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We use the Leslie–Ericksen theory to simulate the shear flow of tumbling nematic
polymers. The objectives are to explore the onset and evolution of the roll-cell
instability and to uncover the flow scenario leading to the nucleation of disclinations.
With increasing shear rate, four flow regimes are observed: stable simple shear, steady
roll cells, oscillating roll cells and irregular patterns with disclinations. In the last
regime, roll cells break up into an irregular and fluctuating pattern of eddies. The
director is swept into the flow direction in formations called ‘ridges’, which under
favourable flow conditions split to form pairs of ±1 disclinations with non-singular
cores. The four regimes are generally consistent with experimental observations,
but the mechanism for defect nucleation remains to be verified by more detailed
measurements.

1. Introduction
Liquid-crystalline polymers (LCPs) have a more or less rigid backbone, and spon-

taneous alignment among the molecules gives rise to the nematic state (Donald &
Windle 1992). A prominent feature of nematic LCPs is the numerous tortuous lines
in the bulk that can be easily observed under a microscope (see e.g. Alderman &
Mackley 1985). Known as disclinations, those are defect lines where the orientation
of the polymer molecules changes abruptly. Disclinations can be eliminated by long-
time annealing or by employing a strong magnetic field. However, once the material is
subjected to a shear flow, disclination lines appear anew and, in time, multiply to form
a dense network, dividing the LCP into the so-called polydomains. The shear-induced
formation of orientational defects is a curious phenomenon of both scientific interest
and practical importance. If LCPs are to be used as structural materials, a controlled
spatial distribution of molecular orientation is highly desirable. Disclinations disrupt
the orientation field and, along with macroscopic inhomogeneities that are prone to
occur during processing (Donald & Windle 1992), are the main obstacles to putting
nematic LCPs to wider applications.

Numerous observations of disclinations have been reported and many beautiful pic-
tures published for both small-molecule liquid crystals and for liquid-crystalline poly-
mers. However, the flow mechanism that has created disclinations remains obscure.
Earlier work indicates a distinction between tumbling and flow-aligning nematics in
the formation of defects (Gähwiller 1972; Manneville 1981). Recent experiments by
Mather, Pearson & Larson (1996a,b), using the small-molecule 5CB and 8CB liquid
crystals, established that disclinations nucleate in the bulk only if the liquid crystal
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is a tumbler; in flow-aligning liquid crystals, bulk nucleation is never observed. Thus,
flow-induced defects have been investigated mostly for tumbling nematics. Shear-flow
experiments on initially defect-free samples (sometimes called monodomains) have
been reported by several groups, using different anchoring conditions on the walls
(Pieranski & Guyon 1976; Srinivasarao & Berry 1991; Müller, Stein & Winter 1996;
Yan et al. 1994; Mather et al. 1996b). In the context of defect formation, the most
detailed and revealing observations have come from a series of experiments by Larson
& Mead (1992, 1993).

Liquid-crystalline polymers are characterized by two dimensionless measures of
the shear rate. The first, known as the Ericksen number, provides a measure of the
magnitude of viscous torques relative to elastic torques arising from spatial gradients
in the average molecular orientation; the latter is generally specified by a unit vector
n known as the director. The second dimensionless group is the Deborah number,
and is the shear rate scaled by the orientational diffusivity of the rod-like LCP.
Larson & Mead (1993) identified a series of transitions in the microstructural state of
sheared nematic polymers, which they denoted as the Ericksen number and Deborah
number cascades. The former covers lower shear rates where there is no distortion
of the molecular orientation distribution around the director n. Starting with a
monodomain with n initially aligned with the vorticity, they observed the birefringent
patterns of poly(γ-benzyl-glutamate) (PBG) solutions through crossed polarizers.
When the shear rate (or Ericksen number Er) exceeds a rather low threshold, regular
parallel stripes appear along the flow direction. At higher shear rates, the stripes
become irregular, and thick disclination lines somehow emerge between the stripes.
With increasing shear rate, the stripes become more and more irregular, and the
shape of the disclinations starts to fluctuate. Eventually, a chaotic pattern appears,
producing the familiar polydomain texture. At still higher shear rates, one enters the
Deborah number cascade. Now the dynamics is dictated by molecular viscoelasticity,
and a defect-free monodomain reappears at sufficiently high Deborah numbers. We
are interested in the genesis of defects in the Er cascade. The Deborah number
cascade has been explored in a separate study (Sgalari, Leal & Feng 2000).

The origin of the birefringent stripes is well-known. Manneville & Dubois-Violette
(1976) and Larson (1993) have shown that the simple shear flow of tumbling nematics
is linearly unstable to the formation of streamwise roll cells. The secondary flow
associated with those roll cells distorts the director orientation periodically along the
vorticity direction, and hence produces the birefringent stripes. The counter-rotating
pairs of rolls appear remarkably similar to the Taylor vortices in a Couette flow, and
no such rolls appear in steadily sheared flow-aligning nematics (Pieranski & Guyon
1976). Larson & Mead’s (1993) observations thus suggest that roll cells are central to
the generation of disclinations in shear flows. However, the linear instability studies,
of necessity, concern only infinitesimal disturbances, and cannot predict how they
may grow into finite magnitude and eventually cause such severe distortions in the
orientational field as to nucleate disclinations.

The current work is motivated by the gap between theory and experiment. Using
direct flow simulations, we will follow the entire evolution of the roll cells, from
onset to nonlinear growth and possibly to eventual breakup. In particular, we will
establish a scenario for the nucleation of disclinations in simple shear flows. The
rest of the paper is arranged as follows. Section 2 discusses the theoretical model
and numerical method, along with the simplifying assumptions contained in each.
Section 3 presents the numerical results, which are then compared with experiments
in § 4. There is general agreement, but the mechanism for defect nucleation cannot be
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verified directly, and there is discrepancy in the location of defects. Conclusions are
drawn in § 5.

2. Theory and numerical methods
The simulations are based on the Leslie–Ericksen (LE) theory, which was developed

for weak flows and small distortions such that the molecular orientation distribution
retains its uniaxial equilibrium state (see e.g. de Gennes & Prost 1993). This may
appear to be the obvious choice since the phenomena to be simulated occur in
the Ericksen number cascade. However, the assumption of equilibrium orientation
distribution becomes questionable near defect cores, where one may expect severe
elastic distortions to reduce the molecular order and thus invalidate the LE theory.
Fortunately, the defects observed in experiments are all ‘thick lines’, i.e. ±1 defects of
the ‘escaped type’ with a rather smooth core (de Gennes & Prost 1993). Therefore,
the use of the LE model is justified provided the Deborah number remains small.
Another reason for using the phenomenological LE theory is that molecular theories
containing both molecular viscoelasticity and distortional elasticity are much more
complex (Feng, Sgalari & Leal 2000). Indeed, such theories have so far only been
used in planar flows (Kupferman, Kawaguchi & Denn 1999; Sgalari et al. 2000).

We should point out that many authors have done flow simulations using the LE
theory. For example, Han & Rey (1994a,b,c, 1995) have carefully studied the shear
flow between parallel planes. Since their interest was not in roll cells, no variation
was allowed in the vorticity direction. Thus, their solutions feature the tumbling and
twist instabilities which, given the proper boundary conditions, occur in a shearing
flow prior to the formation of roll cells (Larson & Mead 1993). In § 2.3 below, we will
elaborate on these two instabilities as related to our boundary conditions.

2.1. Governing equations and parameters

The LE theory, as presented by de Gennes & Prost (1993), consists of two major
equations:

n× (h− γ1N − γ2n · D) = 0, (1)

σ = σe + α1D : nnnn+ α2nN + α3Nn+ α4D + α5nn · D + α6D · nn. (2)

Equation (1) states that the rotation of the director n is determined by the balance
between an elastic torque and a viscous torque. h is the molecular field vector with
the physical meaning of an elastic torque on the director. N = ṅ−Ω ·n is the rotation
of the director with respect to the background fluid, with Ω = [(∇v)T − ∇v]/2 being
the vorticity tensor and v being the velocity. D = [(∇v)T + ∇v]/2 is the strain-rate
tensor and γ1 and γ2 are viscosity constants. Equation (2) gives the stress tensor of
the material, where σe is the Ericksen stress, and the α are Leslie coefficients related
to the γ via

γ1 = α3 − α2, (3)

γ2 = α3 + α2 = α6 − α5. (4)

Larson (1993) proposed the following parameters for the ‘typical nematic polymer’
approximating several LCP solutions used in experiments:

(α1, α2, α3, α4, α5, α6) = (−45.91,−69.2, 3.13, 3.36, 60.15,−5.69) P,

(K1, K2, K3) = (10−6, 10−7, 10−6) dyn,
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Figure 1. The computational domain. The top wall moves in the z-direction with velocity
V while the bottom wall is stationary.

where the K are the elastic constants for splay, twist and bend. In our simulations, we
use the above α values, but assume elastic isotropy: K = K1 = K2 = K3 = 10−6 dyn.
This one-constant approximation simplifies the algebra and the programming, and
the use of a larger K2 is not expected to affect the onset of roll cells appreciably (see
Larson 1993). Now the molecular field h and the Ericksen stress σe have the following
simple forms (de Gennes & Prost 1993):

h = K∇2n, (5)

σe = −K∇n · (∇n)T. (6)

In making equations (1), (2), (5) and (6) dimensionless, we take the relative velocity
V between the shearing plates to be the characteristic velocity, and the separation
between the plates H to be the characteristic length. H/V is then the characteristic
time. We further use the ‘Newtonian’ viscosity η = α4/2 as the characteristic viscosity,
and define the Ericksen number as

Er =
ηVH

K
. (7)

The advantage of using η is that the equations of motion can be cast into a quasi-
Stokes form (see equation (10) below). Based on different considerations, Larson
(1993) used

√−α2α4 as the characteristic viscosity and Larson & Mead (1993) used
γ1 = α3− α2. Finally, based upon our choice of characteristic scales, the dimensionless
constitutive equation and the equations of motion may be written as

n× (Er−1∇2n− γ1N − γ2D · n) = 0, (8)

∇ · v = 0, (9)

∇p− ∇2v = Er−1∇ · [−∇n · (∇n)T]

+∇ · (α1D : nnnn+ α2nN + α3Nn+ α5nn · D + α6D · nn), (10)

where all viscosity coefficients have been scaled by η, and the pressure and the stress
by ηV/H . Fluid inertia is negligible compared with the viscous stress since the time
scale for viscous dissipation is much shorter than that for the evolution of the flow.
The latter time scale is determined by director rotation.
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2.2. Discretization

We consider flow between two parallel planes, the lower being stationary and the upper
translating in its own plane with velocity V . As shown in figure 1, our computational
domain is a rectangle perpendicular to the flow direction (i.e. in the x, y-plane). We
assume that neither the flow nor the orientation of n varies in the flow direction,
and thus the rolls that will appear correspond to a swirling flow with three velocity
components (u, v, w) depending on two spatial coordinates x and y. The issue of
z-dependence will be discussed in § 4.

The governing equations are discretized using finite difference on a uniform stag-
gered grid with equal mesh size h along x and y. The u nodes are staggered by
h/2 from the top and bottom walls, the v nodes staggered from the left and right
boundaries, and w, p and n nodes staggered from all boundaries. This arrangement
ensures accurate evaluation of the pressure gradient and strict enforcement of the
incompressibility condition (Vanka 1986). The coupling between the pressure and
velocity fields is treated using Patankar’s simpler scheme (Patankar 1980). Mesh
refinement is done in one case for N = 33, 65 and 129 nodes along the y-direction.
The difference between N = 33 and 65 is within 1%. Thus, we have used N = 33 in
most calculations, although some cases are double-checked with N = 65.

The discretization of equation (8) requires special attention. Because of the con-
straint n · n = 1, only two n-components need to be computed at each point, and
the torque balance is enforced along two directions in the plane orthogonal to n.
Since n changes in space and time, equation (8) is most conveniently discretized in
a local principal coordinate system. Similar schemes have been used by Han & Rey
(1994a) for nematics and by Feng & Leal (1997) for flexible polymers represented by
a configuration tensor.

At every time step, we iterate among the governing equations (8)–(10) until con-
vergence. The Poisson equations for pressure and the velocity components are solved
using a multigrid method (see e.g. Hackbusch & Trottenberg 1982) and subroutines
from the fast direct solver fishpack.

2.3. Boundary conditions

For velocity, the usual no-slip condition is applied on the top and bottom walls. For
the director n, the wall anchoring direction needs to be chosen carefully since it plays
a vital role in the flow instability of tumbling nematics. If one imposes anchoring
in the flow plane (the y, z-plane in figure 1), either perpendicular or parallel to the
wall (known respectively as homeotropic and homogeneous anchoring), then a so-
called tumbling instability may occur. This refers to the sudden rotation of n in the
flow plane when the viscous torque overcomes the stabilizing elastic torque (Carlsson
1984; Burghardt & Fuller 1990). Zuniga & Leslie (1989a,b) recognized that such
in-plane solutions may be unstable to out-of-plane disturbances in either the flow
or the orientation. Their linear analysis predicts an out-of-plane twist instability at a
critical shear rate which, depending on the viscosity parameters, may be higher or
lower than that for the tumbling instability. Han & Rey (1994a) have constructed
detailed bifurcation diagrams for these two instabilities. At higher shear rates, the
director tips increasingly out of the flow plane and eventually becomes nearly aligned
with the vorticity axis (x-axis in figure 1). The roll-cell instability referred to in the
introduction occurs at even higher shear rates.

If n is anchored in the vorticity direction, however, the first instability that occurs
is the onset of roll cells (Larson & Mead 1993). Hence, such anchoring is the
most convenient for our purpose and has been used for all the roll-cell simulations
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reported here. Partly to validate our numerical scheme and program, however, we
also performed simulations with in-plane anchoring conditions. We ran dynamic
simulations at several Er values astride the theoretical critical values of Zuniga &
Leslie (1989a,b). In all cases, our results are consistent with the linear instability
analysis for both tumbling and twist instabilities.

The sidewalls in figure 1 introduce two numerical problems. The first concerns
what channel width to use. Since the aspect ratio of the rolls is unknown a priori,
and only an integer number of rolls can be simulated within the width W , we cannot
capture the exact dominant wavenumber with certainty. Instead, we have used wide
domains to reduce the error in the wavenumber. Results show that W = 8 and 16
yield essentially the same wavenumber and hence W = 8 is used for most of the
calculations (recall that W is scaled by the gap H between the plates). The second
issue is the boundary conditions on the sidewalls. Periodic boundary conditions, as it
turns out, introduce an artificial ‘cross-flow instability’, with the top half of the domain
flowing to the left (or right), and the bottom half to the right (or left). Apparently,
impermeable sidewalls are necessary to ensure roll cells in the simulations. This may
also be the case in reality since sidewalls are always present. Based on the conditions
at cell boundaries suggested by the linear instability analysis of Larson (1993), we
have used slippery wall conditions, with u = 0, ∂v/∂x = 0 and ∂w/∂x = 0 on the
sidewalls. The director is anchored in the x-direction, perpendicular to the sidewalls.

3. Numerical results
Initially, the director field is uniform with n = (1, 0, 0) everywhere. Then we supply

a small random disturbance of magnitude 10−4 to the director field and start the
shear flow. Via a coupling between the flow and the orientation, the disturbance may
either die out or grow into an instability. Dynamic simulations of this process show
that four different flow regimes appear for increasing Er:

A. Stable simple shear
B. Steady roll cells
C. Oscillating roll cells
D. Irregular patterns with disclinations.

We will discuss each in detail. The critical Er values separating the regimes are
determined with a margin of error of 5. Animated videos for some of the solutions
are available at http://lisgi1.engr.ccny.cuny.edu/∼feng/resb.html.

3.1. Stable simple shear (Er < 55)

When the Ericksen number is below a critical value of 55, the initial disturbance dies
out and the simple shear flow, with the director in the ‘log-rolling’ state, is stable.

3.2. Steady roll cells (55 < Er < 85)

In this regime, counter-rotating pairs of rolls appear and grow monotonically to a
steady state. Figure 2 illustrates this process for Er = 60. The rolls first take shape
at approximately 80 strain units (or dimensionless time t = 80); the velocity of the
secondary flow is extremely weak at this stage (figure 2a). The final steady state
is approached at some 400 strain units, the secondary flow attaining a magnitude
of roughly 1% of that of the primary flow (figure 2b). In the steady-state director
field (figure 2c), non-zero components nz and ny represent, respectively, deviations
from the wall anchoring direction na = (1, 0, 0) within and out of the sample plane
(the x, z-plane in figure 1). A comparison between the flow and director fields shows
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Figure 2. The growth of roll cells at Er = 60. (a) Vector plot of the velocity components u and v
showing the swirling ‘eddies’ for the nascent rolls at time t = 80. The magnitude of u and v are on
the order of 10−5. (b) The steady-state rolls at t = 400, with wavenumber qx = 0.875 and aspect
ratio 0.571; u and v are on the order of 0.01. (c) The steady-state director field at t = 400. The
arrow points out of the page and a short line segment indicates a large nz-component. (d ) Isolines
of the velocity component w, whose variation is in concert with u and v.

that the greatest deviation of n from na occurs at the core of the swirling ‘eddies’,
where n = (0.632, 0.23, 0.74) is most aligned with the flow direction. In the region
between rolls, n remains largely undisturbed. This pattern is consistent with the fact
that the secondary flow exerts the greatest shear at the core and virtually no shear
at the boundaries between rolls (cf. figure 2b). Figure 2(d ) shows contours of the
dimensionless velocity component w, which also varies periodically across the rolls.
It is greatest at those roll boundaries that have a downward v, and smallest where v
goes upward. This is evidently a result of the secondary flow transporting faster fluid
downward in the first case, and slower fluid upward in the second.

A notable feature of the evolution of the rolls is its uneventfulness. The nonlinear
growth of the instability consists in monotonic increases of the roll ‘strength’, both in
terms of the recirculating velocity and the director tipping. The rolls keep the same
wavenumber (qx = 0.875 for Er = 60), and no dramatic episodes, such as the modal
interaction envisioned by Larson (1993), take place. Therefore, the steady-state rolls
appear very similar to the pictures suggested by Larson’s (1993) linear instability
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Figure 3. The history of the n-components at (x, y) = (2, 0.25) at Er = 60. Initially n is along the
x-axis. Deviations start at t ≈ 80 when the rolls form, and grow monotonically till the steady state
at t ≈ 400.
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Figure 4. The fully grown roll cells at t = 80 for Er = 100. (a) The velocity field. (b) The director
field. The wavenumber is qx = 1.0625 and the aspect ratio of the roll is 0.471. At the core of the
eddies n = (0.42, 0.24, 0.88).

analysis. In fact, all the qualitative features discussed in the last paragraph also apply
to the infinitesimal roll cells of Larson (1993). This lack of drama is accentuated
by figure 3, showing the history of the director components at (x, y) = (2, 0.25), an
arbitrarily chosen spatial point. A log-log plot (not shown here) indicates that the
disturbances grow exponentially up to t = 160; within this time the instability remains
essentially linear.

At higher Er in this regime, the qualitative features are the same, although the rolls
develop more quickly and are stronger with more severe distortion of the n-field. The
rolls are narrower, with the wavenumber qx increasing with Er. This effect will be
revisited in § 4.

3.3. Oscillating roll cells (85 < Er < 145)

In this regime, the initial stage of roll formation and growth is similar to the last
regime. Given the higher Er, the dominant wavenumber is larger (the cells are
narrower), and the growth is more rapid. Figure 4 shows the more or less fully grown
roll cells at t = 80 for Er = 100. Again the most severe tipping of the director occurs



Roll cells and disclinations in sheared nematic polymers 187

1.0

0.8

0.6

0.4

0.2

0

–0.2
0 200 400 600 800 1000

t

(a)

n
-c

om
po

ne
nt

s

nx

nz

ny

(b)
0.010

0.005

0

–0.005

–0.010
0 200 400 600 800 1000

t

v-
co

m
po

ne
nt

s

u

v

Figure 5. Evolution of the roll cells into an oscillating pattern at Er = 100. (a) History of
n-components at (x, y) = (2, 0.25). (b) History of velocity components u and v; w behaves similarly
and is omitted. The period of oscillation is approximately 26 strain units.
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Figure 6. One half-cycle of the oscillating roll cells for Er = 100. The velocity field at
(a) t = 864; (b) t = 870; (c) t = 876. (d ) The director field at t = 876.

at the core of the eddies: n = (0.42, 0.24, 0.88); there the flow sweeps n mostly into
the flow direction despite the wall anchoring in the x-direction.

The rolls shown in figure 4 do not represent a steady state, however. The flow
continues to evolve and a secondary instability sets in the form of growing oscillations
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Figure 7. Oscillating roll cells resulting from a sinusoidal initial disturbance of amplitude 10−4 and
wavenumber 1. t = 864, Er = 100. This solution is similar to that in figure 6, but with a larger
wavenumber qx = 1.125 and a shorter period (≈ 22 strain units).

within the (x, y)-plane. The rolls eventually evolve into a solution periodic in time
and quasi-periodic in space. The entire process is illustrated by the histories of n-
and v-components at a fixed spatial point (figure 5). To understand what happens
within each cycle of oscillation, we compare in figure 6 the roll cells at different times
covering one half-cycle.

In figure 6(a) it can be seen that the rolls are no longer rectangular with straight
edges as in figure 4. Instead, there is an alternating pattern of ‘dumbbells’ and ‘wrist-
watches’. There are also variations along the width of the domain, with the two shapes
distinct near the sides and less recognizable in the middle. In figure 6(b), the distinct
dumbbells and wrist-watches are propagating toward the centre of the domain. Near
the left and right sides, neighbouring rolls interact and become skewed, with a strong
flow crossing their boundaries at roughly 45◦. By the end of the half-cycle (figure 6c),
distinct dumbbells and watches have reappeared near the outer edges of the domain,
while the middle now has skewed rolls. But the dumbbells and watches have switched
position between figure 6(a) and figure 6(c). Now the temporal behaviour of the
oscillating roll cells is clear. Each cell splits into a dumbbell, which becomes skewed
and then contracts back into a wrist-watch. The wrist-watch then skews and stretches
into a dumbbell, and the cycle repeats. All cells oscillate with the same period (roughly
26 strain units in this case), but there is a phase difference across the width of the
domain; hence the lack of perfect periodicity along the horizontal x-direction at any
time.

The director field in figure 6(d ) forms an intriguing contrast to the flow field in
figure 6(c). For dumbbells, the greatest tipping of n occurs at the centre, i.e. in the
thin ‘waist’ between the two bulbs; there n is very nearly aligned with the flow. Thus,
the director field suggests one whole cell while the flow field has the split pattern. For
the wrist-watch, on the other hand, the greatest tipping occurs above and below the
centre; the director pattern suggests roll splitting, again contrary to the flow field. We
do not have an explanation for the apparent discrepancy.

Another notable feature of the periodic solution is its non-uniqueness. The solution
discussed so far has evolved from a spatially random perturbation of the log-rolling
state. If we instead use a sinusoidal initial disturbance, a different periodic solution
results, with a slightly larger wavenumber and a shorter period of oscillation (figure 7).
Figure 8 compares the two solutions through the history of nx. With the sinusoidal
initial disturbance, a roll-cell pattern with the forcing wavenumber qx = 1 develops
first and persists until t ≈ 200. A period of violent re-adjustment ensues, out of
which a periodic solution emerges with a different wavenumber (cf. figure 7). The two
curves in figure 8 show no signs of converging into one, and the solutions depicted
in figures 6 and 7 are evidently distinct solutions. Therefore, there are at least two
neighbouring modes of disturbance that are viable; either may prevail in the final
solution depending on the initial condition. There may be more competing solutions.
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Figure 8. Multiple solutions as seen from the history of nx at (x, y) = (2, 0.25). Er = 100. Curve
(a) derives from a random initial disturbance whereas curve (b) from a sinusoidal initial disturbance.
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Figure 9. The histories of n- (a) and v- (b) components at (x, y) = (2, 0.25) for Er = 200. Though
not obvious in the plots, the rolls are fully grown by t = 30, and then break up and become
irregular.

This non-uniqueness is not surprising since Larson’s (1993) linear instability analysis
has predicted a wide spectrum of unstable modes, especially at higher Er. In the
previous regime of steady roll cells, numerical experiments failed to uncover multiple
solutions. This does not rule out their existence, however. For example, our code
assumes an integer number of cells in the domain, and thus could not distinguish two
modes with slightly differing wavenumbers.

Finally, one may note that the two cells at the left and right ends are forced to
have a straight edge next to the slippery sidewalls. This sidewall effect may play a role
in the phase difference across the width of the domain. To investigate this effect, we
have done the same simulation in a domain twice as wide (W = 16). The results are
very much the same except for the phase lag along x. In the narrow domain (W = 8),
patterns propagate from the sides toward the centre. In the wide domain, they appear
to propagate from left to right. Therefore, the phase difference is indeed dependent
on the sidewalls. The variation along x is milder for the wider channel, suggesting
that the phase lag may disappear for very large W .

3.4. Irregular patterns with disclinations (Er > 145)

Figure 9 shows the histories of the velocity and director components at Er = 200. The
initial stage of the birth and growth of the rolls is again similar to that in figure 3,
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Figure 10. Cell splitting starts at t = 40 for Er = 200. (a) The flow field; (b) the director field.
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Figure 11. Cell splitting propagates to neighbouring cells at t = 50. (a) The flow field; (b) the
director field. Note the butterfly pattern in the director field, and the appearance of ridges in the
centre of the daughter cells (marked by large arrows). The ridge is sketched in three dimensions
in (c).

though the process is more rapid. The cells are fully grown at t ≈ 30 and have a
wavenumber qx = 1.31. Afterwards, the temporal variations become irregular. The
spatial patterns at different times will be analysed in the following.

At t = 40 (figure 10), several rolls in the middle of the domain (roughly 3.7 < x <
5.5) start to split. The process is reminiscent of the splitting of oscillating rolls into
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Splitting propagates(a)

0 1 2 3 4 5 6 7 8
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(b)

(c)

2 3 4 5 6 7

Figure 12. Cell splitting and secondary breakup lead to irregular patterns and three pairs of ±1
disclinations at t = 60. (a) The whole flow field; (b) the director field. The large arrows point to
two ridges, and the ellipses enclose pairs of defects, with open circles indicating −1 defect cores
and filled circles +1 ones. At defect cores and the top of the ridges, n is in the flow direction,
perpendicular to the page. The n-field in the neighbourhood of one pair of defects is sketched.
(c) Details of the flow field near the defects showing fast jet-like flows toward the +1 core.

dumbbells. But here the director and flow fields are synchronized, showing the same
split pattern. The greatest tipping of n occurs at the core of the two ‘daughter cells’.
At t = 50 (figure 11), the splitting extends to the neighbouring cells, and the director
field exhibits a characteristic butterfly pattern for the split cells. Particularly notable
is the appearance of ridges at the centre of the split cells, indicated by the big arrows
in figure 11(b), where the director orientation varies sharply. At the top of the ridges,
the director is mostly aligned with the flow, perpendicular to the page. This is not
apparent in the plot since the arrowheads representing n cannot be shrunk into a
point. The ridges play an essential role in the formation of disclinations as discussed
below.
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(a)

(b)+1 –1

Figure 13. Cartoons showing the nucleation of a pair of disclinations from a ridge. (a) Top view
of the ridge before splitting; (b) the ridge splits to create a pair of ±1 defects in the escaped
configuration.

At t = 60 (figure 12), the flow field exhibits a continuation of cell splitting towards
the left and right, and the first sign of irregularity among the split cells. Some of the
daughter cells have undergone secondary breakup, forming swirls of various sizes and
strengths. The director field also becomes irregular, and the first disclinations have
nucleated from the ridges. This process is illustrated by the cartoons in figure 13.
During cell splitting and secondary breakup, some ridges are heightened, at the top
of which the director essentially points in the flow direction (figure 13a). At its base,
the ridge merges smoothly into the background n-field, which points to the right in
this illustration. If the local flow is such as to sway n on the ridge to the right, the
ridge will lower and smooth out. On the other hand, if the flow turns n to the left, the
ridge splits to form a pair of ±1 disclinations in the escaped configuration (figure 13b).
To characterize the flow conditions conducive to ridge splitting, we compare the flow
and orientation fields at the ridges in figures 12(b) and 12(c). After spatial irregularity
sets in, the ridges are no longer located at the core of the eddies, as is the case for
newly split cells. Instead, they almost always coincide with the faster and near-parallel
flows between the eddies. In particular, ridge splitting is accompanied by a jet-like
flow, with a strong stream, running roughly toward the +1 defect core, flanked by
weaker flows (figure 12c). Conceivably, the shear in the jet turns n toward the +1
defect as sketched in figure 13(b). This scenario is prevalent in the simulations but
not universal; sometimes a ridge splits where the flow crosses the line linking the two
defect cores.

After formation, the defects are convected by the swirling flow, interacting with one
another through distortional elasticity as well as hydrodynamically through modifying
the flow field. Eventually, a defect will be attracted to another of the opposite strength,
and the two will annihilate. The lifespan of a disclination is typically around 10 strain
units, but can be as long as 30.

At t = 100 (figure 14), the last cells are being split next to the sidewalls, and
the director field exhibits one pair of disclinations and several ridges. From this
point onward, the flow and orientation states become quasi-stationary in the sense
that the qualitative features remain unchanged despite constant temporal and spatial
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(a)

(b)
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Figure 14. All cells are broken up by t = 100. (a) The flow field; (b) the director field.
There are numerous ridges and one pair of defects near x = 0.9.

(a)

(b)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Figure 15. The quasi-stationary state at t = 160. (a) The flow field; (b) the director field
containing five pairs of defects and numerous ridges.

fluctuations. New ridges are raised and lowered, pairs of disclinations nucleating
and annihilating; eddies of various sizes form, break up and coalesce. Figure 15,
for t = 160, depicts such a quasi-stationary state. The flow field comprises eddies of
different sizes. The dominant feature is the large eddies with a diameter of roughly
H/2; the rest of the field consists of smaller eddies of half that size. The large
eddies have a more or less regular spacing of H , and the smaller ones are typically
H/2 apart. Thus, the flow and orientation fields are structured despite the apparent
randomness. This point will become clearer in § 4 when we compare the birefringent
pattern calculated from the director field in figure 15(b) with experiments.

The curious fact that cell breakup starts at an asymmetric position (figure 10)
suggests that the sidewalls may have introduced extraneous effects into the above
scenario. To investigate this effect, we have performed the same simulation in a wider
domain with W = 16. Regular roll cells first emerge with a wavenumber qx = 1.34,
slightly larger than in figure 10. At t = 40, cell splitting begins at x ≈ 5 and x ≈ 11,
and propagates to neighbouring cells. Later development closely resemble that in the
narrower domain, although the right half lags the left half somewhat. These results
do not suggest a strong role for the sidewalls. First, the scenario of cell breakup, ridge
formation and defect nucleation does not depend on the sidewalls, and probably
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reflects the true physics. Second, the location of initial roll splitting appears to have
an intrinsic wavelength of x ≈ 5, independent of the domain width. Third, the left–
right asymmetry in the domain seems also to be an intrinsic property of the flow.
This may have been caused by a symmetry-breaking instability, triggered, say, by
numerical errors that are not perfectly symmetric.

To confirm the accuracy of the results in figures 10–15, especially the mechanism
for defect nucleation, we have done the same simulation on a finer grid with half the
mesh size. The result is qualitatively the same, but the evolution takes much longer.
For instance, the first pair of defects nucleate at t = 240 compared with t = 60 in
figure 12. This has to do with the fact that the finer mesh supplies smaller truncation
errors that feed the growing instability. Similar trends have been observed in the other
regimes of instability.

4. Comparison with experiments
The experimental work most relevant to our simulations is due to Larson &

Mead (1993), who sheared nematic polybenzylglutamate (PBG) solutions at finely
controlled speeds in a high-precision translational shear cell. Three differences exist
between the conditions in the experiment and those in the simulations. First, the
material constants of the PBG solutions are not known. In the simulations, we have
adopted the viscosities that Larson (1993) suggested for the ‘typical nematic polymer’,
which are estimations based on the Doi theory. For the PBG solutions, the elastic
constant K2, for twist, is believed to be much smaller than the other two constants.
In our calculations, all three are assumed equal. Second, the simulations assume
uniformity along the flow direction while the observations indicate that this is not
always true (see below). Finally, wall anchoring is along the vorticity direction in
the simulations. Larson & Mead (1993) used homeotropic anchoring and subjected
the material to preshearing. This effectively aligns the director with the vorticity,
presumably through the twist instability of Zuniga & Leslie (1989a), except for a
boundary layer near the walls.

Despite these differences, the four regimes discovered in simulations seem to be
consistent with observations. First, no roll cells appear in the experiment for suffi-
ciently low shear rates; the simple shear flow is stable. This corresponds to our first
regime. The critical Erc for the onset of roll-cell instability is 55 in the simulations,
almost exactly the value predicted by Larson’s (1993) linear instability analysis. Since
Larson (1993) used K1 = K3 = 10K2, the agreement of Erc indicates that the onset of
roll cells is insensitive to a weaker twist constant, at least within the Leslie–Ericksen
theory. This confirms a similar observation by Larson (1993) who varied K3/K2

between 2 and 10. Comparison with the experimental Erc is made difficult by uncer-
tainties in the value of the material constants for the PBG solutions (see p. 164 of
Larson & Mead 1993 and the Corrigendum to that paper). Inferring a value of γ1/K1

from a similar solution, Larson & Mead defined an Ericksen number based on γ1:
Eγ = γ1VH/K1. They estimated an experimental critical value Ec

γ ≈ 400. If Erc from
Larson’s (1993) linear theory (and our simulations) is converted using viscosities of
the ‘typical nematic polymer’, one obtains Ec

γ = 2368, much higher than the experi-
mental value. Larson & Mead (1993) attributed the discrepancy to differences in the
viscosity ratios. In the following, we only make comparisons in terms of the Ericksen
number ratio Er/Erc.

In our second regime, roll cells appear and then grow monotonically to a steady
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Figure 16. Comparison of the aspect ratio of the roll cells among three studies. The solid line
represents the linear instability theory of Larson (1993), the circles are experimental measurements
by Larson & Mead (1993), and the crosses are from our simulations.

state, maintaining the same wavenumber. Larson & Mead (1993) observed a similar
regime of ‘steady-state birefringence and phase grating’:

Thus the bifurcation to roll cells appears to be a supercritical one, and arbitrarily
weak roll cells can be stabilized at values (of Eγ) only slightly above critical. Observa-
tion of the birefringence patterns in these weak roll cells . . . shows that the departure
of the director from orientation in the vorticity direction toward the flow direction is
small when the roll cells first appear, but increases continuously as (Eγ) is increased.

These observations apply equally well to our simulated roll cells.
Our third regime of oscillating roll cells has no apparent counterpart in the

observations. This may be due to the fact that the oscillation between dumbbells
and wrist-watches does not change the spatial periodicity along x, and hence should
not affect the spacing between birefringent stripes. The temporal variations in light
intensity may not be noticeable from visual observations and photographs of the
stripes. To test this idea, we calculated the birefringence for the three times depicted
in figure 6 (details of such calculations are given by Han & Rey 1995). Indeed, the
position of the stripes does not change and the variation in light intensity is at most
15% during the oscillation. Based on this argument, we may consider the steady
regime of Larson & Mead (1993) as consisting of our steady and oscillating regimes.
Experimentally, this regime covers 1 < Er/Erc < 3.5. Numerically, the two regimes
cover the range of 1 < Er/Erc < 2.64.

Figure 16 compares the aspect ratio of the rolls at various Ericksen number ra-
tios from three separate studies: Larson’s (1993) linear instability analysis, Larson &
Mead’s (1993) experimental measurements and our simulations. For higher Er, the
rolls eventually become irregular in both the simulations and experiments (see dis-
cussion below). The high-Er data points, therefore, are taken from clearly defined roll
cells at smaller strains. In all three studies, the rolls become narrower with increasing
shear rates. The close agreement between the linear theory and our numerical data is
expected since the wavenumber does not change during the nonlinear growth of the
cells. The small discrepancy is probably attributable to the smaller K2 used by Larson
(1993), and to the limitation of a discrete number of cells in our computational
domain. The agreement with experimental data, though tempered by the uncertainty
in Erc, is reasonably good.
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0 1 2 3 4 5 6 7 8

Figure 17. The birefringence pattern computed from the director field in figure 15(b). The top
diagram shows the intensity of transmitted light, and the bottom represents that intensity by
grey-scales. The polarizer is along the flow direction and the analyser along the vorticity. We assume
a sample thickness of 100 µm and a wavelength of 630 nm and use the refractive indices of PBG
given by Dupré (1982).

Finally, in our fourth regime, simulations at Er = 200 (Er/Erc = 3.64) show
that roll cells form and grow monotonically until about 40 strain units. At t ≈ 60,
thick disclinations nucleate out of rolls that have broken up; they persist for some
10 strain units before cancelling out. Eventually, the entire domain is filled with an
irregular pattern consisting of swirls of various sizes. Experimentally, Larson & Mead
(1993) recorded the evolution of birefringence patterns for Er/Erc = 5.25. Stripes
first appear at 8 strain units, and become ‘sharply defined’ at 18 strain units. Around
this time, thick disclinations are first observed, and they seem to reside between the
roll cells. ‘The lines are of finite length, fading in intensity and disappearing as one
follows them in space’. Thereafter, ‘if shearing is prolonged for 50 or more strain
units, a weaker fine structure appears, which disrupts somewhat the regularity of the
striped pattern. As V increases, the fine structure becomes even more intense, and the
pattern becomes less and less coherent’.

All the major events observed experimentally also appear to occur in the simula-
tions, and in the correct order. In particular, the ‘weaker fine structure’ that develops
after prolonged shearing can be identified with the small swirls that form after cell
splitting and secondary breakup. To illustrate this, we have calculated the birefrin-
gence pattern that would be produced by the director field of figure 15(b). One may
identify the ‘primary stripes’ as between sharply defined dark lines in figure 17. With
a width typically between 0.7H and H , these stripes correspond to the large eddies
in figure 15(a). Within the primary stripes there are short-wave fluctuations, creating
irregular ‘secondary stripes’ which are finer and fainter. These can be attributed to
the small eddies. Note that disclinations impart streamwise orientation to their sur-
rounding areas, and hence tend to cause extinction of transmitted light. However,
this is only a mild effect in figure 17 because the defect cores are small compared
with the thickness of the sample. In particular, individual defect cores cannot be
discerned from the calculated birefringence pattern. A global measure of the director
orientation is ν = 〈n2

z〉 − 〈n2
x〉, where the bracket represents averaging over the entire

domain. For the quasi-stationary state in figure 15, ν fluctuates around −0.05. There-
fore, the director field is still largely under the influence of the anchoring condition
(nx = 1) despite the streamwise alignment near defects and ridges. The latter effect
is expected to intensify with increasing Er, eventually leading to a positive ν. Indeed,
Hongladarom et al.’s (1993) birefringence measurements indicate ν = 0.53 for PBG
solutions in the regime of director turbulence.
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Unfortunately, the ridge-splitting mechanism for generating defects cannot be di-
rectly verified for lack of detailed observations at small length scales. In fact, mapping
the fluctuating and non-uniform director field would present a great experimental dif-
ficulty. On a coarser level, we note a discrepancy in the location of disclinations.
Larson & Mead (1993) determined that the defect lines are between roll cells, with
a spacing roughly equal to the roll size. Mather et al. (1996b) recorded the nucle-
ation of thick disclinations from roll cells for the small-molecule nematic 8CB in a
torsional shear cell. The spacing between disclinations appears rather random. Some
disclinations fall on cell boundaries and others are not parallel to the flow direction,
traversing one or two cell widths within the length viewed. In our simulations, pairs
of defects nucleate from ridges which have formed in the core of broken cells, and
their spacing is irregular.

It is not clear how the two sets of experimental results can be reconciled, and
whether the occurrence of defects away from the cell boundaries in Mather et al.
(1996b) is related to our ridge-splitting mechanism. In this connection, we remind
the reader of the different conditions in the experiments and the computations.
The simulations assume no variations along the flow direction. Experimentally, the
defect lines have a finite length. They are wavy in Larson & Mead (1993). Though
apparently straight in Mather et al. (1996b), they sometimes cross the rolls at an
angle. In either case, streamwise variations clearly exist. In addition, the simulations
use wall anchoring in the vorticity direction, while both experiments had homeotropic
anchoring. Larson & Mead (1993) noted that at the beginning of flow, ‘the orientation
is not completely uniform, and at the glass surfaces the director prefers a homeotropic
orientation, with an unknown anchoring strength’. The distortion in the boundary
layer near the wall may have played a role in the nucleation of defects in the
experimental studies. Finally, the viscosities and elastic constants clearly differ between
the PBG in Larson & Mead (1993) and the 8CB in Mather et al. (1996b); both are
probably different from the values we have used here.

Note also that events occur at a more rapid pace in experiments than in simulations.
This is probably due to the same reasons for the lower Erc in experiments, which may
include differing viscosity ratios and the spatial non-uniformities noted in the last
paragraph. Another relevant fact is that the evolution of instabilities depends greatly
on the nature and magnitude of the disturbances supplied to the system. For example,
numerical experiments show that a faster and shorter evolution can be achieved by
using larger disturbances. On the other hand, the onset, growth and eventual breakup
of roll cells all take longer if the mesh is refined.

At still higher shear rates (Eγ ∼ 105), Larson & Mead (1993) observed that the
striped pattern is all but obscured by temporal fluctuations and spatial irregularities.
This is termed ‘director turbulence’, whose similarities and contrast to inertial tur-
bulence have long been a topic of interest (e.g. Gähwiller 1972; Manneville 1981;
Larson 1993). Our simulations assume no variation along the flow direction, and thus
cannot represent truly three-dimensional structures in director turbulence.

5. Concluding remarks
Within the parameter ranges covered, numerical simulations based on the Leslie–

Ericksen theory have revealed a series of instabilities in sheared nematics leading to
irregular orientational patterns with defects. Four flow regimes can be demarcated:

A. Stable simple shear (Er < 55).
B. Steady roll cells (55 < Er < 85). As expected, the onset of roll cells is very much
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like the predictions of Larson’s (1993) linear theory. The nonlinear growth of rolls,
however, is remarkably uneventful.

C. Oscillating roll cells (85 < Er < 145). At least two neighbouring modes may be
amplified, resulting in non-unique solutions in this regime.

D. Irregular patterns with disclinations (Er > 145). Through cell splitting and
breakup, ridges form where the director is swept into the flow direction. Favourable
local flow conditions then split the ridge to create a pair of ±1 disclinations.

Comparison with experiments is limited to the gross features amenable to visual ob-
servations. The four regimes are generally consistent with experimental observations.
However, the location of disclinations differs between experiments and simulations.
In addition, the mechanism for nucleating disclinations cannot be directly checked by
observations at the present level of resolution.

Perhaps the most important result of this paper is the discovery of a mechanism for
generating disclinations in shear flows. This may not be the only scenario leading to
shear-induced defects. We have only considered defects generated in the flowing bulk.
Yan et al. (1994) and Mather et al. (1996a) have observed disclinations nucleating
near walls with homeotropic anchoring. The physical mechanism for this is unknown.
Besides, Mather et al. (1996b) documented bulk nucleation of disclinations in a
narrow Er range prior to the formation of roll cells. This is perhaps related to their
torsional flow geometry since a similar phenomenon was not seen in the planar shear
of Larson & Mead (1993).

The numerical work reported here is limited by the Leslie–Ericksen theory to slow
flows and mild distortions. Hence, the defects produced are all of the escaped type
with relatively smooth cores. Fortunately, experiments indicate that only thick lines
nucleate from roll cells in shearing flows (Larson & Mead 1993; Mather et al. 1996b).
In more complex flow geometries, however, ±1/2 defects have been experimentally
observed (e.g. Wood & Thomas 1986). Such ‘thin’ disclinations cannot escape into the
third dimension and the core cannot be represented by the Leslie–Ericksen theory.
Evidently, a ‘molecular theory’ is needed which accounts not only for the rotation of
the director n, but also for the changes in the orientation distribution function and
the concomitant viscoelasticity. Using the Doi theory, Feng & Leal (1997) showed
that ±1/2 defects with smooth cores occur in inhomogeneous flows. The Doi theory
is deficient in that it neglects distortional elasticity. This has been remedied by Feng
et al. (2000) in a more general molecular theory, which is being used in shear and
complex flow simulations (cf. Sgalari et al. 2000).
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