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The Euler equation for the velocity of an incompressible fluid
in Rn, n = 2, 3.{

ut + (u · ∇)u+∇p = 0 in Rn × (0,T )

div u =0 in Rn × (0,T )
(E)

u(x , t) : Rn × [0,T )→ Rn, p(x , t) : Rn × [0,T )→ R.

The vorticity
ω := ∇× u

I Analysis of solutions to Euler Flows with singular concentrated
vorticity ω(x , t) = ∇× u ∼ δΓ, Γ = {p1, ..., pN} (in R2) or
Γ = {(x(t), y(t), z(t))} (R3);

I Introduce new Gluing Methods for Euler flows.
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Analysis of vortices (and vortex lines): A mathematical subject
with a long history. $1 million dollar Clay Problem.



n = 2

I Wolibner (1933), Yudovich (1963): there is global existence
and uniqueness if ω0 ∈ L∞. If ω0 is regular, then ω(t) is
regular for all times .

I Kiselev-Sverak (2014): vorticity grows eCeCt
.

I We are interested in describing the evolution of solutions to
Euler equation with vorticities ω(x , t) being very
concentrated around a finite number of points.
(Concentrated vortices)



n = 2. If ω =
∑m

j=1 κjδξj
, then points evolve by the k-body

Kirchoff-Routh law

(K ) ξ̇j =
1

2π

∑
i 6=j

κi
(ξi − ξj )

⊥

|ξi − ξj |2
, t ∈ [0,T ]

Marchioro-Pulvirenti (1993): If ωε(x , 0) is concentrated around ξj (0),
then

ωε(x , t) ⇀
k∑

j=1

κjδξj (t), as ε→ 0,

Ionescu-Jia (2020): Stability of singular solution ω = δ0.

Bedrossian-Coti Zelati-Vicol (arXiv 2020): linear stability of the radially
symmetric decreasing solution ω0 = 1

(1+|x|2)2 .



Traveling Wave Solutions

Ao-Davila-del Pino-Musso-Wei (2020): exact traveling wave
solutions

αωx +∇⊥ψ∇ω = 0

ωε(x , t) ⇀
N∑

j=1

κjδ(x − (ξj ,1 − αt, ξj ,2)),

(ξ1, ..., ξN) roots of Adler-Moser polynomials—Special solutions to
the Tkachenko equation:

P ′′Q − 2P ′Q ′ + PQ ′′ = 2µ
(
P ′Q − PQ ′

)



Dynamical Correspondence

Problem: (desingularization of vortices):

Given solutions ξj = ξj (t) to the Hamiltonian system

ξ̇j = ∇⊥ξj
K (ξ), j = 1, . . . , k , (K)

in (0,T ).
Find of a family of true, smooth solutions ωε(x , t) which in the
singular limit ε→ 0 approaches a singular vortex solution
supported on a given trajectory ξ = ξ(t) of System (K).



Davila-del Pino-Musso-Wei (2020): Let ξ(t) = (ξ1(t), . . . , ξN(t))
be a collisionless solution of Kirchoff-Routh System (K) in the
interval (0,T ). Then there exists a solution (ωε,Ψε) of the 2D
Euler of the form

ωε(x , t) ∼
k∑

j=1

κj

ε2
U

(
x − ξj

ε

)
, U(y) =

1

π(1 + |y |2)2

ωε(x , t) ⇀
k∑

j=1

κjδξj (t),
1

| log ε|
|uε|2 ⇀

k∑
j=1

κ2
j δξj (t) as ε→ 0

Here U is the Kaufmann-Scully vortex:U = 1
(1+|x|2)2 .



Stream-vorticity formulation

In R3 the problem becomes{
ωt + (u · ∇)ω − (ω · ∇)u = 0 ,

u = ∇× ψ, −∆ψ = ω.
(SV)

The vorticity is concentrated in an ε-neighbourhood of a time
evolving curve (filament) Γ(t) parametrized by arclength as γ(s, t)
in R3

ωε(x , t) ⇀ c δΓ(t) TΓ(t)



Nearly singular solutions for Euler in R3?

Open question: Solutions with concentrated vorticities near
curves (filaments): Vortex filament or Binormal Flow conjecture
(Helmholtz, Da Rios, Levi-Civita 1858-1906-1931).



Let us consider a Frenet frame for γ(·, t),

tΓ(τ)

nΓ(τ)

bΓ(τ)

Γ(τ)γ(s, τ)

γss = κn, b = γs × n, γs = t.

n normal and b binormal vectors. κ curvature.



Binormal Flows

In a neighborhood of the curve, we introduce local Fermi
coordinates

X (s, z1, z2, t) = γ(s, t) + zini (s, t), |zi | < δ

We look for solutions of 3D Euler flow in the form

ωε(x , | log ε|−1τ) ⇀ 8πδΓ(τ)(x)γs(s, τ), x = γ(s, τ) +
2∑

i=1

zini

where δΓ(τ) denotes uniform Dirac’s mass on the curve.



da Rios’ formal computation (1904): γ evolves by binormal flow

γt = 2 c | log ε| (γs × γss) = 2 c | log ε|κb

Equivalently, t = | log ε|−1τ ,

γτ = 2 c κb

Levi-Civita (1908), Ricca (1991), Betchov (1965), Arms-Hana
(1965), Ting-Klein (1991), Callegari-Ting (1996)



Vortex Filament Conjecture

Given a solution to the binormal flow

γτ = 2 c κb in [0,T ]

Find a true solution of 3D Euler Flow satisfying

~ωε(·, | log ε|−1τ) ⇀ c δΓ(τ)TΓ(τ), 0 ≤ τ ≤ T

Helmholtz, Kelvin, Da Rios

Benedetto-Caglioti-Marchioro (2015), Jerrard-Seis (2017)

Jerrard-Seis, 2017: If vorticities are concentrated around tubes γ(t, s),

they evolve in weak sense by binormal flow.

This Conjecture is unknown except for some special cases.



Examples of binormal flow: a helix whose horizontal section
rotates at a constant angular speed and a vertically translating
circle are solutions of the bi-normal flow of curves.



Exact solutions for 3D Euler with Helical Symmetry

One known solution of the binormal flow that does not change its
form in time is the rotating-translating helix, the curve Γ(τ)
parametrized as

γ(s, τ) =

R cos
(

s−a1τ√
h2+R2

)
R sin

(
s−a1τ√
h2+R2

)
hs+b1τ√

h2+R2

 ,

a1 =
2ch

h2 + R2
, b1 =

2cR2

h2 + R2
.



Theorem (Davila-del Pino-Musso-Wei (2021))

Let Γ(τ) be the helix. Then there exists a smooth solution ~ωε(x , t)
to 3D Euler, defined for t ∈ (−∞,∞) that does not change form
and follows the helix, such that for all τ ,

~ωε(x , τ | log ε|−1) ⇀ cδγ(s,τ)γs(s, τ) as ε→ 0.

This result extends to the situation of several helices symmetrically
arranged: ∪k

j=1[R
2π j−1

k
γ(s, τ)], k ≥ 2.

Dutrifoy (1999), Ettinger-Titi (2009), Bronzi-Lopes Filho-Nussenzveig

Lopes (2015), Jiu-Li-Niu (2017), Lopes Filho-Mazzucato-Niu-

Nussenzveig Lopes-Titi (2015)



Double Helices k = 2



Ettinger-Titi (2009) : Solutions ~ω(x , y , z , t) of 3d-Euler with
Helicoidal symmetry and velocity orthogonal to the symmetry
lines of the Helix can be obtained by screw motion of vectors
formed from a two-variable scalar function ω(x + iy , t) in the form

~ω(x , y , z , t) = ω(e i z
h (x + iy), t)

[
i(x + iy)

h

]
where, for t = τ | log ε|−1, (x , y) ∈ R2,

| log ε|ωt +∇⊥ψ · ∇ω = 0, −∇ · (K∇ψ) = ω

and

K (x , y) =
1

h2 + x2 + y2

(
h2 + y2 −xy
−xy h2 + x2

)



Rotating helicoidal solutions, with velocity α

ω(x + iy , t) = ω(e−iαt(x + iy)), ψ(x + iy , t) = ψ(e−iαt(x + iy))

The problem becomes

∇ω · ∇⊥
(
ψ − α

2
| log ε|(x2 + y2)

)
= 0, −∇ · (K∇ψ) = ω.

Take ω = f (ψ − α

2
| log ε|(x2 + y2)) , for some f .

The problem reduces to the semilinear elliptic equation with
anisotropic coefficients

−∇ · (K∇ψ) = f (ψ − α

2
| log ε|(x2 + y2)) = ω in R2

Gluing methods can be used to construct concentrated solutions.



Vortex rings

Another known solution of the binormal flow that does not change
its form in time is a circle traveling vertically with constant speed
α = 2

R .

Solutions to Euler equations with vorticity concentrated around
traveling circles with thin section are called vortex rings



Axisymmetric Euler:

u(r , z , t) = ur (r , z , t)er + uθ(r , z , t)eθ + uz (r , z , t)ez

ω(r , z , t) = ωr (r , z , t)er + ωθ(r , z , t)eθ + ωz (r , z , t)ez

er =
1

r
(x , y , 0)T , eθ =

1

r
(−y , x , 0)T , ez = (0, 0, 1)T

the 3D Euler becomes
| log ε|u1,t + uru1,r + uzu1,z = 2u1ψ1,z

| log ε|Wt + urWr + uzWz = (u2
1)z

−[∂2
r + 3

r ∂r + ∂2
z ]ψ1 = W

where

u1 =
uθ

r
, W =

ωθ

r
, ψ1 =

ψθ

r
,

ur = −rψ1,z , uz = 2ψ1 + rψ1,r



No-swirl case, i.e., u1 = 0. For x = (r , z), r > 0

| log ε|r Wt +∇⊥( r2 Ψ) · ∇W = 0,
∂Ψ

∂r
= 0 in r = 0,

−∆5Ψ = W , ∆5 := ∂2
rr +

3

r
∂r + ∂2

zz

Helmholtz (1858), Fraenkel (1970-1972):
Exact traveling ring solutions W (r , z , t) = w(r , z − αt) solve

∇⊥
[
r2(ψ − α

2
| log ε|)

]
· ∇w = 0, −∆5ψ = w

Take w = f (r2(ψ − α
2 | log ε|)), then

−∆5ψ = f (r2(ψ − α

2
| log ε|)) = w



It is expected for the vorticity r wε ⇀ 8πδP0 . Take P0 = (r0, 0), r0 > 0

Let me explain the construction of Fraenkel’s ring solution by
Gluing Methods.

The Green’s function for ∆5 := ∂2
rr + 3

r ∂r + ∂2
zz

−∆5G (x ,P0) = 8πδP0 ,
∂G

∂r
= 0, in r = 0

G (x ,P0)→ 0 as |x | → ∞

for x = (r , z). Locally around P0, G (·,P0) has the expansion

G (x ,P0) = log
1

|x − P0|4
(
1− 3

2r0
(r − r0) + O(|x − P0|2)

)
+ O(|x − P0|2),



Let

r0 ψ
0
ε = log

1

ε2 + |x − P0|4
(
1− 3

2r0
(r − r0)

)
.

Take f (s) = ε2−αr0e
s
r0 , w0

ε = f (r2(ψ − α
2 | log ε|)). So

r0 w
0
ε (x) ∼ 1

ε2
U(

x − P0

ε
), U(y) =

1

π(1 + |y |2)2

U Kaufmann-Scully vortex.

Fraenkel’s vortex ring (ψε,wε) ∼ (ψ0
ε ,w

0
ε ) near P0



In the expanded variables y = x−P0
ε the error

e0 := ε4
[
∆5ψ

0
ε + f (r2(ψ0

ε −
α

2
| log ε|))

]
= εy1U[

3

2
+

1

2r0
(Γ0 − 4(2− αr0) log ε)] + O(

ε2

1 + |y |2
)

with U = eΓ0 . To improve the error, solve

L(ψ) := ∆ψ + Uψ = e0

Γ0 solves the Liouville equation ∆Γ0 + eΓ0 = 0 in R2, and
L(Zj ) = 0, j = 0, 1, 2

Z0 = 2 +∇Γ0 · y , Zj (y) = ∂yj Γ0(y), j = 1, 2.



Thus solvability condition is required to solve L(ψ) = e0 which at
main order is∫

R2

y1U[
3

2
+

1

2r0
(Γ0 − 4(2− αr0) log ε)]Z1(y) dy = 0.

This gives

α =
2

r0
+
βε(r0)

| log ε|
, βε = O(1) as ε→ 0

Fraenkel (1970-1972)

Existence of a single vortex-ring solution via constrained variational
method:Arnold (1964), Fraenkel-Berger (1974), Benjaman (1976),
Friedman-Turkington (1981),Burton (1983), Ambrosetti-Struwe (1989),
Benedetto-Caglioti-Marchioro (2000)



Traveling clustered vortex rings

Fraenkel’s vortex ring solution is the only vortex ring solution
known so far.

Question: are there multiple vortex rings?

I (Ao-Liu-Wei 2021) Traveling Wave Solutions with multiple
vortex rings

ωε(r , z)→
m+n∑
j=1

kjδ(rj ,zj )

where (rj , zj ) are roots of generalized Adler-Moser
Polynomials.

kj > 0, j = 1, ...,m; kj < 0, j = m + 1, ...,m + n
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Z
v



Interacting Vortex Rings

I Let (r0, 0) be the Fraenkel’s ring

I If we write

(ri , zi ) = (r0, 0) +
(r̂i , ẑi )

| ln ε|
.

Then (r̂i , ẑi ) will be perturbation from solution of the
following system:

m∑
j=1,j 6=k

γj

ak−aj
−

n∑
j=1

βj

ak−bj
= σk , for k = 1, ...,m,

−
n∑

j=1,j 6=k

βj

bk−bj
+

m∑
j=1

γj

bk−aj
= −ρk , for k = 1, ..., n.

where m, n corresponds to the number of positive and
negative circulation, γj , βj corresponds to the absolute value
of the circulation, σj , ρj are some constants related to the
radius and travelling speed of the ring.



m = 2, n = 11





m∑
j=1,j 6=k

γj

ak−aj
−

n∑
j=1

βj

ak−bj
= σk , for k = 1, ...,m,

−
n∑

j=1,j 6=k

βj

bk−bj
+

m∑
j=1

γj

bk−aj
= −ρk , for k = 1, ..., n.

The same reduced problem has been derived when we study the
multi vortex ring solution for the 3-dimensional Gross-Pitaevskii
equation in (Ao-Huang-Liu-Wei 2020) when all the degree of the
standard vortex are equal to +1 or −1. It has been shown that the
existence and non-degeneracy of symmetric (aj ,b`) are related to
some generalized Adler-Moser polynomials.



Traveling Wave Solutions to Euler Equations with Swirl

In the case with swirl, we have the Long-Squire equation (or more
generally the Grad-Shafranov equation)

−∆5ψ = F
(
r2ψ − α

2
|ln ε| r2

)
+

G
(
r2ψ − α

2 |ln ε| r
2
)

r2
= W .

The same method as that of the non-swirl case can be applied to
swirl, with the choice that F = G = es near the vortex rings(also
using a cutoff function to make them zero away from the vortex
ring).

Result: for ε sufficiently small, there is a solution with two vortex
rings to the Euler equation with swirl.



Summary on vortex ring solutions

I Fraenkel’s ring solution

ωε(r , z)→ κδ(r0,0)

I (Ao-Liu-Wei 2021) Multiple vortex rings

ωε(r , z)→
m+n∑
j=1

kjδ(rj ,zj )

(rj , zj ) = (r0, 0) + O(
1

| ln ε|
)

I What happens when

|(rj , zj )− (r0, 0)| >> O(
1

| ln ε|
)?
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Nearly Parallel Vortex-Rings: Leap-frogging Phenomena

When two vortex-rings interact, Helmholtz predicts the following:

Helmholtz 1858: We can now see generally how two ring-formed
vortex-filaments having the same axis would mutually affect each other,
since each, in addition to its proper motion, has that of its elements of
fluid as produced by the other. If they have the same direction of
rotation, they travel in the same direction; the foremost widens and
travels more slowly, the pursuer shrinks and travels faster till finally, if
their velocities are not too different, it overtakes the first and penetrates
it. Then the same game goes on in the opposite order, so that the rings
pass through each other alternately.

speed ∼ 1

radius



The motion described by Helmholtz, is often termed leapfrogging
in the fluid mechanics community. Even though it has been widely
studied since Helmholtz, as far as we know it has not been
mathematically justified in the context of the Euler equation, even
in the axi-symmetric case without swirl. As a matter of fact, the
interaction leading to the leapfrogging motion is somehow
borderline in strength compared to the stability of isolated vortex
rings.

r1

r2

z



r1

r2

z

Aim: mathematically justify the leap-frogging dynamics for 3D

axisymmetric Euler flow without swirls.

S(w , ψ) :=| log ε| r wt +∇⊥
[
r2 (ψ − α

2
| log ε|)

]
· ∇w = 0,

−∆5ψ = w , r > 0, z ∈ R, t ∈ [0,T )

where ∆5 = ∂2
r + 3

r ∂r + ∂2
z



Formal Derivation of Leap-Frogging

For x = (r , z), take two Fraenkel solutions

w0
ε (x , t) =

2∑
j=1

1

rjε2
j

U(
x − Pj

εj
), Pj = (rj , zj )

ψ0
ε(x , t) =

2∑
j=1

1

rj
log

1

(ε2
j + |x − Pj |2)2

[
1− 3

2rj
(r − rj )

]
Here εj = εj (t), Pj = Pj (t). Choose

rj (t) ε2
j (t) = r0 ε

2, α =
2

r0



To describe the dynamics around P1, we expand variable

y =
x − P1

ε1
, y = ρe iθ.

To describe the error we use the notation

Ek = Ek1(ρ, t) cos kθ + Ek2(ρ, t) sin kθ,

with
Ek1(ρ, t),Ek2(ρ, t) = O(1) as ε→ 0



At x = P1 + ε1y , we compute the error

ε4
1 S(w0

ε , ψ
0
ε) = ε4

1

[
| log ε| r ∂tw

0
ε +∇⊥

[
r2 (ψ0

ε −
α

2
| log ε|)

]
· ∇w0

ε

]

= ε1

−| log ε|∂tP1 + 4
∑
6̀=j

(P1 − P2)⊥

|P1 − P2|2
+

2

r1
| log ε| e1

 · ∇U
+
ε2| log ε|
1 + ρ4

E2.

An analogous computation around P2.



The error term of size ε is cancelled if, for j = 1, 2

∂tPj =
2

rj

(
0
1

)
+

1

| log ε|
∑
i 6=j

(Pj − Pi )
⊥

|Pj − Pi |2
+ O(

1

| log ε|
)

Fraenkel’s (1972) single-ring traveling:

r1∂tP1 = 2

(
0
1

)
⇒ r = r0, z = z0 +

2

r0
t

Choose

Pj =

(
r0, z0 +

2

r0
t

)
+ Qj , Qj =

1√
| log ε|

bi (t)



Here bi (t) = (r(bi (t)), z(bi (t))) satisfies the following
Leapfrogging dynamics

(LeapFrog)

 ḃi (t) =
∑

j 6=i
(bi−bj )

⊥

‖bi−bj‖2 − 2r(bi )
r2
0

(
0
1

)
bi (0) = b0

i

Then the error’s size becomes ε-smaller

ε4
1S(w0

ε , ψ
0
ε) =

ε2| log ε|
1 + ρ4

E2



Theorem [Dávila, del Pino, Musso, Wei, 2022]
Let (b1(t), . . . , bN(t)) be a colisionless solution of System
(LeapFrog)

Pi =

(
r0 +

r(bi (t))√
| log ε|

, z0 +
2t

r0
+

z(bi (t))√
| log ε|

)
in (0,T )

Then there exists a solution ωε of 3D axisymmetric Euler flow
(without swirl) of the form

wε(x , t) ∼
N∑

j=1

1

rjε2
j

U

(
(r , z)− Pj

εj

)

ψε(x , t) ∼
N∑

j=1

1

rj
log

1

(ε2
j + |x − Pj |2)2

[1− 3

2rj
(r − rj )]



Multiple-scalings



Ingredients in the construction

I Improvement of the approximation in powers of ε: (w∗ε , ψ
∗
ε)

I Setting up the problem as a coupled system of inner problems
near the singularities and and an outer problem more regular
(the inner-outer gluing scheme)
Inner-outer gluing scheme:

elliptic (del Pino-Kowalczyk-Wei (2011))—counterexample
to De Giorgi’s Conjecture

parabolic (Davila-del Pino-Wei (2020))—singularities of
Harmonic Map Flows

I New ingredients of gluing for Euler:
• The inner problem is highly degenerate;
• The outer problem is transport equation–lack of regularity.



Sketch of the proof. We want to solve the equation S(ω, ψ) = 0,
where

S(ω, ψ) := | log ε|r∂tω +∇⊥
[
r2(ψ − α

2
| log ε|)

]
· ∇ω = 0,

−∆5ψ = ω.

Introduce cut-off functions

ηj (x , t) = η(| log ε||x − Pj |), η(s) =

{
1 s ≤ 1
0 s ≥ 2





The inner-outer gluing scheme

ψ(x , t) = ψ∗ε +
2∑

j=1

ηj

rj
ψj (

x − Pj

εj
, t) + ψout(x , t)

ω(x , t) = w∗ε +
2∑

j=1

ηj

rjε2
j

φj (
x − Pj

εj
, t) + φout(x , t)

where −∆5ψ = ω, φj = −∆5,jψj

∆5,jψj := −[∆yψj +
3εj

rj + εjy1
∂1ψj ], y =

x − Pj

εj
.

The problem becomes

S(ω, ψ) = 0 if

{
E in

j [φj , ψj , ψ
out ,P] = 0, j = 1, 2,

E out [φout , ψout , φj , ψj ,P] = 0



For φ̃(x , t) = 1
rj ε

2
j
φ(

x−Pj

εj
, t), y =

x−Pj

εj

ε4
j | log ε|r∂t φ̃ = | log ε|(1 +

εj

rj
y1)

[
ε2

j ∂tφ− (
∂trj
rj

+
2∂tεj

εj
)︸ ︷︷ ︸

=0

ε2
j φ

]

− εj | log ε|∇φ · ∂tPj − εj | log ε| (∂tεj∇φ · y +
εj

rj
y1∂tPj · φ)︸ ︷︷ ︸

=εj
∂t rj
2rj

(y1∂1φ−y2∂2φ)

− ε2
j | log ε|∂tεj r

−1
j y1∇φ · y

= ε2
j | log ε|∂tφ+ εj | log ε|∇φ · ∂tPj + ε2

j | log ε|B0(φ)

If φ is a radial function, B0(φ) has Fourier modes 2, or 1 with an extra εj .



A simplified version of E in
j

E in
j (y , t) := ε2

j | log ε|∂tφj + εj | log ε|∇φ · ∂tPj + ε2
j | log ε|B0(φj )

+∇⊥
(

Γ0 +
εj

2rj
y1 Γ0

)
· ∇φj +∇⊥(ψj +

2εj

r1
y1 ψj ) · ∇U

+∇⊥
(

(1 +
εj

rj
y1)2(ψj + rjψ

out)

)
· ∇φj

+ ηje
∗
final , y ∈ B(0, ε−1| log ε|−1), t ∈ [0,T )

where y =
x−Pj

εj
, and e∗final is the final error

e∗final = ε4
j S(w∗ε , ψ

∗
ε )(εjy + Pj )



A simplified version of E out

E out(x , t) := | log ε| r φout
t +∇⊥x (r2(Ψ0 − α| log ε|)) · ∇xφ

out

+
2∑

j=1

[
r | log ε| ∂t η̄j1 +∇⊥x (r2(Ψ0 − α| log ε|))∇η̄1j

] φj

ε2
j rj

+

 2∑
j=1

(η2j − η1j )∇⊥x (r2(
ψj

rj
+ ψout)) +

r2ψj

rj
∇⊥x η2j

 · ∇xW
0

+ (1−
2∑

j=1

ηj1)S(w∗ε , ψ
∗
ε ) = 0 r > 0, z ∈ R, t ∈ [0,T )

To decouple the inner and outer problems, we need the inner functions φj

to decay as ρ becomes large



For the inner problem we solve in R2

ε2| log ε|φt −∇⊥Γ0·∇(∆ψ + f ′(Γ0)ψ) + E (y , t) = 0, φ(y , 0) = 0

−∆ψ =φ in R2 × [0,T ]

A central ingredient is an L2-a priori estimate:
Lemma: A priori estimates If φ is a solution and satisfies
certain orthogonality conditions, then the following estimate holds

‖φ(·, t)U−
1
2 ‖L2(R2) ≤ Cε−2| log ε| sup

t∈[0,T ]
‖E (·, t)U−

1
2 ‖L2(R2)



The inner problem

ε2| log ε|φt −∇⊥Γ0·∇(∆ψ + f ′(Γ0)ψ) + B(φ) + Q(φ) + e∗final = 0,

φ(y , 0) = 0, −∆5ψ = φ in R2 × [0,T ]

The whole construction works if we get to an approximation
(w∗ε , ψ

∗
ε) with a final error

e∗final =
ε5| log ε|β

1 + ρ3
, β > 0



How do we improve the approximation? Recall

w0
ε (x , t) =

2∑
j=1

1

ε2
j rj

U(
x − Pj

εj
), Pj = (rj , zj )

ψ0
ε(x , t) =

2∑
j=1

1

rj
log

1

(ε2
j + |x − Pj |2)2

[
1− 3

2rj
(r − rj )

]
The points

Pi =

(
r0, z0 +

2t

r0

)
+

1√
| log ε|

bi (t) + aj (t)

with |aj (t)|L∞(0,T ) ≤ ε2. So: |P1 − P2| ∼ 1√
| log ε|

.



Improvement of the error near Pj

The inner equation:

ε2
j | log ε|∂tφj + εj | log ε|∂tPj · ∇φj + ε2

j | log ε|B0(φj )

+∇⊥
(

Γ0 +
εj

2rj
y1 Γ0

)
· ∇φj +∇⊥(ψj +

2εj

r1
y1 ψj ) · ∇U

+∇⊥
(

(1 +
εj

rj
y1)2(ψj + rjψ

out)

)
· ∇φj + e0 ∼ 0

where e0 is the initial error

e0 =
ε2| log ε|
1 + ρ4

E2, ρ = |y |, y =
x − Pj

εj
.



We obtain the first reduction of the error solving the elliptic
equation

∇⊥Γ0 · ∇φ+∇⊥ψ · ∇U + e0 = 0, −∆ψ = φ.

Since U = eΓ0 , the problem becomes

−∇⊥y Γ0 · ∇(∆ψ + Uψ) + e0 = 0

In polar coordinates y = ρe iθ we see that

L[ψ] := ∇⊥y Γ0 · ∇(∆ψ + Uψ) =
−4

1 + ρ2

∂

∂θ
[∆yψ + Uψ]



The operator L (for Liouville) is highly degenerate:

• All radial functions are in its kernel

• Kernel of

∆yψ + Uψ = 0, ψ ∈< 2 +∇Γ0 · y , ∂y1Γ0, ∂y2Γ0 >

Since

e0 =
ε2| log ε|
1 + ρ4

E2

we can solve L[ψ1, φ1] + e0 = 0 and the new error

e1 =
ε3| log ε|2

1 + ρ3
E1



We obtain the second reduction of the error solving the elliptic
equation

L[ψ2, φ2] + e1 = 0, e1 =
ε3

1 + ρ3
E1

which can be done with an adjustment of the points aj (t). We
get a new error

e2 =
ε4

1 + ρ2
E0

We cannot use L to improve ε4

1+ρ2E0. We solve the ODE

ε2
j | log ε|∂tφ3 + e2 = 0.

The solution φ3 = ε2| log ε|
1+ρ2 is a function of 0-Fourier mode. The

new error

e3 =
ε3

1 + ρ3
sin θ



We obtain the further reduction of the error solving with

L[ψ4, φ4] +
ε3

1 + ρ3
sin θ = 0

which can be done with a further adjustment of the points . This
time we get a new error of the form

e4 =
ε4

1 + ρ2
E2

We use again Liouville L[ψ5, φ5] + ε4

1+ρ2 = 0 to get

e5 =
ε5

1 + ρ
Ei≥0

How do we get decay?



We solve with the transport equation

T (φ6) := | log ε| ε2
j ∂tφ6 + | log ε|ε2

j B0(φ6)

+∇⊥
(

Γ +
εj

2rj
y1 Γ

)
· ∇φ6 = e5 =

ε5

1 + ρ
Ei≥0

Even if we have no control on the Fourier mode of φ6, the new
error

e6 =
ε3

1 + ρ5
E1

This is like e1 = ε3

1+ρ3E1, but with faster decay.

We start the process again
.



Scheme for the inner approximation

e0 =
ε2

1 + ρ4
E2 ⇒

L
e1 =

ε3

1 + ρ3
E1 ⇒
L&aj

e2 =
ε4

1 + ρ2
E0

⇒
ODE

e3 =
ε3

1 + ρ3
sin θ ⇒

L&aj

e4 =
ε4

1 + ρ2
E2 ⇒

L
e5 =

ε5

1 + ρ
E0

⇒
T

e6 =
ε3

1 + ρ5
E1 ⇒
L&aj

e7 =
ε4

1 + ρ4
E0 ⇒

ODE
e8 =

ε3

1 + ρ5
sin θ

⇒
L&aj

e9 =
ε4

1 + ρ4
E2 ⇒

L
e10 =

ε5

1 + ρ3
E0



Lemma: A priori estimates: If φ solves in R2 × [0.T ]

ε2φt +∇⊥Γ0 · ∇(∆ψ + f ′(Γ0)ψ) + E (y , t) = 0, φ(y , 0) = 0

and satisfies the orthogonality conditions∫
B(0,δε−1)

yiφ(y , t)dy = 0, i = 1, 2,

∫
R2

φ(y , t)dy =

∫
R2

φ(y , t)
1− 2|y |2

1 + |y |2
U(y)dy = 0,

then the following estimate holds

‖φ(·, t)U−
1
2 ‖L2(R2) ≤ Cε−2| log ε| sup

t∈[0,T ]
‖E (·, t)U−

1
2 ‖L2(R2)



Proof.

ε2φt +∇⊥Γ0 · ∇(∆ψ + f ′(Γ0)ψ) + E (y , t) = 0, φ(y , 0) = 0

We use the test function g = φ
U − (−∆)R2φ, so

Ug = −(∆ψ + f ′(Γ0)ψ).

and

ε2∂t

∫
R2

φg =

∫
R2

U−1∇⊥Γ0∇(U2g2) + 2

∫
R2

Eg

The second integral is zero for∫
R2

U−1∇⊥Γ0∇(U2g2) = −
∫
R2

∇ · (U−1∇⊥Γ0)∇(U2g2)

and since Γ0 and U are radial,

∇ · (U−1∇⊥Γ0) = 0.



Thus

ε2∂t

∫
R2

φg = 2

∫
R2

Eg ≤ C‖EU−
1
2 ‖L2‖‖gU

1
2 ‖L2

and integrating,

ε2

∫
R2

φg(·, t) ≤ max
t∈(0,T )

C‖E (·, t)U−
1
2 ‖L2‖‖g(·, t)U

1
2 ‖L2 .

Under the orthogonality conditions assumed on φ we can prove
the following Poincare inequality:

(∗) γ

| log ε|

∫
R2

φ2U−1 ≤
∫
R2

φg

while we always have∫
R2

g2U ≤ C

∫
R2

φ2U−1.

From these inequalities the desired estimate follows.



To prove the Poincare inequality

γ

| log ε|

∫
R2

φ2U−1 ≤
∫
R2

φg

we set φ̃ = U−1φ. Using stereographic projection we see that∫
S2

φ̃2 =

∫
R2

φ2U−1,

∫
S2

φ̃ =

∫
R2

φ = 0.

Besides ∫
R2

φg =

∫
S2

φ̃(φ̃− 2(−∆S2)−1φ̃).



Expanding φ̃ in the orthonormal basis in L2(S2) of spherical
harmonics we get

φ̃ =
∞∑

j=0

φ̃jej (z) =
3∑

j=0

φ̃jej + φ̃⊥,

where −∆S2ej = λjej .

Here λ0 = 0 and e0 is constant, while λ1 = λ2 = λ3 = 2, with
ej (z) = zj . Thus φ̃0 = 0 and also φ̃3 = 0 because of our
orthogonality condition:∫

R2

φ(y , t)dy =

∫
R2

φ(y , t)
1− 2|y |2

1 + |y |2
U(y)dy = 0,



∫
R2

φg =
∞∑

j=4

(
1− 2

λj

)
φ̃2

j ∼ ‖φ̃⊥‖2
L2(S2)

We also have, j = 2, 3

0 =

∫
BR

φyj = cφ̃j + O(‖φ̃⊥‖L2(S2))| logR|
1
2

with R = δε−1 which gives

φ̃j = O(‖φ̃⊥‖L2(S2))| log ε|
1
2 .

From here it follows that∫
R2

φg ≥ γ| log ε|−1

∫
S2

φ̃2

as we wanted.



Remarks
1. Klein-Majda-Damodaran (1995) formally derived the LeapFrogging
dynamics.

2. Jerrard-Smets (2018): gave the first mathematical justification of
leapfrogging in three-dimensional Gross-Pitaeskii equation

iut −∆u =
1

ε2
(1− |u|2)u in R3

u : R3 × R→ R2

3. The gluing approach we developed will be useful for the Vortex
Filament Conjecture.

Related results: Gallay-Smets (2018) (spectrum analysis for the vortex

line filament)



Approximate Binormal Conjecture

Davila-del Pino-Musso-Wei 2022: For each fixed integer N, there
exists a solution to 3D Euler flow

ωε = F1γs + F2n1 + F3n2 + smooth

such that 3D Euler flow can be solved up to O(εN).

Main Difficulty: Lack of L2− estimates for the spectral problem of
inviscid columnar vortices. Gallay-Smets 2018: showed
(numerically) all eigenvalues are on the imaginary axis. This is the
first step. But the L−1 bound depends et .



Thanks for your attention


