Homework #2

1. Consider the LP:

 \[\begin{align*}
 \text{max } & \quad 6x_1 + 7x_2, \\
 \text{s.t. } & \quad x_1 \leq 5, \quad x_2 \leq 8, \\
 & \quad x_1 + x_2 \leq 10, \quad x_1, x_2 \geq 0.
 \end{align*} \]

 (a) Solve this using the simplex method, starting with \(x_2 \) entering the basis after the first dictionary (i.e., \(x_1, x_2 \) will be non-basic in the first dictionary, and you should hold \(x_1 \) fixed at 0 and increase \(x_2 \)).

 (b) Solve this using the simplex method, starting with \(x_1 \) entering the basis after the first dictionary.

2. Consider a matrix game, \(A \). Let \(\mathbf{x} \) be a stochastic vector—a vector of non-negative components whose sum is 1—such that

 \[\mathbf{x}^T A \geq [v \ v \ldots \ v], \tag{1} \]

 for some number \(v \) i.e., each entry of \(\mathbf{x}^T A \) is at least \(v \). [For example, if

 \[A = \begin{bmatrix} 0 & 1 \\ 1/2 & 0 \end{bmatrix}, \]

 we know that the value of “Alice announces a mixed strategy” equals 1/3; by choosing \(\mathbf{x}^T = [1/2 \ 1/2] \) (for no particular reason) we have

 \[\mathbf{x}^T A = [1/4 \ 1/2] \geq [v \ v] \]

 where \(v = 0.1 \) (or \(v = 0.2 \) or \(v \) can be anything \(\leq 1/4 \).] Explain why:

 (a) the value of “Alice announces a mixed strategy” is at least \(v \);

 (b) if \(\mathbf{y} \) is another stochastic vector, then explain why

 \[\mathbf{x}^T A \mathbf{y} \geq v; \]
(c) similarly, if \(y \) is a stochastic vector such that

\[
Ay \leq \begin{bmatrix} w \\ \vdots \\ w \end{bmatrix},
\]

explain why the value of “Betty announces a mixed strategy” is at most \(w \), and why for any stochastic \(x \) we have

\[
x^T Ay \leq w.
\]

(d) Show that if \(x \) and \(y \) are stochastic vectors such that Equations 1 and 2 hold, then \(v \leq w \).

(e) If it turns out that for a matrix \(A \) we have

\[
\begin{bmatrix} 0.5 & 0.5 \end{bmatrix} A = \begin{bmatrix} 1.2 & 1.4 & 1.1 \end{bmatrix} \quad \text{and} \quad A \begin{bmatrix} 0.1 \\ 0.3 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 1.1 \\ 1.3 \end{bmatrix},
\]

what can you say about the value of the mixed strategy games for \(A \)?

(f) Is it possible that for some matrix \(A \) we have

\[
\begin{bmatrix} 0.6 & 0.4 \end{bmatrix} A = \begin{bmatrix} 1.2 & 1.4 & 1.1 \end{bmatrix} \quad \text{and} \quad A \begin{bmatrix} 0.1 \\ 0.3 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix}?
\]

3. Use the simplex method to find the value of “Alice announces a mixed strategy” and Alice’s optimal mixed strategy for the matrix game

\[
A = \begin{bmatrix} 1 & 3 \\ 8 & 1 \end{bmatrix}
\]

as discussed in class, i.e., maximizing \(v \) subject to \([x_1 \ 1 - x_1] A \geq [v \ v] \), \(1 - x_1 \geq 0 \) and \(x_1, v \geq 0 \).

Find the value of “Betty announces a mixed strategy” and Betty’s optimal mixed strategy for the above matrix game by the methods used in Homework #1. Do you see Betty’s optimal strategy somewhere in the final dictionary of the simplex method above?