Homework 4, Math 152-205, additional problem: The linear system becomes [ 1 x1 (x1)^2 ] [ a ] [ y1 ] [ 1 x2 (x2)^2 ] [ ] [ y2 ] [ ... ] [ b ] = [ ... ] [ 1 xn (xn)^2 ] [ ] [ yn ] [ c ] Multiplying by the transpose of the coefficient matrix yields [ 1 ... 1 ] [ 1 x1 (x1)^2 ] [ a ] [ ] [ 1 x2 (x2)^2 ] [ ] [ x1 ... xn ] [ ... ] [ b ] = [ ] [ 1 xn (xn)^2 ] [ ] [ (x1)^2 ... (xn)^2 ] [ c ] [ 1 ... 1 ] [ y1 ] [ ] [ y2 ] [ x1 ... xn ] [ ...] [ ] [ yn ] [ (x1)^2 ... (xn)^2 ] or, in other words [ n x1+...+xn (x1)^2+...+(xn)^2 ] [ a ] [ x1+...+xn (x1)^2+...+(xn)^2 (x1)^3+...+(xn)^3 ] [ b ] = [ (x1)^2+...+(xn)^2 (x1)^3+...+(xn)^3 (x1)^4+...+(xn)^4 ] [ c ] [ y1 + ... + yn ] [ x1 y1 + ... + xn yn ] [ (x1)^2 y1 + ... + (xn)^2 yn ]