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This paper applies a diffuse-interface model to simulate the deformation of single
drops in steady shear flows when one of the components is viscoelastic, represented
by an Oldroyd-B model. In Newtonian fluids, drop deformation is dominated by the
competition between interfacial tension and viscous forces due to flow. A fundamental
question is how viscoelasticity in the drop or matrix phase influences drop deformation
in shear. To answer this question, one has to deal with the dual complexity of non-
Newtonian rheology and interfacial dynamics. Recently, we developed a diffuse-inter-
face formulation that incorporates complex rheology and interfacial dynamics in a
unified framework. Using a two-dimensional spectral implementation, our simulations
show that, in agreement with observations, a viscoelastic drop deforms less than a com-
parable Newtonian drop. When the matrix is viscoelastic, however, the drop deforma-
tion is suppressed when the Deborah number De is small, but increases with De for
larger De. This non-monotonic dependence on matrix viscoelasticity resolves an ap-
parent contradiction in previous experiments. By analysing the flow and stress fields
near the interface, we trace the effects to the normal stress in the viscoelastic phase and
its modification of the flow field. These results, along with prior experimental observa-
tions, form a coherent picture of viscoelastic effects on steady-state drop deformation
in shear.

1. Introduction
Flow-induced drop deformation has long fascinated fluid dynamicists (Taylor 1932).

Using experimental observations, asymptotic analysis and numerical calculations,
researchers have constructed a reasonably complete picture for Newtonian drops
deforming in a Newtonian medium (Rallison 1984; Stone 1994).

Two-phase complex fluids such as emulsions and blends often involve components
that are microstructured complex fluids themselves. As drop dynamics is the key to
understanding interfacial morphology in two-phase materials, a fundamental question
arises about the effect of the component rheology on the deformation of drops. A
particularly important example is the effect of viscoelasticity on drop deformation
in polymer blends (Tucker & Moldenaers 2002). Previous efforts on this problem
have produced a sizable literature, but the picture is incomplete in so far as certain
prior results seemingly contradict each other, and the physical mechanisms behind
the observed behaviour remain obscure.

Early insights have come from heuristic ideas that the drop shape is determined
by the balance among viscous and elastic forces inside and outside the drop and the
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interfacial tension. Vanoene (1972) defined a dynamic interfacial tension which in-
cludes the difference of the normal stresses between the two phases. Similar force bal-
ances were considered by Levitt, Macosko & Pearson (1996). Such reasoning predicts
that the normal stresses of the drop phase resist drop deformation, while those of
the matrix enhance deformation. In extensional flows, this heuristic argument has
largely been validated by more rigorous phenomenological models (Maffettone &
Greco 2004; Yu, Zhou & Bousmina 2005), numerical simulations (Ramaswamy &
Leal 1999a,b; Hooper et al. 2001) and experiments (Mighri, Ajji & Carreau 1997;
Tretheway & Leal 2001). However, Ramaswamy & Leal (1999a) pointed out the
näıveté of the heuristic argument: the viscoelastic effect comprises not only the direct
contribution of the viscoelastic stresses at the interface, but also modification of the
flow by the stresses over the entire domain.

In steady shear flows, the situation is not as clear-cut as in extensional flows. If
the drop phase is viscoelastic, there is again consensus that it inhibits deformation.
This effect has been observed experimentally by Elmendorp & Maalcke (1985),
Mighri, Carreau & Ajji (1998) and Lerdwijitjarud, Sirivat & Larson (2004), and
predicted by Pillapakkam & Singh (2001) and Maffettone & Greco (2004). When the
suspending fluid is viscoelastic, however, there is contradiction among the experiments.
Elmendorp & Maalcke (1985), using shear-thinning polymer solutions as the matrix,
observed that increasing the normal stress in the matrix increases the deformation of
a Newtonian drop. Mighri et al. (1998) reached the same conclusion by using Boger
fluids. Guido, Simeone & Greco (2003), on the other hand, presented clear evidence
that a Newtonian drop deforms less if the matrix is viscoelastic. Flumerfelt (1972)
reported that a viscoelastic matrix stabilizes a Newtonian drop against breakup, in
indirect support of Guido et al. (2003).

A handful of theoretical studies have considered drop deformation in a viscoelastic
medium undergoing shear (Khismatullin, Renardy & Renardy 2005). But none directly
addresses the contradictory observations, let alone resolves the puzzle. Greco (2002)
obtained a perturbation solution for drop deformation in a second-order fluid.
Viscoelasticity turns out to have no effect on drop deformation at the leading order.
Thus, the opposing trends observed in experiments must be due to finite viscoelastic
effects, on which the perturbation solution can shed little light. Maffettone & Greco
(2004) and Yu et al. (2005) predicted reduced drop deformation, in agreement with the
experiment of Guido et al. (2003) and contradicting those of Elmendorp & Maalcke
(1985) and Mighri et al. (1998). Because of the phenomenological nature of these
models, however, they do not provide any insight into the underlying physics.

Our objective in this work is to use numerical simulations and detailed analysis
of the underlying physics to clear up the confusion in the literature and construct a
coherent picture for shear-induced drop deformation. This is made possible by a
recently developed diffuse-interface model for two-phase flows of complex fluids,
which deals with the interfacial dynamics and non-Newtonian rheology in a unified
framework (Yue et al. 2004). So far, we have applied this formalism to drop coal-
escence and retraction in Oldroyd-B viscoelastic fluids and liquid crystals. The former
will be relevant to this work.

2. Theoretical and numerical models
Our model differs from other fixed-grid methods in that the interface is treated as

physically diffuse. The interfacial position and thickness are determined by a phase-
field variable φ whose evolution is governed by Cahn–Hilliard dynamics. In this
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way, the structure of the interface is rooted in molecular forces; the tendencies for
mixing and demixing are balanced through the non-local mixing energy. Owing to its
energy-based formulation, the model allows easy incorporation of complex rheology.
The free energy describing the conformation of the microstructure is simply added to
the mixing energy to form the total free energy. Then a formal variational procedure
applied to the total free energy gives rise to the proper constitutive equation for the
microstructured fluids in addition to the evolution equation for φ. Yue et al. (2004)
have given a detailed derivation of the theoretical model and described the numerical
scheme using spectral discretization. Feng et al. (2005) have discussed the advantages
and challenges of this approach in the general context of moving-interface problems.
Here, we will specialize the formalism for a mixture of a Newtonian and an Oldroyd-B
fluid, and summarize the main features of the numerical procedure.

The Newtonian and Oldroyd-B components are immiscible except in a very thin
interfacial region. The phase-field variable φ is such that the concentrations of the
Oldroyd-B and Newtonian components are (1 + φ)/2 and (1 − φ)/2, respectively. For
the mixing energy, we adopt the familiar Ginzburg–Landau form:

fmix(φ, ∇φ) =
1

2
λ|∇φ|2 +

λ

4ε2
(φ2 − 1)2, (2.1)

where λ is the energy density and ε is a capillary width that scales with the thickness
of the diffuse interface. As ε → 0, the ratio λ/ε produces the interfacial tension in the
classical sense (Jacqmin 1999; Yue et al. 2004).

An Oldroyd-B fluid consists of a dilute suspension of linear Hookean dumbbells in
a Newtonian solvent (Bird et al. 1987). If the dumbbells have an elastic constant H ,
a number density n and a configuration distribution Ψ ( Q) for the connector Q, we
write the dumbbell elastic energy as

fd = n

∫
R3

(
kT lnΨ + 1

2
H Q · Q

)
Ψ dQ, (2.2)

where k is the Boltzmann constant and T is the temperature. Now the total free
energy density of the two-phase system is f = fmix + (1 + φ)fd/2.

Through a variational procedure detailed by Yue et al. (2004), an elastic stress
tensor can be derived from the total free energy. Adding the proper viscous stress, we
write the total stress tensor as

τ =

(
1 − φ

2
µn +

1 + φ

2
µs

)
[∇v + (∇v)T ] + τp − λ∇φ ⊗ ∇φ, (2.3)

where µn is the viscosity of the Newtonian component and µs is the viscosity of the
Newtonian solvent in the Oldroyd-B fluid. The dumbbell elastic stress τp = (1 + φ)τ d/2
with τ d = − nkT I + nH 〈 Q Q〉 being exactly the Kramers expression for the dumbbell
stress (Bird et al. 1987). Here 〈 · 〉 indicates the average of a quantity over all dumbbell
configurations. τ d obeys the Maxwell equation:

τ d + λHτ d(1) = µp[∇v + (∇v)T ], (2.4)

where the subscript (1) denotes the upper convected derivative. λH = ζ/(4H ) is the re-
laxation time, ζ being the friction coefficient, and µp = nkT λH is the polymer viscosity.
The evolution of φ is governed by the Cahn–Hilliard equation with mobility γ :

∂φ

∂t
+ v · ∇φ = γ λ∇2

[
−∇2φ +

φ(φ2 − 1)

ε2

]
. (2.5)
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Figure 1. Steady-state deformation parameter D as a function of the Deborah number De
for two capillary numbers: (a) Ca = 0.1, (b) Ca =0.2. Experimental data of Guido et al. (2003)
and predictions by Maffettone & Greco (2004) are also shown. Comparison with these and
other previous studies will be discussed at the end.

Equations (2.3), (2.4) and (2.5), along with the continuity and momentum equations
∇ · v = 0 and ∇p = ∇ · τ , form the governing equations for our two-phase system.
Inertia is neglected as the complex fluids are typically highly viscous. We will also
refer to a dimensionless ‘configuration tensor’ A = (H/kT ) 〈 Q Q〉 =(λH/µp)τ d + I later
in the discussion.

We will use the two-dimensional spectral method developed by Yue et al. (2004),
with a Fourier or Chebyshev–Galerkin discretization on a regular grid depending on
spatial periodicity. The number of operations per time step scales as O(N log N), N

being the number of unknowns. We have carried out grid and time-step refinements to
establish the adequacy of our spatial and temporal resolutions. The interface typically
requires 7–10 grids to resolve, and the total number of grid points is typically
2048 × 1024. In all cases tested, the temporal resolution is adequate as long as the
simulation is stable.

3. Steady-state drop deformation
The drop deformation can be represented by D = (L − B)/(L + B), L and B being

the longest and shortest lengths from the centre to the surface. For a Newtonian drop
in a Newtonian matrix, D increases with the capillary number Ca =µγ̇ a/σ , where µ

is the matrix viscosity, γ̇ is the shear rate, a is the undeformed drop radius and σ is
the interfacial tension. The D ∼ Ca curve is well known, and Yue et al. (2004) used it
to validate our numerical code. To explore the effects of viscoelasticity on D, we have
simulated three cases: a Newtonian drop in a Newtonian matrix (N/N), a Newtonian
drop in an Oldroyd-B matrix (N/O) and an Oldroyd-B drop in a Newtonian matrix
(O/N). In each case, we have used equal viscosity between the two components;
for N/O and O/N, µn =µp + µs with µp =µs . The magnitude of viscoelasticity is
represented by the Deborah number De = λH γ̇ .

The main results of this paper are shown in figure 1, which plots D as a function
of De for two values of Ca. For O/N, D decreases monotonically with increasing De.
For N/O, on the other hand, the curve has a minimum. Thus, viscoelasticity in the
matrix suppresses drop deformation for small De, in fact more strongly than in the
O/N case, but enhances drop deformation for large De. To understand the origin of
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Figure 2. The drop surface in polar coordinates for N/O at Ca = 0.1.
Only half of the drop is shown.
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Figure 3. Flow kinematics in the viscoelastic matrix for N/O at Ca = 0.1 and De = 1. (a)
Streamlines. The dash-dot lines indicate the drop’s equator and poles. (b) Extensional rate
along the predominant orientation of the dumbbells ε̇d = m · ∇v · m, where m is a unit vector
along the principal eigenvector of A.

this surprising behaviour, we will analyse the flow and stress fields around the drop
at several De and a fixed Ca = 0.1.

3.1. A Newtonian drop in an Oldroyd-B matrix (N/O)

To facilitate analysis of the flow and stress fields near the interface, we represent the
drop shape by the r(θ) plot in figure 2, where θ is measured from the direction of shear
(x-axis). As De increases from 0 to 2, L and B vary non-monotonically in accordance
with figure 1. The location of maximum radius L moves monotonically toward smaller
θ . So increasing viscoelasticity in the matrix aligns the drop toward the direction of
shear. We will refer to the end of L as the drop’s ‘pole’ and the end of B as its ‘equator’.

Figure 3 illustrates the flow kinematics in the Oldroyd-B matrix for De =1. In this
case, the pole of the elongated drop is at θ ≈ 0.15π and its equator is at θ ≈ 0.65π.
The most important features of the flow, as far as the dumbbells are concerned,
are the accelerating regions near the equator and the decelerating regions upstream
of the poles. To anticipate the reaction of the dumbbells, we plot in figure 3(b) the
extensional rate ε̇d along the predominant orientation of the dumbbells, namely along
the principal eigenvector of the configuration tensor A. As expected, ε̇d is maximum
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Figure 4. Configuration of dumbbells in the Oldroyd-B matrix for N/O at Ca =0.1 and
De = 1. (a) Contours of tr(A), indicating the length of the dumbbells. (b) Orientation of
dumbbells indicated by line segments along m with a length proportional to tr(A).

in the stretching region near the equator and minimum in the compressive region
upstream of the poles.

Figure 4 shows the configuration of the dumbbells around the drop. At the poles, the
dumbbells are nearly perpendicular to the interface. Thus, they will generate a tensile
stress that stretches the drop at the poles, as for a drop in planar extensional flow
(Ramaswamy & Leal 1999b). Here, however, tr(A) is minimum at the poles, and the
stretching effect is weak. At the equator, tr(A) is maximum and the dumbbell orienta-
tion m is tangential to the interface. The polymer produces a large tensile stress in
this region, which, though not contributing directly to normal forces on the drop,
does so indirectly as will be explained shortly. Comparing figures 3(b) and 4(a) shows
that the maximum (or minimum) of tr(A) occurs some distance downstream of the
maximum (or minimum) of ε̇d . This simply reflects the finite relaxation time of the
polymer molecules.

The qualitative features described above prevail for other De as well. Now we
can examine the polymer and hydrodynamic contributions to the normal force on
the outside of the drop. The flow inside the Newtonian drop is largely the same for
N/N and N/O. Figure 5 plots the distributions of various stress components along
the ‘outer edge’ of the drop surface, taken here to be the level set of φ = 0.9. The
polymer normal stress τpn is largest near the drop’s pole and smallest near the equator
(figure 5a). This is consistent with the orientation of dumbbells in figure 4(b). With
increasing De, the maximum of τpn increases in magnitude while its location shifts
downstream toward smaller θ . This is again the result of the increasing relaxation
time λH . Thus, with increasing De, τpn tends to align the drop with the flow direction
and increase the stretch on the poles. Meanwhile, the compression on the equator of
the drop decreases slightly.

The viscous normal stress τsn in figure 5(b) is comparable with τpn in magnitude.
But with increasing De, τsn is reduced near the poles, thus weakening the stretching
of the drop there. On the equator, τsn also weakens its compression. This is due to
flow modification. The polymer stress suppressing the base flow is a typical behaviour
of viscoelasticity. Sometimes the flow modification is so severe that it overwhelms the
direct effect of the viscoelastic stress (Ramaswamy & Leal 1999a).

The pressure profile is determined to a large extent by the tangential stress τpt due
to the polymer (figure 5c,d ). The highly stretched dumbbells near the equator generate
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Figure 5. Stresses along the outer edge of the interface for N/O at Ca = 0.1. (a) The polymer
normal stress τpn = n · τp · n, n being the outward normal to the interface. (b) The viscous
normal stress τsn due to the solvent in the Oldroyd-B fluid. The N/N curve is also shown for
comparison. (c) The polymer tangential stress τpt . (d ) The pressure p. (e) The total normal
stress Tn = τpn + τsn − p.

a large tensile τpt , which, though not acting directly to deform the drop, induces a very
large pressure near the equator much as the hoop-stress causes rod-climbing. Thus,
we have identified three effects of viscoelasticity in the matrix: the polymer normal
stress rotates the drop toward the flow direction and stretches the drop at the poles;
the viscous normal stress is generally reduced by viscoelasticity due to weakening of
the flow; the tensile stress due to extended polymer chains produces a high pressure
on the drop’s equator. The first and third effects tend to enhance drop deformation,
while the second tends to reduce drop deformation. The subtle interplay of these
effects is illustrated by the total normal stress Tn in figure 5(e).
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Figure 6. (a) Contours of the strain rate ||E|| =
√

E : E, where E= (∇v + ∇vT)/2, for O/N at
Ca =0.1, De = 1. (b) Predominant orientation of dumbbells inside the drop. The length of
the line segments is proportional to tr(A). Note that the line segments represent ensembles of
dumbbells; their average orientation is steady although individual dumbbells may be tumbling
in the rotational flow.

With De increasing from 0 to 0.5, the Tn(θ) profile shifts almost as a whole toward
smaller θ , the only distortion to the profile being the reduced magnitude of Tn near
θ ≈ 0.6π. In other words, the compressive force on the equator of the drop is relieved
somewhat. Among the components analysed above, this can be attributed to τsn.
Note that τpn also exerts less compression there, but the effect is weaker than that of
τsn. Thus, for smaller De, the drop deforms less because the flow modification due to
polymer stress diminishes the viscous normal force pushing on the equator of the drop.
The pressure p is increased slightly on the equator, but it is insufficient to overcome the
deficit in τsn. As De exceeds a threshold, approximately 0.5 for Ca = 0.1, the mounting
pressure p on the equator becomes the dominant effect. Thus, it is the hoop stress
atop the equator that causes the drop deformation D to increase with De at higher De.
The polymer stress τpn also enhances drop deformation by increasing the stretch on
the poles of the drop, but this is a minor effect.

3.2. An Oldroyd-B drop in a Newtonian matrix (O/N)

For an Oldroyd-B drop deforming in a Newtonian matrix (O/N), the situation is
simpler because the flow modification is minimal. Figure 6(a) shows contours of the
strain rate for O/N; they are essentially identical to those for N/N at the same Ca,
even inside the viscoelastic drop. Outside the drop, the normal force on the interface
is due to τsn and p, and we have verified that they are nearly identical for N/N and
O/N. Inside the drop, the flow is highly rotational and the strain rate is small. Thus
the viscoelastic stresses inside the drop must be small also. Nevertheless, it must be
these viscoelastic stresses that have caused the mild reduction in drop deformation
seen in figure 1.

Figure 6(b) gives the distribution of dumbbells inside the Oldroyd-B drop, which
may affect the deformation of the drop in two ways. First, at the poles of the drop,
the dumbbells are perpendicular to the interface and the polymeric stress tends to
pull the interface inward and thus decreases the drop deformation (Pillapakkam &
Singh 2001). Second, tr(A) is maximum at the equator where the dumbbell are nearly
parallel to the interface. The resulting strong tension engenders a high pressure at the
equator which tends to push the interface outwards.
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Figure 7. Stresses along the inner edge of the interface for O/N at Ca = 0.1. (a) The polymer
normal stress.(b) The polymer tangential stress. (c) The pressure. The higher level of p is a
consequence of the Young-Laplace equation. (d ) The total normal stress.

Figure 7 gives the stress distributions along the inner edge of the interface. Com-
pared with figure 5, τpn is much smaller, and varying De has a much weaker effect
on all the stresses plotted. This confirms that viscoelasticity in the drop has less effect
on drop deformation than that in the matrix. The distribution of τpn is such that
it pulls inward on the poles of the drop and pushes mildly outward at the equator
(figure 7a). Thus, it tends to suppress drop deformation. This turns out to be a very
weak effect. A more prominent effect is the increase of τpt with De at the equator
(figure 7b). The acceleration of a fluid element just inside the interface is related to
∂(−p + τpt )/∂t , t being the tangential direction. With little flow modification, an in-
crease in the tensile stress τpt due to the polymer is balanced by an increase in p, as
is evident in figure 7(c). Thus, with increasing De, p pushes harder outward at the
equator. The total normal stress Tn largely mirrors the behaviour of p. In the end,
the decrease of drop deformation D with drop-phase viscoelasticity is caused by the
growing outward pressure at the equator of the drop, which is in turn caused by the
large viscoelastic tensile stress there. Pillapakkam & Singh (2001) simulated more-
slender drops at larger Ca, which may not exhibit the large τpt at the equator. This
may explain their non-monotonic D ∼ De curve for O/N.

4. Concluding remarks
In summary, our analysis is guided by Ramaswamy & Leal’s (1999a) idea that

viscoelastic effects come not only from the direct contribution of the non-Newtonian
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stresses, but also from the modification of flow by such stresses. For N/O, it is the
coupling of the two factors that gives rise to the non-monotonic D ∼ De curve in
figure 1. For O/N, there happens to be little flow modification, and we predict a
monotonic decrease of D with De.

Since our computations are in two dimensions, quantitative comparison with ex-
periments is difficult. Nevertheless, figure 1 shows reasonable agreement with the ex-
periment of Guido et al. (2003) and the model prediction of Maffettone & Greco
(2004). For smaller De, viscoelasticity in the matrix suppresses deformation more
than if it is in the drop, and the effect appears to be stronger in reality than in
our simulations. Guido et al.’s (2003) observation of drop rotation is reproduced by
our N/O simulations as well (cf. figure 2), and explained by the normal stress τpn

pulling on the poles of the drop. Perhaps most interestingly, our prediction of a
non-monotonic D ∼ De curve for viscoelasticity in the matrix resolves an apparent
contradiction among previous experiments at different De. The De range for the
upward portion of our curve is consistent with experiments. For instance, Mighri
et al. (1998) reported a 100% increase in D due to matrix elasticity at De ≈ 2.6 and
Ca = 0.2.

The two-dimensionality handicaps this study. In extreme cases such as capillary
breakup of a thread, disregarding the curvature in the third dimension leads to
qualitatively different predictions. In most cases, however, the difference is quantita-
tive. An example is an extended drop retracting at a slightly different speed in two
dimensions than in three. The comparison with three-dimensional results in figure 1
lends some confidence to our two-dimensional simulations. In general, extending a
two-dimensional computation to three dimensions involves technical rather than con-
ceptual difficulties. In our spectral implementation, using the regular mesh in three
dimensions would produce too large a computational task. In recent years, a few
three-dimensional simulations have appeared. But they tend to use coarse grids with
insufficient resolution (Khayat 2000) and generate numerical results, for the same
physical problem, that do not agree. The key to reliable three-dimensional simulations
seems to lie in adaptive meshing. Work is under way for a finite-element method with
adaptive meshing for three-dimensional flows in complex geometries.
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