- Homework 2 will be assigned before Thanksgiving Tuesday 11:59 pm (due date for projects)

- Proposal:
  - Basic idea (fixed)
  - Basic LP, ILP, ... (fixed)
  - Fundamental Questions/Motivation (can vary)
  - List of 3 or more questions/directions (can vary a lot over time)

E.g.,
  - Exam scheduling (basic idea) = fixed
  - Basic LP, ILP; graph coloring = fixed, will be refined
  - Fundamental Questions/Motivation: Given resources for exam (instructors time), students/faculty/TA
    hypothesis with shorter exam period, given policies that
    university can set, how does exam period lengths
    & conflicts can be achieved.
  - List of questions: (principles...)
    - might vary over time
  - What happens if large classes have individual section exams
  - Say we want to gauge for students between exam times
Practical Examples:

- LP resources products where each product has to be integer

   ILP, probably branch and bound, bounding is based on the LP relaxation?

- ILPs that can be solved directly from the LP relaxation:

  Weighted Bipartite Matching:
  \[
  \begin{align*}
  \text{max } & \sum c_i x_i \\
  \text{st } & A x \leq b, \ x \geq 0 \\
  \end{align*}
  \]

  (\( x \) components are integers)

  Claim: If we solve without integral constants LP, the simplex method always finds \( x \) optimal and integral.

  - Also: discuss bin packing, where take ILP and LP relaxation does nothing 😒

  Why do some problems:
  \[
  \begin{align*}
  \text{max } & \sum c_i x_i \\
  \text{st } & A x \leq b \\
  \end{align*}
  \]

  with \( x \in \mathbb{Z}^n \) \( \text{dictinaries} \)

  The simplex method:
  \[
  \begin{bmatrix} A | I \end{bmatrix} \begin{bmatrix} x_{\text{dec}} \\ x_{\text{slack}} \end{bmatrix} = b
  \]

  \[
  A_{B_{\text{slack}}} x_B + A_N x_N = b
  \]

  \[
  x_B = A_{B_{\text{slack}}}^{-1} (b - A_N x_N)
  \]

  and \( A_B, A_N \) some cols of \( [A_{\text{org}} | I] \)
Theorem: If \( I \) has \( k \) components, and \( A_B \) is any set of columns of \([A | I]\) that is square and \( A_B \) has an inverse, then \( A_B^{-1} I \) will have integer components.

If every minor of \( A = A_{ori} \) has determinant 0, 1, -1 ("totally unimodular")

\[
\begin{align*}
\text{max } & 4x_1 + 5x_2 \\
& x_1 + 2x_2 \leq 8 \\
& x_1 + x_2 \leq 5 \\
& 2x_1 + x_2 \leq 8 \\
\end{align*}
\]

\[
\begin{bmatrix}
12 & 1 & 0 & 0 \\
11 & 0 & 1 & 0 \\
21 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} =
\begin{bmatrix}
8 \\
5 \\
8
\end{bmatrix}
\]

Say basic \( x_1, x_2, x_3 \)

\[
A_B = \begin{bmatrix}
12 & 1 \\
1 & 0 \\
21 & 0
\end{bmatrix}
\]

from \( A \)

\[
\begin{bmatrix}
12 \\
11 \\
21
\end{bmatrix}
\]

from \( I \)

so \( \det A_B = 0, 1, -1 \) \( \implies \) \( \det \begin{bmatrix} 11 \\ 21 \end{bmatrix} = 0, 1, -1 \)

= 

Upshot: Look if some book/paper says your \( A \) is "totally unimodular." E.g. bipartite matching, network flows, etc.

Minors of \( \begin{bmatrix} 12 \\ 11 \\ 21 \end{bmatrix} \): 2x2 minors: pick 2 rows, 2 cols.
Bad news for bin pecking:

We have some bins

\[
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
20 & 20 & 16 & 25
\end{array}
\]

each bin has capacity

Have objects to put in bins \( \Delta \square \square \square \) \( \square \square \square \) each with size

Want to place each item in a bin.

Hospital Operating Rooms

- Room 1: 24 hours
- Room 2: 24 hours

Some operation to perform: 3 hours, 5 hours, 2 hours, etc.

Say we have 2 rooms, equal number of hours

Room 1: Capacity 1, object to \( a_1, a_2, \ldots, a_n \in [0, 1] \)
Room 2: Capacity 1, place room

Choose \( x_1, \ldots, x_n \)

\[ x_1 a_1 + \ldots + x_n a_n = 1 - \text{space} \]

min space

\[ x_1, \ldots, x_n, \text{space} \geq 0 \]

\[ x_1 \in \mathbb{Z}, x_2 \in \mathbb{Z}, \ldots, x_n \in \mathbb{Z} \]

What happens if?