\[x_B = A_B^{-1} \left(\sum_{i} A_N x_N \right) \]
\[2 = \sum_{i} C_N^T \left(a^T A_B a_N \right) x_N \]

Modify \(C \) slightly, expect same final dictionary.
--- some basic \(x_B \) non-basic \(x_N \)

If \(C \) changes slightly

\[B = \left\{ \begin{array}{c}
A_B, A_N \\
\end{array} \right\} \]

In practice: change \(C \), just need to recompute \(z \) raw

max \(4x_1 + 5x_2 \)

s.t. \(x_1 + 2x_2 \leq 8 \)
\(x_1 + x_2 \leq 5 \)
\(2x_1 + x_2 \leq 8 \)
\(x_1, x_2 \geq 0 \)

\(X_1 = \left\{ \begin{array}{c}
2 \\
3 \\
1 \\
\end{array} \right\} \)
\(X_2 = \left\{ \begin{array}{c}
5 \\
\end{array} \right\} \)
\(X_3 = \left\{ \begin{array}{c}
0.01 \\
\end{array} \right\} \)
\(z = 23 \)

Math 340, Nov 27

- Sensitivity Analysis

 \(z \) for \(\beta \) decl

- Today & Monday:

 Poker game \(2^{52} \) strategies

 \((\text{Convexity}) \)

 Take solved LP, solved by simplex method

if \(C \) changes slightly beyond the point where \(x_B, x_N \) are still a final dictionary

\[X_B = \]
\[z = 36 - 2x_2 - 5x_3 + 0.01x \]

Expect only one pivot away from optimal...

\(\Rightarrow \)

If \(\beta \) changes \(\ldots \) 😞
Dual dictionary

\[x_1 = 2 \]
\[x_2 = 3 \]
\[x_3 = 1 \]
\[z = 2z - _ \]

\[y_1 = 1 + \text{etc.} \]
\[y_2 = 3 + \text{etc.} \]
\[w = -2z - y_3 - 2y_4 - 3y_5 \]

Dual LP:

\[(y_1) \quad 4 \leq y_1 + y_2 + 2y_3 \]
\[(y_5) \quad 5 \leq 2y_1 + y_2 + y_3 \]
\[w = -8y_1 - 5y_2 - 8y_3 \]

Dual pivot = simplex method pivot in the dual

Simplex Duality Dual pivot

\[x_1 = 3 \]
\[x_2 = 2 \]
\[x_3 = 1 \]
\[z = -3x_1 + 5x_2 + 2x_4 \]
\[= 3 \]
\[= 5 \]
\[= 2 \]
\[= _3y_1 - 2y_4 + y_5 \]
Similarly:
- optimal dictionary can usually add a new decision variable easily
 in simplex method
 \[\text{max } 4x_1 + 5x_2 \]

\[
\begin{align*}
 \text{max } & \quad 4x_1 + 5x_2 + 2x_3 \\
 \iff & \quad \text{usually adding a inequality can be more difficult}
\end{align*}
\]

- adding a variable

\[y_4 = -4 + y_1 + y_2 + 2y_3 \geq 0 \]
\[y_5 = -5 + 2y_1 + y_2 + y_3 \geq 0 \]

\[w = -8y_1 - 5y_2 - 8y_3 \]
\[\text{not feasible} \]
\[y_2 = 0, \quad y_1 = y_3 = 0 \]
\[w = -50 \]
(claim \(w^* = -23 \))

Poker Game: 52 strategies

Alice & Betty put 1 penny each into the middle

Alice draws a card

(Old! Black or Red)

60%, 50%

New:
- high card #52, next highest 1 \#51
- A Spades, A Heart
- 2nd to lowest, lowest

\[\begin{align*}
 (x_1 + 2x_2 & \leq 8) & y_1 \\
 (x_1 + x_2 & \leq 5) & y_2 \\
 (2x_1 + x_2 & \leq 8) & y_3 \\
 (3x_1 + 4x_2 & \leq 12) & (\text{new } y_4)
\end{align*} \]

Theme: 2-for-1 in simplex method via duality,

\[\implies \text{Game theory} \]
Alice draws card # C

$C = 52, 51, ..., 1$

Betty wins: $\frac{51 - (C - 1)}{51}$

Alice wins: $\frac{C - 1}{51}$

= Betty: Calls or Folds

Alice: Ace Spades: Fold or Bet
 Ace Hearts: Fold or Bet

2 choices for 52 cards
 lowest, 2: Fold or Bet

Alice looks at card:
folds or bets (1 penny)

Betty (no info) (draws a card)
folds or calls

Alice sees Ace Spades
51 cards left:

Alice wins $\frac{51}{51}$ times

Alice sees Ace hearts

wins $\frac{50}{51}$ times

\[
\begin{pmatrix}
1 & 2 \\
3 & 1 \\
5 & 6 \\
7 & 10 \\
10 & 7 \\
\end{pmatrix}
\]

Large Areas

Folds

\(\ldots\)

(1, 2)

(3, 1)

Calls

Betty

Cell

Fold

Alice Strategy

\[
\begin{pmatrix}
0 & 0 \\
\end{pmatrix}
\]