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Synopsis

We use a finite-difference algorithm to simulate the shear flow of nematic liquid crystals based on
the Leslie–Ericksen theory, and investigate how unequal elastic constants affect the formation,
oscillation, and breakup of roll cells, the nucleation of defects, and the coarsening of texture upon
cessation of flow. With elastic anisotropy, the so-called Ericksen number~Er! cascade comprises the
same regimes previously documented for isotropic elasticity: stable simple shear, steady roll cells,
oscillatory roll cells, and an irregular pattern with thick disclinations. The onset of roll cells is most
sensitive toK3 , the elastic constant for bend. IncreasingK3 stabilizes the shear flow against the
formation of rolls. For reducedK3 , a second Er cascade may appear for higher Er, with
regularization and eventual reappearance of the defect-laden irregular pattern. The twist constantK2
is the most important for defect formation; a weakerK2 causes roll cells to breakup and pairs of61
defects to nucleate at lower Er. The defects show distinctive structures depending on the elastic
anisotropy; typically a weaker elastic constant gives rise to patterns that incur greater distortion in
the corresponding mode. After cessation of shear, all textures relax completely to a monodomain.
The longest-lasting orientational pattern is again attributable to the weakest of the elastic constants.
By analyzing the amount of distortion in each mode and the associated free energy, we are able to
elucidate the role of elastic anisotropy in defining the orientational patterns in sheared nematics.
© 2003 The Society of Rheology.@DOI: 10.1122/1.1584429#

I. INTRODUCTION

Texture and defects are perhaps the most characteristic attributes of liquid crystals
~LCs! and liquid-crystalline polymers~LCPs!, and the birth of defects in a flowing and
initially defect-free liquid-crystalline material has been an issue of long-standing interest
@Larsen~1993!; Rey and Denn~2002!#. Shearing small-molecule nematic LCs, Mather
~1996a, 1996b! discovered that disclination lines nucleate in the bulk only for tumbling
liquid crystals. In flow-aligning liquid crystals, defects originate on solid boundaries and
in much smaller numbers. These findings have confirmed the long-held view that director
tumbling is fundamentally responsible for the defects in liquid-crystalline materials. Lar-
son and Mead~1992; 1993! published a series of experiments on slow shearing flows of
poly~benzylglutamate! ~PBG! solutions, which is a tumbling LCP@Burghardt and Fuller
~1990!#. The directorn is initially aligned with the vorticity direction. With increasing
shear rate~or Ericksen number Er!, the texture of the sample changed from that of a
monodomain to regular parallel stripes, then to irregular stripes with thick disclinations
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parallel to the flow, and finally to a chaotic pattern. This series of changes in the bire-
fringent pattern, apparently rooted in distortional elasticity, is known as the Ericksen
number cascade.

Linear instability analyses indicate that the regular stripes are due to rolls of counter-
rotating cells oriented along the flow@Manneville and Dubois-Violette~1976!; Larson
~1993!#, and the experiments of Larson and Mead~1993! strongly suggest that roll cells
play a key role in the formation of disclinations. However, details of the process are
inaccessible to linear instability analysis, and experimental observations at sufficient
resolutions would be difficult as well. This motivated Fenget al. ~2001! to perform
dynamic simulations of sheared nematics using the Leslie–Ericksen~LE! theory. Numeri-
cal results reveal four flow regimes with increasing Er: stable simple shear, steady roll
cells, oscillating roll cells, and irregular patterns with disclinations. These are in general
agreement with Larson and Mead’s~1992; 1993! experiments on PBG solutions. In
particular, the simulations identified a route for the nucleation of thick disclinations in
sheared nematics. In the last regime, roll cells break up to form ‘‘ridges’’, elongated
regions where the director is swept into the flow direction. Given favorable local flow
conditions, a ridge splits to produce a pair of61 disclinations of the escaped type with
nonsingular cores. These disclinations are parallel to the flow and persist for some time
before annihilating between pairs of opposite signs.

A caveat is that these simulations have assumed elastic isotropy. Within the framework
of Frank elasticity, distortions of the director fieldn(r ) can be classified into the three
canonical modes: splay, twist and bend@de Gennes and Prost~1993!#. The total free
energy may be written as the sum of contributions from each mode
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where the coefficientsK1 , K2 , andK3 are Frank elastic constants representing splay,
twist, and bend, respectively. Elastic isotropy is the assumption that all three constants are
equal, also known as the one-constant assumption. This brings about algebraic simplifi-
cations in the theory@de Gennes and Prost~1993!#. For instance, the free energy of Eq.
~1! reduces to

F 5
K

2
¹n:~¹n!T, ~2!

whereK is the single elastic constant. However, real nematic fluids have disparate elastic
constants, a quality referred to as elastic anisotropy. For small-molecule LCs, typically,
twist is the lowest energy mode while bend and splay are on a par. For polymeric liquid
crystals, splay tends to be the costliest mode and more importantly, the degree of anisot-
ropy is much greater than for small-molecule LCs. Tabulated values for a number of
materials in both categories may be found in Larson~1993!.

Apparently, the assumption of elastic isotropy is unrealistic. Furthermore, experimen-
tal evidence indicates a prominent role for elastic anisotropy in determining the confor-
mation of orientational defects@Hudson and Thomas~1989!; Hudsonet al. ~1993!; Wang
et al. ~1994!#. Previous studies of elastic anisotropy, as far as we know, concern static
defects of61/2 strength within a two-dimensional director field. As such, the twist mode
is excluded, as are any dynamics that may manifest themselves during flow. Theoreti-
cally, Larson~1993! studied the linear instability of shear flow between parallel plates,
and computed the neutral curves for several elastically anisotropic nematics. He found
that K2 has little effect on the critical Er for the onset of roll-cell instability. This
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surprising result, though limited to infinitesimal distortions, gives a glimpse into the
intriguing roles that elastic anisotropy may play in general flow situations with more
severe distortions. To date, there has not been a systematic study of elastic anisotropy in
flowing LCs or LCPs, especially regarding the nucleation and conformation of flow-
induced disclinations.

This lack of knowledge serves as the rationale for the study reported here. By gener-
alizing the prior work of Fenget al. ~2001!, we numerically simulate the shear flow of
nematics with unequal elastic constants. By examining the Ericksen cascade, we eluci-
date the roles of elastic anisotropy in a series of dynamic phenomena, from the onset of
roll cells to their eventual breakup, and to coarsening upon cessation of flow, with an
emphasis on the occurrence and structure of defects.

In the context of prior experimental and theoretical studies of LCs and LCPs, we
should emphasize two points relevant to the significance of this work. First, the simula-
tions concern an idealized system. The mathematical model and flow geometry are such
as to contain the essential characteristics of the problem while keeping it simple enough
for detailed numerical analysis. The material parameters are chosen largely to map out
the model behaviors of interest rather than to approximate a particular nematic. These
should be borne in mind when correlating the numerical results to experimental obser-
vations. Second, the Leslie–Ericksen theory to be used here constitutes an asymptotic
limit, for small distortions and weak flows, of several LCP constitutive theories. For
instance, it may be seen as the result of coarse-graining molecularly-based or phenom-
enological tensor theories@Rey and Tsuji~1998!; Fenget al. ~2000!; Kupfermanet al.
~2000!; Wang~2002!#. These, in turn, are coarse-grain approximations of kinetic theories
@Suenet al. ~2002!#. Thus, this paper represents initial steps toward multiscale simulation
of flowing LCPs, and the results should serve as guidelines for future studies with more
sophisticated models.

II. FORMULATION OF THE PROBLEM

Our simulations are based on the LE theory. There are several reasons for this choice.
The first is the simplicity of the LE theory in comparison with molecular theories@e.g.,
Fenget al. ~2000!#. The molecular configuration is only represented by the directionn,
the orientation distribution being assumed fixed at the equilibrium state. The second is the
theory’s capability to describe the weak flows and mild spatial distortions in the Ericksen
number cascade. Molecular viscoelasticity, absent from the LE theory, becomes dominant
only in the Deborah number cascade for LCPs@Larson and Mead~1993!#. Thus, Feng
et al. ~2001! were able to reproduce, qualitatively at least, the flow instability and thick
disclinations that Larson and Mead~1993! have observed in sheared PBG solutions. In
fact, experiments show small-molecule LCs to behave similarly to LCPs in the Ericksen
cascade@Mather et al. ~1996b!#. Recently, Sgalariet al. ~2002! explored the Deborah
number cascade using the molecular theory of Fenget al. ~2000!. Though the molecular
order parameter does vary appreciably, the qualitative behavior of in-plane tumbling and
out-of-plane tipping are the same as predicted by the LE theory. Based on these, we
expect our results to be relevant to the flow of small-molecule LCs and LCPs subject to
weak flows and mild distortions. Finally, the LE theory is the common limit of more
sophisticated models, and has been successfully used in numerous flow simulations, e.g.,
Han and Rey~1994; 1995!, though their focus was not on roll-cell instability and defect
formation.

The LE theory consists of two major equations@de Gennes and Prost~1993!#:

n3~h2g1N2g2n–D! 5 0, ~3!
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s 5 se1a1D:nnnn1a2nN1a3Nn1a4D1a5nn–D1a6D–nn. ~4!

Equation~3! determines the rotation of the directorn through the balance between an
elastic torque and a viscous torque. The molecular field vectorh is defined as the energy
penalty for rotatingn:

h 5 2
]F

]n
1¹•

]F

]~¹n!
~5!

and has the physical meaning of an elastic torque on the director.N 5 ṅ2V•n is the
rotation of the director with respect to the background fluid, withV 5 @(¹v)T2¹v#/2
being the vorticity tensor andv being the velocity.D 5 @(¹v)T1¹v#/2 is the strain rate
tensor andg1 andg2 are viscosity constants. Equation~4! gives the stress tensor of the
material, wherese is the Ericksen stress

se 5 2
]F

]~¹n!
•~¹n!T. ~6!

The a’s are Leslie coefficients related to theg’s via

g1 5 a32a2, ~7!

g2 5 a31a2 5 a62a5. ~8!

We consider the shear flow between two parallel planes separated by distanceH, the
bottom plane being stationary and the top moving with velocityV ~Fig. 1!. To make the
equations dimensionless, we takeV to be the characteristic velocity,H to be the charac-
teristic length, andH/V to be the characteristic time. We also defineh 5 a4/2 as the
characteristic viscosity and use someK as the characteristic elastic constant. Inserting the
free energy of Eq.~1! into Eqs.~5! and~6!, and incorporating the stress tensor of Eq.~4!
into the linear momentum equation, we arrive at the following dimensionless governing
equations

n

Er
3$K3¹2n1~K12K3!¹~¹•n!1~K32K2!@Q¹3n1¹3~Qn!#%

5 n3~g1N1g2D•n!, ~9!

FIG. 1. Schematic of the computational domain. The top plane moves with velocityV while the bottom is fixed.
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¹p2¹2v 5 2
¹•se

Er
1¹•~a1D:nnnn1a2nN1a3Nn1a5nn•D1a6D•nn!,

~10!

¹•v 5 0, ~11!

whereQ 5 n•(¹3n) and the Ericksen number is defined as

Er 5
hVH

K
. ~12!

For convenience, we use the same symbols for dimensionless quantities. Fluid inertia is
neglected in comparison with the viscous stress since the flow varies on a time scale
associated with the director rotation, which is much longer than that for viscous dissipa-
tion.

In the above, all viscosities have been scaled byh and all elastic constants byK. In the
simulations, we fix the viscosity ratios at values for Larson’s~1993! ‘‘typical nematic
polymer’’ having the following dimensional viscosities:

~a1,a2,a3,a4,a5,a6! 5 ~245.91,269.2,3.13,3.36,60.15,25.69! poise. ~13!

Note thata3 /a2 , 0 indicates a tumbling nematic. The ratios of the elastic constants, on
the other hand, will not approximate those of a real nematic but rather be varied system-
atically so as to map out the effects of elastic anisotropy. The choice ofK will be
specified when discussing the results in Sec. III.

The numerical aspects of the problem are similar to those of the simpler problem with
equalK’s, and we will mention only the key features and refer the reader to Fenget al.
~2001! for details. The computational domain is a rectangle in thex–y plane~Fig. 1! with
an aspect ratioW/H 5 8. We assume no variation along the flow direction~z axis! for the
velocity components~u,v,w! and the director orientation (nx ,ny ,nz). The governing
equations are discretized using finite difference on a uniform staggered grid, and numeri-
cally integrated using a multigrid method. Mesh refinement has been carried out to
confirm convergence. The discretization of Eq.~9! is done in a local principal coordinate
system so that the constraintunu 5 1 is easily imposed. For the velocityv, we use no-slip
boundary conditions on the top and bottom plates and impermeable and zero-shear-stress
conditions on the sidewalls. The directorn is anchored on all boundaries along the
velocity direction~x axis!, which ensures that the first instability be the roll cells@Larson
and Mead~1993!#. The initial condition is the simple shear flow of a single crystal, with
a uniform director fieldn 5 ~1,0,0!. We then supply a spatially random disturbance of
amplitude 1024 to the n field and follow the subsequent evolution of the flow and
director orientation.

As a measure of the relative importance of the three modes of distortion, we define a
dimensionless average free energy for each mode

For splay: Fs 5
K1

2A
E

A
~¹•n!2dA, ~14!

For twist: Ft 5
K2

2A
E

A
@n•~¹3n!#2dA, ~15!
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For bend: Fb 5
K3

2A
E

A
un3~¹3n!u2dA, ~16!

whereA is the area of our computational domain made dimensionless byH2.

III. RESULTS AND DISCUSSIONS

The numerical results are discussed in five sections. In Sec. A, we analyze the three
types of distortions for an elastically isotropic nematic. This serves as a base line for
subsequent sections on elastic anisotropy. Section B focuses on how elastic anisotropy
affects the onset of roll-cell instability. Section C examines the higher-Er regimes and
constructs a complete picture on how elastic anisotropy modifies the Ericksen number
cascade. Section D discusses the occurrence and structure of defects. Finally, Sec. E
investigates the coarsening of texture and relaxation of distortions upon cessation of the
shear.

A. Splay, twist, and bend in an elastically isotropic nematic

We wish to understand how each mode of distortion evolves in the elastically isotropic
solutions of Fenget al. ~2001!. This special case then serves as a base line for analyzing
more general cases. Fenget al. ~2001! showed that with elastic isotropy, the Ericksen
cascade consists of four regimes: simple shear of monodomain~Er , 50!, steady roll
cells ~50 , Er , 90!, oscillatory roll cells~90 , Er , 120!, and finally irregular pattern
with defects~Er . 120!. By carrying out simulations at smaller intervals of Er, we have
refined the critical Er values in this study so they differ somewhat from those given in
Fenget al. ~2001!.

For the steady roll-cell regime, we can define a unique free energy for each mode
according to Eqs.~14!–~16!. Time averaging is used for the oscillating roll cells. Figure
2 plots the free energies for splay, twist, and bend at different Er covering the first three
regimes. The most pronounced feature is that the bending energyFb is by far the largest
of the three. The dominance of the bending mode can be easily understood from the
director field in Fig. 3. The roll-cell instability produces, inside each swirl, mostly rota-
tion of n inside the plane of the secondary flow, i.e., thex–y plane. This gives rise to a
strong bending component. The small tipping ofn out of thex–y plane toward the flow

FIG. 2. Free energy for splay (Fs), twist (Ft), and bend (Fb) in the first three regimes of the Ericksen cascade
for an elastically isotropic nematic.
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direction is responsible for the smaller twist, while splay has the lowest energy for
smaller Er. Another notable feature is that all three energies tend to increase with Er,
indicating more severe distortions at higher shear rates. An exception is a tiny dip in the
twist energyFt near the onset of oscillatory cells~Er ' 90!. Toward the upper end of the
oscillatory regime,Ft shoots up sharply. This corresponds to the rotation ofn into the
flow direction in the core of the cells, a precursor to the formation of ridges.

The fourth regime~Er . 120! features an interesting temporal evolution. From the
initial monodomain, regular roll cells form quickly, and then start to split between the top
and the bottom. The daughter cells undergo further breakup and coalescence as the spatial
pattern becomes irregular. The core of some daughter cells become ridges wheren is
swept into the flow direction. Some of the ridges then split to produce pairs of escaped
61 disclinations. Details of the process are given in Fenget al. ~2001!. For our present
purpose, Fig. 4~a! illustrates the temporal evolution at Er5 200 in terms of the three
distortion energies. Regular roll cells emerge att ' 10 strain units and persist tillt ' 40.
During this period, the distortion is predominantly bend as in the regime of steady roll
cells. After the cells start to split,Fb andFs peak att ' 50 asFt shoots up sharply; the

FIG. 3. A steady pair of roll cells for an elastically isotropic nematic at Er5 70. ~a! The director fieldn(r ),
where tipping out of the plane is indicated by a shorter arrow;~b! the velocity vector (u,v) for the secondary
flow in the x–y plane. The maximum velocity is 1.44% of that of the top planeV.

FIG. 4. ~a! Temporal evolution of the free energies for an elastically isotropic nematic at Er5 200. The
nonsmoothness of the data is an artifact due to our calculating the energies every 200–500 time steps;~b!
evolution of the global alignment parametern.
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scenario resembles the high-Er end of the oscillatory-cell regime in Fig. 2. Again, the
pronounced twist corresponds to the rotation ofn into the flow direction during the
formation of ridges. After defects form att ' 60, the three modes settle into more or less
steady values, with irregular fluctuations. In this ‘‘quasisteady’’ state,Ft remains the
largest whileFs the smallest. Hence, the final regime is characterized by strong twist
associated with ridges and escaped61 defects.

Hongladaromet al. ~1993! investigated the effect of shear on molecular orientation in
PBG solutions by measuring the birefringence. Their data correspond, in our context, to
a global measure of the director orientation:n 5 ^nz

2&2^nx
2&, where the bracket repre-

sents averaging over the entire domain. They reportedn values ranging from 0.53 to 0.63
in the regime of director turbulence. In our simulation@Fig. 4~b!#, n starts from a value of
21, corresponding to the initial uniform orientation along thex axis, and climbs up
almost in synchronization with the twist energyFt . Eventually,n fluctuates around a
value of 20.05, which, though well below the measured values of Hongladaromet al.
~1993!, shows that the flow has come a long way in turningn against the wall anchoring.

To sum up, the analysis of elastically isotropic solutions suggests that of the three
modes, bend orK3 has the greatest effect on the onset and evolution of roll cells, whereas
twist or K2 dominates the final regime of irregular patterns with defects. The validity of
these observations in solutions with anisotropic elasticity will be examined in the follow-
ing.

B. Critical Er for the onset of roll-cell instability

To systematically explore the effects of elastic anisotropy, we keep two of the three
elastic constants equal and fixed, and vary the third one alone. The fixed value is then
taken to be the characteristicK based on which Er is defined. This protocol will be used
for the rest of the paper, and this section is concerned with the critical condition for the
onset of roll-cell instability.

The critical Ericksen number Err for the onset of roll cells is determined to within
60.5 from simulations for a range of Er. Figure 5 shows how Err varies with each of the
threeK’s. The intersection of the three curves corresponds to the isotropic case. Increas-

FIG. 5. Critical Err for the roll-cell instability as a function of elastic anisotropy. For each curve, one elastic
constant is varied while the other two are kept equal and fixed.
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ing any elastic constant, as one may expect, raises Err and stabilizes the flow against
roll-cell instability. The effect is strongest forK3 and much weaker forK1 andK2 . This
is consistent with the observations made of Fig. 3 that the onset of rolls involves mostly
bend. The weak effect ofK2 has been noted previously by Larson~1993! from linear
instability analysis. As a validation of our numerical code, we have also computed Err

using additional sets of parameters given by Larson~1993! for 8CB and the ‘‘typical
nematic polymer.’’ Good agreement is obtained for Err as well as the critical wave
numberqx .

C. Anisotropic effects on the higher-Er regimes

When Er increases beyond Err , Fenget al. ~2001! found three additional regimes in
the special case of elastic isotropy: steady roll cells, oscillatory roll cells, and an irregular
and fluctuating pattern with defects. To explore the effects of elastic anisotropy on the
higher-Er regimes, we will examine three cases:K1 5 0.1K, K2 5 K3 5 K ~small
K1); K2 5 0.1K, K1 5 K3 5 K ~small K2); K3 5 0.5K, K1 5 K2 5 K ~small K3).

SmallK1 . To illustrate the temporal evolution of the solutions, Fig. 6 plots the history
of the director componentnx along the vorticity direction at an arbitrarily chosen spatial
point (x,y) 5 (2,0.25). For different solutions, this point will be at different positions
relative to, say, a nearby roll cell. Thus, the magnitude ofnx is not meaningful by itself.
But the qualitative nature of its evolution reflects that of the entire solution. for Er
between Err 5 42.5 and a threshold Ero ' 52, steady roll cells prevail, and a solution at
Er 5 50 is shown as an example. With increasing Er, the secondary flow intensifies in
terms of the magnitude of velocity componentsu andv. The dominant wave numberqx
is also expected to increase with Er~Fenget al. 2001!. Because of the specification that
the side walls be cell boundaries, our geometry allows only discrete changes in the wave
number. Thus, the change ofqx over this narrow range of Er is not reflected by our
simulations; the number of cells remains at 14 across the channel width ofW 5 8H. As
Er surpasses Ero, the roll cells form and then start oscillating, in much the same way as
for the previously studied isotropic case. The only difference is that the amplitude is
modulated as illustrated by Er5 55 in Fig. 6. It is possible that constant-amplitude

FIG. 6. Small K1 : evolution of thex component of the director at a fixed point~2,0.25! for Er 5 50, 55, and
70.
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oscillation exists just above Ero. When Er exceeds still another threshold Eri , estimated
to be near 65, regular roll cells form first and then rapidly breakup into an irregular
pattern that also fluctuates in time. Thick disclination lines nucleate, with61 strength in
the escaped configuration. This regime again resembles that for isotropy elasticity. The
effects of unequalK’s on the conformation of the defects will be investigated in Sec. D.

Small K2 . The regimes are qualitatively the same as for smallK1 , with transitions
from steady rolls to oscillating rolls at Ero ' 47, and further to irregular patterns with
defects at Eri ' 57. Again, we have only obtained amplitude-modulated oscillations in
the intermediate regime, though we cannot rule out the possibility of a narrow Er range
just above Ero where the oscillation has a constant amplitude. Examples of the last two
regimes are shown in Fig. 7.

Small K3 . With increasing Er, we initially see the same transitions as earlier, with
Ero ' 55 and Eri ' 62.5. If we continue to increase the Ericksen number, however, the

FIG. 7. Small K2 : evolution atnx at (x,y) 5 (2,0.25) for Er5 50 and 64.

FIG. 8. Small K3 : transitions from an irregular solution at Er5 65 to a regular oscillatory one at
Er 5 85, and then to another irregular solution at Er5 110.
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irregular pattern disappears and gives way to a second regular oscillatory regime for Er

. Er̃o ' 80. As Er exceeds Er˜i ' 95, roll cells once again break up into an irregular
pattern with the nucleation of defects. Therefore, there exist two Ericksen number cas-
cades for the smallK3 case. The first comprises four regimes similar to those of the
isotropic case, while the second has only the last two regimes. Figure 8 illustrates the
higher-Er transitions: from irregular fluctuations at Er5 65 to periodic oscillation at
Er 5 85, and again to irregular fluctuations at Er5 110. Both irregular regimes produce
defects. But the oscillatory regime between them is defect-free, and temporally and
spatially periodic. Figure 9 plots the evolution of the free energy for each mode over the
two Er cascades. In each cascade, the transition to irregular patterns with defects is
accompanied by a sharp increase of the twist energyFt and a dip in the splay and bend
energies. Those are evidently due to the formation of ridges, which cause considerable
twist. Similar behavior has been noted in Figs. 2 and 4~a!.

Figure 10 compares the Er ranges for the various regimes for four combinations of the
elastic constants. As noted before, the onset of roll cells involves mostly bend. As com-

FIG. 9. The two Ericksen cascades as seen from the distortion free energies forK3 5 0.5K, K1 5 K2
5 K.

FIG. 10. A summary of the flow-orientational regimes for isotropic and anisotropic elasticity:~a! stable simple
shear;~b! steady roll cells;~c! oscillating roll cells;~d! irregular pattern with defects;~e! second oscillatory
regime for smallK3 ; ~f! second irregular regime for smallK3 .
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pared to the isotropic case, therefore, Err is greatly reduced for smallK3 , but only
slightly reduced for smallK1 and K2 . In contrast, the appearance of irregular patterns
and defects requires much twist. Hence, Eri is reduced from 120 to 57 asK2 decreases
from K to 0.1K. The effects ofK1 andK3 on Eri are somewhat weaker. The only mystery
in this picture is the second Er cascade that arises for the smallerK3 . Above these finer
features, however, Fig. 10 highlights the robustness of the series of instabilities. The
sequence from standing wave~steady rolls! to traveling wave~oscillating rolls! and then
to chaos~irregular pattern! through breakup or coalescence of microstructures has been
observed in many other systems. Examples include inertially and elastically driven
Taylor–Couette vortices@Coles 1965; Shaqfeh~1996!#, buoyancy-driven boundary-layer
flows @Sparrow and Husar~1969!#, and interfacial instability in stratified two-phase flows
@Sangalliet al. ~1995!#. Using weakly nonlinear instability theory, Chenet al. ~1991! and
Sangalliet al.~1997! have analyzed the last two systems in terms of subharmonic and
overtone interactions. Similar mechanisms may be at work in sheared nematics.

D. Anisotropic effects on the conformation of defects

At sufficiently high Er, each of the three cases—smallK1 , K2 , or K3—develops a
spatiallly irregular and temporally fluctuating orientation field, out of which61 defect
lines nucleate. More careful examination shows that the orientation field and defect
configuration possess distinct features for each case. In the following, we will describe
these features and attempt to relate them to the different elastic constants. We will take
snapshots of the orientation field to illustrate the distinct patterns, but they prevail over
the entire space and time.

For smallK1 5 0.1K, the director field is marked by long curved ridges, which often
have a11 and a21 defect near their ends. Figure 11~a! illustrates such ridges for
Er 5 70 att 5 600 strain units. On either side of the ridge, the directorn is mostly in the
x–y plane, i.e., the plane of the plot. Approaching the ridge,n tips out of the page into the
primary flow directionz. Thus, a rooftop pattern is formed which, resembling the so-
called Néel wall, incurs much splay@Kléman ~1988!, p. 61#. The nucleation of defects
follows the same scenario as described by Fenget al. ~2001! for isotropic elasticity; a
defect pair nucleates on the ridge when local secondary flow splits the rooftop. To explore
the role of elastic anisotropy, we have calculated the three modes of distortion and
contoured them is Figs. 11~b!–11~d!. Indeed, the ridges in~a! correlate closely with the
splay distortion in~b!. Large twist and bend typically occur near the ends of a ridge or on
its sides. Therefore, the prevalent pattern of long curved ridges with defects at the end is
a direct result of the reducedK1 . To be more quantitative, the average splay, twist and
bend in the rectangular area 7.25< x < 7.45, 0.2< y < 0.8 containing a ridge are,
respectively, 22.36, 19.78, and 3.40. In comparison, the averages over the entire compu-
tational domain are 8.365, 15.49, and 11.53 for the three modes. The prominence of splay
at ridges is apparent. Overall, twist is still he greatest distortion, and this will be seen to
hold for all three cases of elastic anisotropy@see also Fig. 4~a!#. But for smallK1 , the
overall percentage of splay~23.6%! is the largest among the three cases.

For smallK2 , the director field features localized patches wheren escapes into the
primary flow direction. Figure 12 shows two such areas for Er5 64 at t 5 320 strain
units. Pairs of defects may nucleate within the patch, as illustrated by the sketch. The11
defect always assumes a circular pattern and the two remain close together. We have
calculated the splay, twist, and bend in the domain, and their contours~not shown here!
correlate with the localized patches; each component reaches a maximum in the neigh-
borhood but the exact locations differ. Noting that our orientation pattern extends un-
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FIG. 11. ~a! Director field forK1 5 0.1K, Er 5 70 att 5 600. The loops are drawn to encircle ridges, two of
which with defects are illustrated by the sketches.~b! Contours of the splay distortion, (¹•n)2. ~c! Contours of
the twist distortion,@n•(¹3n)#2. ~d! Contours of the bend distortionun3(¹n)u2. The contours are scaled by
the maximum of each distortion component, and darker areas have larger distortions.
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changed along thez direction, we expect the circular pattern inside the patch to cause
strong twist and moderate bend@Cladis and Kle´man~1972!; Kléman~1988!, p. 52#. This
is indeed the case. The amount of splay, twist, and bend averaged in a box enclosing one
patch, 5.7< x < 6, 0.5< y < 0.7, are 20.03, 114.0, and 35.77, respectively. The aver-
ages over the entire domain are 2.351, 15.29, and 7.228. The remarkable dominance of
twist at the defect shows that the localized circular patterns are indeed due to the reduced
K2 .

For K3 5 0.5K, the director field is characterized by large areas in whichn escapes to
align with the primary flow. Figure 13~a! illustrates such areas for Er5 220. These
contrast the elongated ridges for smallK1 and the localized patches for smallK2 . Pairs
of defects nucleate in such areas and assume orthogonal patterns, the11 defects being
radial and the21 ones being hyperbolic. Note that Er5 220 falls within the second
Ericksen cascade for smallK3 ~cf. Fig. 10!. The irregular regime in the first Er cascade
is qualitatively similar with orthogonal defects, albeit in smaller numbers. Based on the
two previous cases, one naturally seeks to explain the orthogonal defects in terms of
increased bend. The distortion contours show, however, that the defect-laden escaped
areas do not correspond to large distortions in any mode. Instead, large splay and bend
occur in the strips between such areas, while large twist also appears between these areas
and the anchoring walls. Averaged splay, twist, and bend in the escaped area
4.3 < x < 5, 0.2< y < 0.8 are 3.241, 3.534, and 0.3148, respectively. These are re-
markably small in comparison with overall averages of 9.146, 22.74, and 17.47 for the
three modes. Thus, the escaped areas contain very weak distortion, and the defects have
little impact on the energy budget of the entire material. As a result, one cannot explain
the orthogonal defects energetically; they incur very little bend in particular. Since the
defects reflect only slight deviations ofn from z, one may speculate that they have a
hydrodynamic rather than elastic origin. A direct correlation between the secondary flow
@Fig. 13~e!# and the director field is not apparent, however. Away from the defects, the
elastic energy is at work; the overall percentage of bend~35.4%! is the highest among the
three anisotropic cases.

The relationship between elastic anisotropy and defect conformation has been studied
before in a different context. By fitting experimental micrographs of then field near61/2
defects in thin LCP films, Hudsonet al. ~1993! and Wanget al. ~1994! determined an
apparent elastic anisotropy of the material:e 5 (K12K3)/(K11K3). Their results
showede, presumably a material constant, to vary appreciably with position as one
approaches the defect cores. This demonstrated the failure of the Frank theory to describe

FIG. 12. The director field for Er5 64, K2 5 0.1K at t 5 320. The circles indicate localized patches with
escapedn, and the sketch illustrates a pair of defects atx 5 5.8.
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FIG. 13. ~a! Director field forK3 5 0.5K, Er 5 220 att 5 800. The crosses and circles indicate the21 and
11 orthogonal defects. Since our plotting software does not shrink the size of arrowheads, the deviation ofn
from z is smaller than might appear.~b!,~c!,~d! Grayscale contours of splay, twist, and bend.~e! Velocity vector
for the secondary flow (u,v).
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half-strength defect cores, and the variation ofe was explained in terms of molecular
rigidity and the different modes of distortion in the core. As regards elastic anisotropy in
escaped61 defects, Cladis and Kle´man ~1972! calculated the stable director fields with
isotropic and anisotropic elasticity. Crawfordet al. ~1992! used their solutions to extract
K3 /K1 for real nematics from birefringence patterns. Since none of these studies in-
volves dynamics of flowing nematics, their relevance to our simulations is limited. Our
finding that defects of a certain structure incurs particular modes of distortion is consis-
tent with the results of Cladis and Kle´man ~1972!.

E. Relaxation of texture after cessation of shear

After achieving the defect-laden textures discussed in the previous section, we stop the
shearing abruptly and examine the relaxation of the textures. In all cases simulated, the
relaxation proceeds with61 defects approaching and annihilating each other. This is a
well-known scenario from previous experimental observations@Chuanget al. ~1991!;
Elias et al. ~1999!# and numerical simulations@Rey and Tusji~1998!#. Nevertheless,
elastic anisotropy manifests itself in distinctive patterns during the relaxation.

As noted earlier, a nematic with a weaker elastic constant tends to sustain greater
distortion in the corresponding mode during shearing. In relaxation, on the other hand,
that mode will be the least energetically active. Consequently, we expect features repre-
senting that mode to persist the longest. ForK1 5 0.1K, such a feature is the long curved
ridges. The shear is stopped aftert 5 600 strain units of shearing at Er5 70 ~cf. Fig. 11!,
and Fig. 14 illustrates the ensuring relaxation. Byt 5 616, the ridges have contracted
@Fig. 14~a!#. The two defects originally on the ridge atx 5 5.1 have annihilated, and
those at the ends of the ridge nearx 5 7.4 are approaching each other@see Fig. 11~a! for
original location of ridges and defects#. The flow induced by this relaxation consists of
swirls in thex–y plane, which are directly related to the tendency of various areas of the
director field to rotate so as to relieve the bend and splay in this plane@Fig. 14~b!#. There
is also aw component of the flow, not shown in the plot, due to the relaxation of twist or
nz . The two defects atx 5 7.4 finally start to annihilate att 5 660 @Fig. 14~c!#, but the
large splay patterns in 5, x , 6.5 persist as remnants of the ridges there. These will
finally relax aftert 5 750 when the whole domain returns to a single crystal.

For K3 5 0.5K, we stop shearing at Er5 220 after 800 strain units. The ensuing
annihilation of defects is more vigorous than the small-K1 case on account of their larger
number and weaker energy~cf. Fig. 13!. But the distinguishing feature is the ‘‘director
vortices’’ formed during the relaxation, which, not surprisingly, involve much bend. Fig-
ure 15 illustrates such a pattern att 5 880. The vortex pattern persists untilt 5 920 when
the pair of defects atx 5 5.5 annihilate. A nearly uniform director field is achieved at
t 5 950. Note that the core of the11 defect in the director vortex is unusually compact
and poorly resolved;n shows little escape into the flow direction as it does at the21
defect. We reduced the grid size by half and still failed to resolve the11 core. Further
refinement becomes prohibitively expensive. All other features of the relaxation have
been nearly exactly reproduced on the finer mesh, indicating that the poor resolution of
the 11 core has not compromised the accuracy of the solution elsewhere.

Finally, the relaxation of the small-K2 solution in Fig. 12 is faster and less eventful.
The distortion is mostly restricted to small patches with strong twist. The shear stops at
t 5 320, and the patches have healed completely byt 5 328. This is much faster than the
other two cases even after converting the dimensionless time with respect to Er.~Our
dimensionlesst is defined in terms of the shear rateV/H. A time scale more appropriate
for relaxation should behH2/K, and the corresponding dimensionlesst would be the old
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t divided by Er.! This is not surprising since the small-K2 solution contains fewer defects,
and the distortion is weaker and more localized. A distinctive feature is that the relaxation
of twist induces a strong velocity componentw at the patches. Att 5 324, for example,
the maximum ofw is 0.11, about five times the maximum foru andv.

FIG. 14. Relaxation of the shear-induced texture forK1 5 0.1K and original Er5 70. The shear stops att
5 600.~a! Director field att 5 616.~b! In-plane velocity field (u,v) at t 5 616. There is also aw component

and the maximum is roughly 0.01 for all three components.~c! Director field att 5 660. Note the annihilating
pair of defects atx 5 7.5 and the large splay patterns in 5, x , 6.5.

FIG. 15. A ‘‘director vortex’’ emerges during relaxation of shear-induced texture att 5 880 for K3 5 0.5K
and original Er5 220.
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Experimental literature suggests that for small-molecule liquid crystals, textures
coarsen and vanish completely in time@Chuanget al. ~1991!# , whereas for thermotropic
liquid crystalline polymers, they approach a stable nonrelaxed state@Elias et al. ~1999!;
Colby et al. ~2001!#. Elias et al. ~1999! suggested that folding and entanglement of the
semiflexible polymer chains may prevent complete relaxation, and likened the stable
textured state to a nematic elastomer. Colbyet al. ~2001! argued that a network of defect
lines essentially makes the material a viscoelastic solid with a yield stress. Both scenarios
are absent in our simulations. The Leslie–Ericksen theory does not incorporate polymer
viscoelasticity, let alone reptation of semiflexible chains. Given the simple geometry and
our assumption of no-variation alongz, the defect lines are all parallel and cannot form a
network. The defect density in our simulations is rather too low for entanglement in any
event. Thus, our complete relaxation to a single crystal is expected.

IV. CONCLUSIONS

This work explores the role of elastic anisotropy in the flow and orientation of nematic
liquid crystals under shear and during subsequent relaxation. Within the parameter ranges
covered, we may summarize our numerical results as follows.

~a! The elastic constantK3 , for bend, has the greatest effect in stabilizing a simple
shear flow against the onset of roll cells. The elastic constants for splay and twist also
tend to suppress roll cells but their effects are much weaker.

~b! With elastic anisotropy, the Ericksen cascade comprises the same regimes as for
elastic isotropy: simple shear, steady roll cells, oscillating roll cells, and irregular patterns
with defects. But the threshold Ericksen numbers are shifted. A peculiarity is that a weak
K3 may bring about two Ericksen cascades, with regularization and eventual reappear-
ance of the irregular pattern with increasing shear rate.

~c! The defects that nucleate in the irregular regime have features characteristic of the
unequal elastic constants. A weakerK1 or K2 leads to defect patterns having severe splay
or twist, respectively. For the weakerK3 tested, however, the defects cause only mild
distortion and contribute little to the energetics of the system. We surmise that their
orthogonal pattern have a hydrodynamic rather than elastic origin.

~d! The shear-induced textures relax completely after the cessation of shear. The mode
of distortion corresponding to the weakest elastic constant persists the longest during the
relaxation. A weak flow field is induced by the relaxation, which can be related to the
tendency of areas of the nematic to rotate so as to relieve the distortion.

The four regimes are a robust feature of the Ericksen cascade, and they are qualita-
tively the same with or without elastic anisotropy. These have been shown by Fenget al.
~2001! to agree generally with experimental observations. The effects of elastic anisot-
ropy are either quantitative, as in shifting the critical Ericksen numbers, or reflected by
finer details such as the conformation of defects. At present, these effects cannot be
verified by experiments. Systematic studies of elastic anisotropy are limited to static
defects@e.g., Hudsonet al. ~1993!#, and the most comprehensive experiments on sheared
nematic polymers so far have not recorded the director field near moving defects. The
small-molecule 8CB used by Matheret al. ~1996b! haveK1 5 K3 5 2.14K2 while the
PBG used by Larson and Mead~1993! haveK1 5 15.5K2 5 1.59K3 . Thus, our small-
K2 simulations are probably the most relevant to real nematics.

We close by pointing out the limitations of this work. Disregarding molecular vis-
coelasticity, the Leslie–Ericksen theory applies to slow flows and mild distortions. Thus,
it adequately represents the defects with smooth cores observed in shearing flows of
polymeric and small-molecule nematics@Larson and Mead~1993!; Mather et al.
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~1996b!#. In more complex flow geometries, however,61/2 defects do appear and will
require a more sophisticated molecular theory@Fenget al. ~2000!#. Second, our assump-
tion of no-variation alongz precludes three-dimensional director turbulence and the for-
mation of a defect network, both prominent features observed or inferred by experiments
@Larson and Mead~1993!; Colby et al. ~2001!#. Other important phenomena inaccessible
to our simulations include the formation of stripes along the vorticity direction upon the
start or cessation of shear@Larson and Mead~1992!# and the development of streamwise
patterns in pressure-driven channel flows@Chonoet al. ~1998!; Feng and Leal~1999!#.
Finally, we have examined three special cases of elastic anisotropy, and can only specu-
late about more general cases of three unequalK ’s.
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