three-component compound drops.

The system of equations governing the motion of a two-component Newtonian mixture
is as follows (Yue et al., 2004):

∇ · v = 0, (1)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p + ∇ ·
{

µ
[

∇v + (∇v)T
]}

+ G∇φ, (2)

∂φ

∂t
+ v · ∇φ = γ∇2G, (3)

G = λ

[

−∇2φ +
φ(φ2 − 1)

ǫ2

]

, (4)

where G is the chemical potential and γ is the mobility parameter; λ and ǫ are the interfacial
energy density and capillary width, respectively. The phase field φ takes on values of ±1 in
the two bulk phases, and the average density and viscosity are simply ρ = 1+φ

2
ρ1 + 1−φ

2
ρ2

and µ = 1+φ
2

µ1 + 1−φ
2

µ2. Note that the G∇φ term in the momentum equation is a diffuse-
interface representation of the interfacial tension. The interface typically has a thickness
∼ 5ǫ; the Cahn-Hilliard equation (Eq. 3) ensures that it neither collapses into a sharp
surface nor diffuses into a wide region. In the limit of ǫ → 0, the above system reduces to
the familiar sharp-interface formulation, and 2

√
2λ/(3ǫ) gives the interfacial tension σ (Yue

et al., 2004).

To accurately capture the interfacial tension, we must use an ǫ that is much smaller than
the overall dimension and then resolve the φ profile adequately within the thin interface.
For this purpose, we have developed a finite-element package AMPHI (Adaptive Meshing
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Figure 1: Geometric setup for simulating the deformation of a compound drop through a
2:1 contraction. Two cylindrical tubes are connected by an arc of radius a and central angle
90◦. Shown is the meridian plane and the upper half is the computational domain.

with phase field φ) that has adaptive meshing as an essential ingredient. Yue et al. (2006b)
have described the algorithm in detail and validated the numerical toolkit by benchmark
problems. In the following, we use unstructured triangular elements in an axisymmetric
computational domain, with time steps and grid sizes that are fine enough to ensure accuracy
of the numerical results.

III. NUMERICAL RESULTS

The axisymmetric flow geometry is illustrated in Fig. 1, consisting of two cylindrical
tubes connected by a circular arc. The downstream tube has radius a and length L = 10a,
while the upstream tube is twice as thick with a length of 8a. The compound drop has
a core fluid of density ρc and viscosity µc, and a shell fluid of ρs and µs. As mentioned
above, the suspending fluid (matrix) is identical to the core fluid. The core-shell and shell-
matrix interfaces have the same constant interfacial tension σ. Initially, the two interfaces
are concentric and spherical with radii rc and rs, centered at z = 6a, and there is no flow
throughout the domain. At t = 0, a constant pressure drop ∆P is applied over the entire
length (19a) of the domain. On the upstream and downstream boundaries (z = 0 and 19a),
we set the boundary conditions to vr = 0 and ∂vz

∂z
= 0. On the centerline we use symmetry

conditions: vr = 0 and ∂vz

∂r
= 0. Thus, the flow rate Q varies as the drop traverses the

conduit. To construct the dimensionless groups controlling the process, we use a as the
characteristic length and V = ∆Pa2/(8µcL) as the characteristic velocity. Note that V is
the average velocity in a Poiseuille flow through a uniform pipe of radius a with pressure
gradient ∆P/L. Then six dimensionless groups can be constructed:

Ca =
µcV

σ
, (5)

Re =
ρcV a

µc
, (6)

α =
ρs

ρc
, (7)

β =
µs

µc
, (8)

ζc =
rc

a
, (9)

ζs =
rs

a
, (10)
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(a) t = 0.266 (b) t = 4.11

(c) t = 5.30 (d) t = 8.06

(e) t = 9.06 (f) t = 9.85

Figure 2: Snapshots of the transit of a compound drop into the capillary. Ca = 0.179, Re =
1.56 × 10−2 and ζc = 0.72. Time is scaled by a/V .

where the capillary number Ca indicates the ratio between viscous and capillary forces,
and the Reynolds number Re represents the ratio between inertial and viscous forces. The
characteristic flow time is tf = a/V , and the flow rate will be scaled by Qf = πa2V . For
brevity, we use the same symbols for dimensional and dimensionless variables, but will
explicitly indicate which is meant where confusion may arise. In the simulations presented
here, we have fixed α = 1, β = 1 and ζs = 1.4. We will explore a range of ζc to examine the
core size effect on the transit process.

The entry of the compound drop into the contraction consists of three distinct stages,
which are illustrated by the snapshots of Fig. 2 and the temporal variations of the instan-
taneous flow rate and drop length in Fig. 3. In the first stage (0 < t < 4), the compound
drop approaches the contraction. The strong elongational flow causes the shell to form a
protrusion, while the core also experiences moderate deformation. The shoulder of the drop
progressively blocks the flow area at the contraction, thus causing the continual decrease
in flow rate Q (Fig. 3a). The length of the drop l increases in the mean time (Fig. 3b).
At the beginning of the second stage (4 < t < 8), maximum blockage at the contraction
corresponds to a minimum Q. Afterwards, the core moves forward along with the shell
fluid, thereby deflating the rear of the drop (Fig. 2c). This enlarges the gap between the
outer surface and the wall at the contraction and causes a recovery of Q in stage two. Note
the small dip in the Q(t) curve at t = 5; it is the result of the core passing the constriction.
At the end of the second stage, both the flow rate Q and the drop length achieve a local
maximum. In stage three (t > 8), the rear of the drop, consisting of only the shell fluid,
passes the contraction into the thinner tube. As the contraction loses its “grip” on the drop
(Fig. 2d), the capillary pressure due to the high curvature in its rear produces a sudden
forward flow and a temporary retraction of the drop’s overall length (Fig. 3b). This tem-
porary shortening of the drop in turn increases the blockage in the capillary (Fig. 2e) and
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Figure 3: Temporal variations of the instantaneous flow rate Q and the length of the
compound drop l for the process of Fig. 2. For comparison, we have also plotted results for
a simple drop of the same size (radius 1.4a) and fluid properties as well as for a compound
drop with a more viscous shell (β = 3).

causes the flow rate to drop sharply (Fig. 3a). Then both Q and l recover as the compound
drop translates in the downstream tube. Simulations using longer tubes indicate that Q
and l approach roughly constant values. But the core continues to move slowly forward
relative to the shell fluid. This will be seen (cf. Fig. 5) as due to the recirculation in the
shell fluid. Eventually the two interfaces are pressed into each other and the shell breaks.
Diffuse interfaces are known to coalesce prematurely (Yue et al., 2006a), and the rupture
of the shell may not reflect reality.

Qualitatively, the transit process is similar to that of a simple drop, which is also shown
in Fig. 3 for comparison. But the core tends to resist deformation of the compound drop
and this modifies the process quantitatively. Throughout the drop entry, both Q and l
are below those for the simple drop. The fluctuation in Q also has larger magnitudes.
After the core is inside the capillary, its surface hampers the recirculation in the shell fluid
and causes a slight bulge on the outer surface (Fig. 2c onward). A more viscous core
(β < 1) should amplify these differences although we have not explored this systematically.
Note that in terms of suppressing the flow rate and drop deformation, the presence of the
core is tantamount to an elevated viscosity in a simple drop (Zhou et al., 2007). From
an energetic viewpoint, the impenetrable inner surface causes more dissipation inside the
compound drop, and deformation of the inner drop entails an additional energy penalty in
the increased interface area.

We have also explored the effect of a more viscous shell fluid as is relevant to typical
W/O/W emulsions. The most prominent difference from the equal-viscosity case occurs in
the second stage (Fig. 3). Instead of a strong recovery, Q remains more or less constant,
or even decrease somewhat for larger β. This is because a more viscous shell reacts more
slowly to the ambient flow. As the core enters the downstream tube, the rear of the drop
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(a) (b)

Figure 4: (a) Effect of the inner drop on the transit time with changing pressure drop with ζc = 0.72.
The Reynolds number varies in the range 7.81 × 10−3 ≤ Re ≤ 7.81 × 10−2. (b) Transit time as a
function of the core radius, represented by ζc, at Ca = 0.179 and Re = 1.56 × 10−2. In both plots
the size of the outer drop is fixed with ζs = 1.4.

does not deflate rapidly enough to boost the total flow rate Q. By the same token, the cell
length l is generally smaller for larger β, and the transit time τtrans is longer. The effect of
shell viscosity is similar to that of the drop viscosity for a simple drop (Zhou et al., 2007).

It is no surprise that the compound drop takes longer time to traverse the passage than
a simple drop of the same size. Figure 4(a) plots the “transit time” τtrans, defined as the
interval between the moments when the leading and trailing edges of the drop enter the
thinner tube, as a function of the capillary number. As τtrans has been scaled by the flow
time tf = a/V , its increase with Ca does not withstand the decrease of the dimensional

transit time with the pressure drop or flow rate. Surprisingly, τtrans shows a non-monotonic
dependence on the core size ζc (Fig. 4b). Intuitively one expects τtrans to increase with
ζc since the larger the inner drop, the larger the energy penalty in deforming it so that
the drop can enter the capillary. This seems to hold for ζc up to 0.6. To understand the
anomalous decrease of τtrans for larger ζc, we compare the flow patterns for ζc = 0.64 and
0.80 in Fig. 5.

When the drop first approaches the entry, the above intuition is indeed borne out and
the drop with the larger core attains a lower speed. After the core completely enters the
capillary, however, the larger core, though more elongated, requires no additional energy
to maintain its shape. Now the smaller inner drop continues to move forward relative to
the outer drop surface (Fig. 5a); its instantaneous velocity is 0.11V relative to the front
tip of the compound drop. But the larger core has practically stopped moving forward as
a whole (Fig. 5b), with a relative velocity of 0.012V . Meanwhile, internal eddies develop
within the inner drop in Fig. 5(b) to accommodate the recirculation in the shell fluid. As a
consequence, the smaller core in Fig. 5(a) creates stronger velocity gradients on its flanks
than the larger core. This translates to a larger drag on the compound drop in Fig. 5(a)
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(a) (b)

Figure 5: Flow fields inside the compound drop toward the end of the entry process for two
core radii: (a) ζc = 0.64, (b) ζc = 0.80. In both cases, Ca = 0.179, Re = 1.56 × 10−2. The
streamlines are drawn in a reference frame fixed to the leading edge of the compound drop,
which has an instant velocity of 0.81V in (a) and 1.21V in (b). The gray-scale contours are
for the horizontal velocity u.

and a lower speed. This explains the shorter transit time for the drop with the larger core.

The difference in drop speed is reflected by the flow rate. The instantaneous Q at
the moment when the drop completely enters the smaller tube is also a non-monotonic
function of ζc. Besides, one notes the greater drop length l in Fig. 5(b) with the larger
core. This contrasts the trend in Fig. 3(b) and confirms that the drop length also varies
non-monotonically with the core size. With even larger ξc, however, the trend is bound to
reverse once more since in the limit of ξc → ξs, the compound drop approaches a simple
one with twice the interfacial tension.

It is interesting to compare our results with compound drop deformation in unbounded

elongational flows. With β = 1, equal interfacial tension on the inner and outer surfaces and
rc = 0.5rs, Stone and Leal (1990) and Kan et al. (1998) found that for capillary numbers
much below the critical value Cacr for breakup, the deformation of the compound drop in
an elongational flow is nearly the same as a simple drop of the same fluid and size. This is
because the recirculation within the shell fluid is weak and the core deforms little. Thus, the
inner surface hardly hinders the overall deformation of the drop. As Ca approaches Cacr,
however, the shell is so stretched that the outer interface presses against the core. Then
the core does affect the deformation and breakup of the compound drop (Stone and Leal,
1990; Kan et al., 1998). In our confined flow geometry, on the other hand, the compound
drop is subject to a geometric constraint that dictates the deformation of the inner drop
as well as the shell, regardless of the capillary number. Hence the compound drop sustains
milder deformation than the simple drop in Fig. 3, and the difference increases with flow
speed or Ca. Obviously, as ζc becomes sufficiently small, the difference between simple and
compound drop deformation should vanish.

VI. SUMMARY

This note presents simulations of the morphological evolution of a compound drop as
it moves along the centerline of a circular tube with a 2:1 gradual contraction. The flow
is driven by a fixed pressure difference imposed on the matrix fluid. The deformation of
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the two interfaces is captured by a phase-field representation, with an interfacial tension
determined by the mixing energy in the thin but diffuse interfaces. Results show that the
inner core generally hinders deformation of the compound drop and prolongs the transit
time. However, the effect is non-monotonic in the core size; it is greatest for an intermediate
core radius. The underlying mechanism is the core hampering the inner circulation and
subjecting the compound drop to stronger shear inside the shell.

The expedient of using a binary phase-field model places a limitation on our study: the
inner core fluid must be identical to the suspending fluid. This is appropriate for W/O/W
compound drops encountered in drug delivery. A more general compound drop involves
three different fluid components. Such systems call for tertiary phase-field models as have
recently appeared in the literature (Kim et al., 2004; Burman et al., 2004). For example,
a white blood cell has a nucleus that is much more viscous than the cytoplasm, which is
in turn different from the suspending plasma. Biological cells, of course, contain additional
complexities such as membrane elasticity that are not easily represented in a compound
drop model.

Acknowledgment: Acknowledgment is made to the Donors of The Petroleum Research
Fund, administered by the American Chemical Society, for partial support of this research.
J.J.F. was also supported by the NSERC, the Canada Research Chair program and the
Canada Foundation for Innovation. C.Z. acknowledges partial support by a University
Graduate Fellowship from UBC.

References

Bozkir, A., Hayta, G. 2004 Preparation and evaluation of multiple emulsions water-in-oil-in-
water (w/o/w) as delivery system for influenza virus antigens. Journal of Drug Targeting

12, 157–164.

Burman, E., Jacot, A., Picasso, M. 2004 Adaptive finite elements with high aspect ratio
for the computation of coalescence using a phase-field model. Journal of Computational

Physics 195, 153–174.

Engel, R. H., Riggi, S. J., Fahrenbach, M. J. 1968 Insulin: intestinal absorption as water-
in-oil-in-water emulsions. Nature 219, 856–857.

Feng, J. J., Liu, C., Shen, J., Yue, P. 2005 An energetic variational formulation with phase
field methods for interfacial dynamics of complex fluids: advantages and challenges. In
Modeling of Soft Matter (ed. M.-C. T. Calderer, E. M. Terentjev), pp. 1–26. New York:
Springer.

Garti, N. 1997 Double emulsions – scope, limitations and new achievements. Colloids and

Surfaces A 123–124, 233–246.

Goubault, C., Pays, K., Olea, D., Gorria, P., Bibette, J., Schmitt, V., Leal-Calderon, F. 2001
Shear rupturing of complex fluids: Application to the preparation of quasi-monodisperse
water-in-oil-in-water double emulsions. Langmuir 17, 5184–5188.

9



C. Zhou, P. Yue & J. J. Feng, Int. J. Multiphase Flow 34 (2008) 102–109

Hochmuth, R. M. 2000 Micropipette aspiration of living cells. Journal of Biomechanics 33,
15–22.

Jadhav, S., Eggleton, C. D., Konstantopoulos, K. 2005 A 3-D computational model predicts
that cell deformation affects selectin-mediated leukocyte rolling. Biophysical Journal 88,
96–104.

Jiao, J., Burgess, D. J. 2003 Rheology and stability of water-in-oil-in-water multiple emul-
sions containing Span 83 and Tween 80. AAPS PharmSci 5, Article 7.

Johnson, R. E., Sadhal, S. S. 1985 Fluid mechanics of compound multiphase drops and
bubbles. Annual Reviews of Fluid Mechanics 17, 289–320.

Kan, H. C., Udaykumar, H. S., Shyy, W., Tran-Son-Tay, R. 1998 Hydrodynamics of a
compound drop with application to leukocyte modeling. Physics of Fluids 10, 760–774.

Khismatullin, D. B., Truskey, G. A. 2005 Three-dimensional numerical simulation of
receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and vis-
coelasticity. Physics of Fluids 17, 031505–21.

Kim, J., Kang, K., Lowengrub, J. 2004 Conservative multigrid methods for ternary Cahn-
Hilliard systems. Communications in Mathematical Sciences 2, 53–77.

Lowengrub, J., Truskinovsky, L. 1998 Quasi-incompressible Cahn-Hilliard fluids and topo-
logical transitions. Proceedings of the Royal Society of London. Series A 454, 2617–2654.

Muguet, V., Seiller, M., Barratt, G., Ozer, O., Marty, J. P., Grossiord, J. L. 2001 For-
mulation of shear rate sensitive multiple emulsions. Journal of Controlled Release 70,
37–49.

Onuki, Y., Morishita, M., Takayama, K. 2004 Formulation optimization of water-in-oil-
water multiple emulsion for intestinal insulin delivery. Journal of Controlled Release 97,
91–99.

Smith, K. A., Ottino, J. M., de la Cruz, M. O. 2004 Encapsulated drop breakup in shear
flow. Physical Review Letters 93, 204501.

Stone, H. A., Leal, L. G. 1990 Breakup of concentric double emulsion droplets in linear
flows. Journal of Fluid Mechanics 211, 123–156.

Stroeve, P., Varanasi, P. P. 1984 An experimental-study on double emulsion drop breakup
in uniform shear-flow. Journal of Colloid and Interface Science 99, 360–373.

Toose, E. M., Geurts, B. J., Kuerten, J. G. M. 1999 A 2D boundary element method for sim-
ulating the deformation of axisymmetric compound non-Newtonian drops. International

Journal for Numerical Methods in Fluids 30, 653–674.

Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., Weitz, D. A. 2005
Monodisperse double emulsions generated from a microcapillary device. Science 308,
537–541.

10



C. Zhou, P. Yue & J. J. Feng, Int. J. Multiphase Flow 34 (2008) 102–109

Wiggs, B. R., English, D., Quinlan, W. M., Doyle, N. A., Hogg, J. C., Doerschuk, C. M.
1994 Contributions of capillary pathway size and neutrophil deformability to neutrophil
transit through rabbit lungs. Journal of Applied Physiology 77, 463–470.

Yue, P., Feng, J. J., Liu, C., Shen, J. 2004 A diffuse-interface method for simulating two-
phase flows of complex fluids. Journal of Fluid Mechanics 515, 293–317.

Yue, P., Zhou, C., Feng, J. J. 2006a A computational study of the coalescence between a
drop and an interface in Newtonian and viscoelastic fluids. Physics of Fluids 18, 102102.

Yue, P., Zhou, C., Feng, J. J., Ollivier-Gooch, C. F., Hu, H. H. 2006b Phase-field simulations
of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing.
Journal of Computational Physics 219, 47–67.

Zhou, C., Yue, P., Feng, J. J. 2006 Formation of simple and compound drops in microfluidic
devices. Physics of Fluids 18, 092105.

Zhou, C., Yue, P., Feng, J. J. 2007 Simulation of neutrophil deformation and transport in
capillaries using simple and compound drop models. Annals of Biomedical Engineering

35, 766–780.

11


