Nonexistence of Type II Blow-up for Nonlinear Energy-Critical Heat Equation

Juncheng Wei

Department of Mathematics, UBC

Geometry and Analysis Seminar, Columbia University, Oct. 28, 2022 Joint work with Kelei Wang

October 26, 2022

jcwei@math.ubc.ca

October 26, 2022

1 / 40

Blow up for nonlinear heat equation

$$\begin{cases} \partial_t u - \Delta u = |u|^{p-1} u, p > 1, x \in \mathbb{R}^n \\ u(x, 0) = u_0(x) \in L^{\infty}(\mathbb{R}^n). \end{cases}$$

• Local well-posedness: standard parabolic theory.

(1)

$$\begin{cases} \partial_t u - \Delta u = |u|^{p-1} u, p > 1, x \in \mathbb{R}^n \\ u(x,0) = u_0(x) \in L^{\infty}(\mathbb{R}^n). \end{cases}$$

- Local well-posedness: standard parabolic theory.
- Blow up in finite time: Fujita (1966), Quittner-Souplet ...
- Type I if there exists a constant C such that for any t < T, $\|u(\cdot, t)\|_{L^{\infty}(\mathbb{R}^n)} \leq C(T-t)^{-\frac{1}{p-1}}$, (2)

otherwise it is called **Type II**.

(1)

 When p < n+2/n-2 (Sobolev subcritical), all blow ups are Type I. (Giga-Kohn (1987) (positive solutions), Giga-Matsui-Sasayama (2014) (sign-changing solutions)...)

- When p < n+2/n-2 (Sobolev subcritical), all blow ups are Type I. (Giga-Kohn (1987) (positive solutions), Giga-Matsui-Sasayama (2014) (sign-changing solutions)...)
- What about $p = \frac{n+2}{n-2}$, energy-critical?

(Wang-Wei 2022) If $n \ge 7$, $p = \frac{n+2}{n-2}$ and $u_0 \ge 0$, then all (finite-time) blow ups are Type I.

(Wang-Wei 2022) If $n \ge 7$, $p = \frac{n+2}{n-2}$ and $u_0 \ge 0$, then all (finite-time) blow ups are Type I.

Theorem

(Wang-Wei 2022) If $n \ge 5$, $p = \frac{n+2}{n-2}$ and $u_0 = u_0(|x|) \ge 0$, then all (finite-time) blow ups are Type I.

- If $p = \frac{n+2}{n-2}$ only type I blow-up for Positive Solutions
 - Filippas-Herrero-Velázquez [2000]: true, for radially decreasing solutions, n ≥ 3

- If $p = \frac{n+2}{n-2}$ only type I blow-up for Positive Solutions
 - Filippas-Herrero-Velázquez [2000]: true, for radially decreasing solutions, n ≥ 3
 - Collot-Merle-Raphaël [2017]: true for $n \ge 7$, provided that $\|u_0 W\|_{\dot{H}^1} << 1,$

W is the Aubin-Talenti bubble

$$\Delta W + W^{\frac{n+2}{n-2}} = 0, W > 0$$

- Filippas-Herrero-Velázquez [2000] (formal computations, radial case)
- Schweyer [2012] (the radial case): n = 4, p = 3

$$\|u\|_{L^{\infty}} \sim \frac{|\log(T-t)|^2}{T-t}$$

Merle-Raphael-Rodnianskii modulation approach

 del Pino-Musso-Wei-Zhou (2019): n = 4, p = 3, nonradial case, multiple bubbles

$$\|u\|_{L^{\infty}} \sim \frac{|\log(T-t)|^2}{T-t}$$

Inner-outer gluing approach

 del Pino-Musso-Wei (2018): n = 5, p = 7/3, nonradial and multiple bubbles

 $\|u\|_{L^{\infty}}\sim (T-t)^{-3}$

 del Pino-Musso-Wei (2018): n = 5, p = 7/3, nonradial and multiple bubbles

$$\|u\|_{L^{\infty}} \sim (T-t)^{-3}$$

• Harada (2020): *n* = 6, *p* = 2, radial case

$$||u||_{L^{\infty}} \sim (T-t)^{-\frac{5}{2}} |\log(T-t)|^{-\frac{15}{4}}$$

 del Pino-Musso-Wei (2018): n = 5, p = 7/3, nonradial and multiple bubbles

$$\|u\|_{L^{\infty}} \sim (T-t)^{-3}$$

• Harada (2020): *n* = 6, *p* = 2, radial case

$$\|u\|_{L^{\infty}} \sim (T-t)^{-\frac{5}{2}} |\log(T-t)|^{-\frac{15}{4}}$$

• del Pino-Musso-Wei-Zhou-Zhang (2021): n = 3, p = 5, nonradial case

$$||u||_{L^{\infty}} \sim (T-t)^{-k}, k = 1, 2, 3, ...$$

- Herrero-Velazquez (1997), $p > p_{JL}(n)$, radial case; Mizoguchi, Seki, ...
- Collot (2017), $p > p_{JL}(n)$, p = 2m + 1, nonradial case; Collot-Merle-Raphael (2020), $p > p_{JL}(n-1)$, $n \ge 13$;
- Matano-Merle (2004, 2009), No Type II blow-up for u = u(r), $\frac{n+2}{n-2} ;$
- del Pino-Musso-Wei (2020), Type II blow-up for $\frac{n+2}{n-2}$
- Lai-del Pino-Musso-Zhou-Wei (arXiv 2021), Type II blow-up for $p = 3, 5 \le n \le 8$

Based on the examples of Type II blow-ups, it is reasonable to

Conjecture 1: If $p = \frac{n+2}{n-2}$, all positive blow-ups are Type I, for $n \ge 3$

Wang-Wei: True if $n \ge 7$; True if $u = u(r), n \ge 5$

Based on the examples of Type II blow-ups, it is reasonable to

Conjecture 1: If $p = \frac{n+2}{n-2}$, all positive blow-ups are Type I, for $n \ge 3$

Wang-Wei: True if $n \ge 7$; True if $u = u(r), n \ge 5$

Conjecture 2: If $p = \frac{n+2}{n-2}$, all solutions (sign-changing) blow-ups are Type I, for $n \ge 7$

Based on the examples of Type II blow-ups, it is reasonable to

Conjecture 1: If $p = \frac{n+2}{n-2}$, all positive blow-ups are Type I, for $n \ge 3$

Wang-Wei: True if $n \ge 7$; True if $u = u(r), n \ge 5$

Conjecture 2: If $p = \frac{n+2}{n-2}$, all solutions (sign-changing) blow-ups are Type I, for $n \ge 7$

Conjecture 3: If $\frac{n+2}{n-2} and <math>p \neq \frac{m+2}{m-2}$, all solutions (sign-changing) blow-ups are Type I.

Collot-Raphael-Merle (2020)

(Wang-Wei 2022) If $n \ge 7$, $p = \frac{n+2}{n-2}$ and u is positive, then all blow ups are Type I.

3

(Wang-Wei 2022) If $n \ge 7$, $p = \frac{n+2}{n-2}$ and u is positive, then all blow ups are Type I.

Why $n \ge 7$?: The scaling parameter $\lambda(t)$ (inverse height of u(t)) satisfies $\lambda'(t) \sim \lambda(t)^{\frac{n-4}{2}}$.

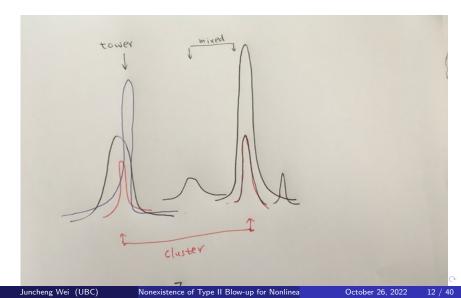
Lipschitz nonlinearity if $n \ge 7 \Longrightarrow$ Harnack inequality for λ ...

 Difficulty I: We only assume that u₀ ∈ L[∞]. There is no energy bound. The number of bubbles can approach +∞.

$$u \sim \sum_{j=1}^{N(t)} \left(\frac{\lambda_j(t)}{\lambda_j^2 + |x - \xi_j|^2} \right)^{\frac{n-2}{2}}$$
$$\frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i} + \frac{|\xi_i - \xi_j|}{\lambda_i \lambda_j} \to +\infty$$
$$N(t) < +\infty; N(t) = +\infty?$$

11 / 40

• Difficulty II: Even if the energy is bounded, we don't know the relative scales of the bubbles: bubble towers+bubble clusters+mixed bubble towers and clusters.



• Difficulty III: Even if there is only bubble, the outer part may be a Type I blow-up.

$$u \sim \left(rac{\lambda(t)}{\lambda^2 + |x|^2}
ight)^{rac{n-2}{2}} + \psi_0(t)$$

 $\psi_0(t)
ot\in L^\infty$

13 / 40

< 177 ▶

Key Ideas of Proofs

 Energy concentration: Tangent flow analysis and Lin-Wang blown-down argument; No energy bounds

< 67 ▶

Key Ideas of Proofs

- Energy concentration: Tangent flow analysis and Lin-Wang blown-down argument; No energy bounds
- Parabolic second order estimates: Reverse Inner-outer parabolic gluing mechanism to exclude Multiplicity One case (Davila, del Pino, Musso, Wei)
 - L^2 case: Carmen Cortazar, Manuel del Pino and Monica Musso, 2020. (L^2 and) Non- L^2 case: Manuel del Pino, Juan Davila and Juncheng Wei, 2020
 - Elliptic second order estimates for Allen-Cahn (Wang-Wei (2019, 2020)

Key Ideas of Proofs

- Energy concentration: Tangent flow analysis and Lin-Wang blown-down argument; No energy bounds
- Parabolic second order estimates: Reverse Inner-outer parabolic gluing mechanism to exclude Multiplicity One case (Davila, del Pino, Musso, Wei)
 - L^2 case: Carmen Cortazar, Manuel del Pino and Monica Musso, 2020. (L^2 and) Non- L^2 case: Manuel del Pino, Juan Davila and Juncheng Wei, 2020

Elliptic second order estimates for Allen-Cahn (Wang-Wei (2019, 2020)

• Exclusion of Higher Multiplicity case (bubbling towering and bubbling clustering), parabolic compactness argument for Yamabe (Schoen, Khuri-Marques-Schoen, Y. Li, etc.)

47 ▶

- Determine the possible blow up profile: blow up analysis, energy concentration phenomena
 - \Longrightarrow Type II blow up comes from the formation of bubbles.

- Determine the possible blow up profile: blow up analysis, energy concentration phenomena
 Type II blow up comes from the formation of bubbles.
- Determine the dynamical law for bubbles: Refined blow up analysis. Tools: Reverse Lyapunov-Schmidt reduction, inner-outer decoupling.

- Determine the possible blow up profile: blow up analysis, energy concentration phenomena
 - \Longrightarrow Type II blow up comes from the formation of bubbles.
- Determine the dynamical law for bubbles: Refined blow up analysis. Tools: Reverse Lyapunov-Schmidt reduction, inner-outer decoupling.

Definition

If u is bounded in $Q_r^-(a, T) = B_r(a) \times (T - r^2, T)$, then the point a is a regular point, otherwise it is a blow up (singular) point.

$$u^{\lambda}(x,t) := \lambda^{rac{2}{p-1}} u(a + \lambda x, T + \lambda^2 t), \quad \lambda o 0.$$

 \Leftarrow Scaling invariance of the equation.

$$u^{\lambda}(x,t) := \lambda^{rac{2}{p-1}} u(a+\lambda x,T+\lambda^2 t), \quad \lambda o 0.$$

 \Leftarrow Scaling invariance of the equation.

• We need to analyse the convergence of u^{λ} : blow up analysis.

$$u^{\lambda}(x,t) := \lambda^{rac{2}{p-1}} u(a+\lambda x,T+\lambda^2 t), \quad \lambda o 0.$$

 \Leftarrow Scaling invariance of the equation.

- We need to analyse the convergence of u^{λ} : blow up analysis.
- Because $p = \frac{n+2}{n-2}$, $\int |\nabla u|^2 dx$ and $\int |u|^{p+1} dx$ are invariant under the scaling

 \implies bubbling phenomena, as in harmonic map, Yang-Mills ...

$$u^{\lambda}(x,t) := \lambda^{rac{2}{p-1}} u(a+\lambda x,T+\lambda^2 t), \quad \lambda o 0.$$

 \Leftarrow Scaling invariance of the equation.

- We need to analyse the convergence of u^{λ} : blow up analysis.
- Because $p = \frac{n+2}{n-2}$, $\int |\nabla u|^2 dx$ and $\int |u|^{p+1} dx$ are invariant under the scaling

 \implies bubbling phenomena, as in harmonic map, Yang-Mills ...

but it is a supercritical bubbling phenomena: parametrized bubbles

Given a sequence of smooth solutions u_i in Q_1 , satisfying $\sup_i \int_{Q_1} |\nabla u_i|^2 + |u_i|^{p+1} < +\infty.$

- A subsequence converges to a weak solution u_∞;
- there exists a defect measure μ such that

 $|\nabla u_i|^2 dx dt \rightharpoonup |\nabla u_{\infty}|^2 dx dt + \mu, \quad |u_i|^{p+1} dx dt \rightharpoonup |u_{\infty}|^{p+1} dx dt + \mu;$

• $\mu = \mu_t \otimes dt$, and $\mu_t = \sum_k m_k \delta_{\xi_k^*(t)}$.

Given a sequence of smooth solutions u_i in Q_1 , satisfying $\sup_i \int_{Q_1} |\nabla u_i|^2 + |u_i|^{p+1} < +\infty.$

- A subsequence converges to a weak solution u_{∞} ;
- there exists a defect measure μ such that |∇u_i|²dxdt → |∇u_∞|²dxdt + μ, |u_i|^{p+1}dxdt → |u_∞|^{p+1}dxdt + μ;
 μ = μ_t ⊗ dt, and μ_t = ∑_k m_kδ_{ξ^{*}_k(t)}.

October 26, 2022

17 / 40

• A more general result holds for all p > 1.

Given a sequence of smooth solutions u_i in Q_1 , satisfying $\sup_i \int_{Q_1} |\nabla u_i|^2 + |u_i|^{p+1} < +\infty.$

- A subsequence converges to a weak solution u_{∞} ;
- there exists a defect measure μ such that |∇u_i|²dxdt → |∇u_∞|²dxdt + μ, |u_i|^{p+1}dxdt → |u_∞|^{p+1}dxdt + μ; μ = μ_t ⊗ dt, and μ_t = Σ_k m_kδ_{ξ^{*}_k(t)}.
- A more general result holds for all p > 1.
- Similar to Lin-Wang's work on harmonic map heat flow.

Theorem

Given a sequence of smooth solutions u_i in Q_1 , satisfying $\sup_i \int_{Q_1} |\nabla u_i|^2 + |u_i|^{p+1} < +\infty$.

- A subsequence converges to a weak solution u_∞;
- there exists a defect measure μ such that |∇u_i|²dxdt → |∇u_∞|²dxdt + μ, |u_i|^{p+1}dxdt → |u_∞|^{p+1}dxdt + μ;
 μ = μ_t ⊗ dt, and μ_t = Σ_k m_kδ_{ξ^{*}_k(t)}.
- A more general result holds for all p > 1.
- Similar to Lin-Wang's work on harmonic map heat flow.
- Main tools: (i) ε-regularity theorem, (ii) monotonicity formula of Giga-Kohn.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Bubbling

 By Struwe's global compactness theorem, for a.e. t, the following bubble tree convergence holds for u_i(t):

Theorem

There exist N(t) points $\xi_{ik}^*(t)$, positive constants $\lambda_{ik}^*(t)$, $k = 1, \dots, N(t)$, all converging to 0 as $i \to +\infty$, and N(t) bubbles W^k , such that in $H^1(B_1)$,

$$u_i(x,t) = u_{\infty}(x,t) + \sum_{k=1}^{N(t)} W^k_{\xi^*_{ik}(t),\lambda^*_{ik}(t)}(x) + o_i(1).$$

• A bubble is an entire solution

$$-\Delta W = |W|^{p-1}W, \quad \int_{\mathbb{R}^n} |\nabla W|^2 < +\infty.$$

• If *u_i* is positive, all bubbles arising in this process are standard ones, thanks to Caffarelli-Gidas-Spruck.

Bubble towering: bubbles are located at almost the same point (w.r.t. the bubble scales), but the height of one bubble is far larger than the other one's : $\limsup_{i\to+\infty}\frac{|\xi_{ik}^*(t)-\xi_{i\ell}^*(t)|}{\max\{\lambda_{i\nu}^*(t),\lambda_{i\ell}^*(t)\}}<+\infty,\quad \frac{\lambda_{ik}^*(t)}{\lambda_{i\ell}^*(t)}+\frac{\lambda_{i\ell}^*(t)}{\lambda_{i\ell}^*(t)}\to+\infty.$ Bubble clustering: if for some $k \neq \ell$, $\lim_{i\to+\infty}|\xi_{ik}^*(t)-\xi_{i\ell}^*(t)|=0$ but $\lim_{i \to +\infty} \frac{|\xi_{ik}^*(t) - \xi_{i\ell}^*(t)|}{\max\{\lambda_{i\ell}^*(t), \lambda_{i\ell}^*(t)\}} = +\infty.$

Bubble towering: bubbles are located at almost the same point (w.r.t. the bubble scales), but the height of one bubble is far larger than the other one's : $\limsup_{i\to+\infty}\frac{|\xi_{ik}^*(t)-\xi_{i\ell}^*(t)|}{\max\{\lambda_{i\nu}^*(t),\lambda_{i\ell}^*(t)\}}<+\infty,\quad \frac{\lambda_{ik}^*(t)}{\lambda_{i\ell}^*(t)}+\frac{\lambda_{i\ell}^*(t)}{\lambda_{i\ell}^*(t)}\to+\infty.$ Bubble clustering: if for some $k \neq \ell$, $\lim_{i\to+\infty}|\xi_{ik}^*(t)-\xi_{i\ell}^*(t)|=0$ but $\lim_{i \to +\infty} \frac{|\xi_{ik}^*(t) - \xi_{i\ell}^*(t)|}{\max\{\lambda_{i\ell}^*(t), \lambda_{i\ell}^*(t)\}} = +\infty.$ Bubbling-towerings do exist: del Pino-Musso-Wei (2019) $(n > 7, T = +\infty)$

Suppose (a, T) is a blow up point. Consider the blow up sequence $u^{\lambda}(x, t) := \lambda^{\frac{2}{p-1}} u(a + \lambda x, T + \lambda^{2}t), \quad \lambda \to 0.$

Theorem

Suppose $p = \frac{n+2}{n-2}$, and u is positive.

- u^{λ} sub-sequentially converges to (u^{∞}, μ) in $\mathbb{R}^n \times \mathbb{R}^-$.
- (u^{∞},μ) is backwardly self-similar, which implies that
 - either u[∞] = 0 or u[∞] ≡ [-(p − 1)t]^{-1/p-1} (Giga-Kohn's Liouville theorem);
 - there exists a constant M > 0 such that $\mu = M\delta_0 \otimes dt$.

• Bubble tree convergence for u^{λ} ...

___ ▶

• How close is *u_i* to these rescaled bubbles? (Next order expansion or linearization around bubbles.)

- How close is *u_i* to these rescaled bubbles? (Next order expansion or linearization around bubbles.)
- Modulate parameters to get an optimal approximation:

$$\phi_i(t) := u_i(t) - \sum_k W_{\xi_{ik}(t),\lambda_{ik}(t)}.$$

This gives an orthogonal condition (note that the linearized equation has nontrivial kernels), which leads to reduction equations (here some ODEs) for the modulated parameters.

- How close is *u_i* to these rescaled bubbles? (Next order expansion or linearization around bubbles.)
- Modulate parameters to get an optimal approximation:

$$\phi_i(t) := u_i(t) - \sum_k W_{\xi_{ik}(t),\lambda_{ik}(t)}.$$

This gives an orthogonal condition (note that the linearized equation has nontrivial kernels), which leads to reduction equations (here some ODEs) for the modulated parameters.

- Because now we are looking at the next order term (i.e. the error function ϕ_i), we need to take care of
 - interaction between bubbles and the background;
 - interaction between different bubbles.

The naive linearization is not efficient:

$$\partial_t \phi - \Delta \phi = \rho W^{p-1}_{\xi(t),\lambda(t)} \phi.$$

э

The naive linearization is not efficient:

$$\partial_t \phi - \Delta \phi = \rho W^{p-1}_{\xi(t),\lambda(t)} \phi.$$

In recent years, Davila, Del Pino, Musso, Wei used the inner-outer gluing method to construct blow up solutions with bubbling behavior. Here we take a reverse view, using this decomposition to analyse the behavior of the error function,

$$\phi_i = \phi_{i,inn} + \phi_{i,out}.$$

The naive linearization is not efficient:

$$\partial_t \phi - \Delta \phi = \rho W^{p-1}_{\xi(t),\lambda(t)} \phi.$$

In recent years, Davila, Del Pino, Musso, Wei used the inner-outer gluing method to construct blow up solutions with bubbling behavior. Here we take a reverse view, using this decomposition to analyse the behavior of the error function,

$$\phi_i = \phi_{i,inn} + \phi_{i,out}.$$

- $\phi_{i,inn}$ satisfies the linearized equation around standard bubble;
- φ_{i,out} satisfies a parabolic equation with small Hardy potential (
 fast decay of bubbles);
- there is a closed loop feedback between the inner and outer components.

The naive linearization is not efficient:

$$\partial_t \phi - \Delta \phi = \rho W^{p-1}_{\xi(t),\lambda(t)} \phi.$$

In recent years, Davila, Del Pino, Musso, Wei used the inner-outer gluing method to construct blow up solutions with bubbling behavior. Here we take a reverse view, using this decomposition to analyse the behavior of the error function,

$$\phi_i = \phi_{i,inn} + \phi_{i,out}.$$

- $\phi_{i,inn}$ satisfies the linearized equation around standard bubble;
- $\phi_{i,out}$ satisfies a parabolic equation with small Hardy potential (\Leftarrow fast decay of bubbles);
- there is a closed loop feedback between the inner and outer components.

In the following we look at the one bubble case more closely.

Juncheng Wei (UBC)

Nonexistence of Type II Blow-up for Nonlinea

October 26, 2022 22 / 40

By Caffarelli-Gidas-Spruck, all entire positive solutions to the stationary equation are given by Aubin-Talenti bubbles

$$W_{\xi,\lambda}(x) := \left(rac{\lambda}{\lambda^2 + rac{|x-\xi|^2}{n(n-2)}}
ight)^{rac{n-2}{2}}, \qquad \lambda > 0, \quad \xi \in \mathbb{R}^n.$$

They have finite energy, which are always equal to

$$\Lambda := \int_{\mathbb{R}^n} |
abla W_{\xi,\lambda}|^2 = \int_{\mathbb{R}^n} W_{\xi,\lambda}^{p+1}.$$

Theorem (Non-degeneracy)

- (i) There exists one and only one negative eigenvalue for $-\Delta pW^{p-1}$, denoted by $-\mu_0$, for which there exists a unique (up to a constant), positive, radially symmetric and exponentially decaying eigenfunction Z_0 .
- (ii) There exist exactly (n + 1)-eigenfunctions Z_i in $L^{\infty}(\mathbb{R}^n)$ corresponding to eigenvalue 0, given by

$$\begin{cases} Z_i = \frac{\partial W}{\partial x_i}, & i = 1, \cdots, n, \\ Z_{n+1} = \frac{n-2}{2}W + x \cdot \nabla W. \end{cases}$$

Assume u_i is a sequence of smooth, positive solutions in Q_1 s.t. $|\nabla u_i|^2 dx dt \sim |\nabla u_{\infty}|^2 dx dt + \Lambda \delta_0 dt$,

where u_{∞} is a smooth solution, Λ is the energy of the standard bubble.

Assume u_i is a sequence of smooth, positive solutions in Q_1 s.t. $|\nabla u_i|^2 dx dt \sim |\nabla u_{\infty}|^2 dx dt + \Lambda \delta_0 dt$,

where u_{∞} is a smooth solution, Λ is the energy of the standard bubble.

Lemma (Blow up profile)

For any t, there exists a unique maxima point of $u_i(\cdot, t)$ in the interior of $B_1(0)$. Denote this point by $\xi_i^*(t)$ and let $\lambda_i^*(t) := u_i(\xi_i^*(t), t)^{-\frac{2}{n-2}}$.

$$u_i(x,t) \sim \lambda_i^*(t)^{-\frac{n-2}{2}} W\left(\frac{x-\xi_i^*(t)}{\lambda_i^*(t)}\right).$$

Lemma

For any t, there exists a unique $(a_i(t), \xi_i(t), \lambda_i(t)) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^+$ with $\frac{|\xi_i(t) - \xi_i^*(t)|}{\lambda_i(t)} + \left|\frac{\lambda_i(t)}{\lambda_i^*(t)} - 1\right| + \left|\frac{a_i(t)}{\lambda_i(t)}\right| = o(1),$ such that for each $k = 0, \dots, n + 1$, $\int_{B_1} \left[u_i(x, t) - W_{\xi_i(t), \lambda_i(t)}(x) - a_i(t)Z_{0,\xi_i(t), \lambda_i(t)}(x)\right] \times \eta\left(\frac{x - \xi_i(t)}{K\lambda_i(t)}\right) Z_{k,\xi_i(t), \lambda_i(t)}(x) dx = 0.$

Here we take a cut-off at $K\lambda_i(t)$ -scale and a scaling preserving the L^2 norm:

$$Z_{k,\xi,\lambda}(x) := \lambda^{-rac{n}{2}} Z_k\left(rac{x-\xi}{\lambda}
ight).$$

The error function ϕ_i satisfies

$$\partial_t \phi_i - \Delta \phi_i = p W_i^{p-1} \phi_i + \left(-a'_i + \mu_0 \frac{a_i}{\lambda_i^2}, \xi'_i, \lambda'_i \right) \cdot Z_i + \text{h.o.t.}$$
(3)

Together with the orthogonal condition

$$\int_{B_1} \phi_i(x,t) \eta\left(\frac{x-\xi_i(t)}{K\lambda_i(t)}\right) Z_{k,\xi_i(t),\lambda_i(t)}(x) dx = 0,$$

we can (and we need to) get at the same time

- equations for $\lambda'_i \dots \Longrightarrow$ blow up rate;
- a priori estimates on ϕ_i .

Keep K as the large constant used in the orthogonal decomposition. Take another constant L satisfying $1 \ll L \ll K$. Denote

$$\eta_{i,in}(x,t) := \eta\left(\frac{x-\xi_i(t)}{K\lambda_i(t)}\right), \quad \eta_{i,out}(x,t) := \eta\left(\frac{x-\xi_i(t)}{L\lambda_i(t)}\right).$$

Set

 $\phi_{i,in}(x,t) := \phi_i(x,t)\eta_{i,in}(x,t), \quad \phi_{out}(x,t) := \phi(x,t)\left[1 - \eta_{i,out}(x,t)\right].$

We analyse the inner and outer equations separately.

• Inner problem estimate:

 $\mathcal{I} \leq A\mathcal{O} + \text{higher order terms from scaling parameters etc.}$

where \mathcal{I} is a quantity measuring the inner component, \mathcal{O} is a quantity measuring the outer component.

• Outer problem estimate:

 $\mathcal{O} \leq \mathbf{BI} + \text{effect from initial-boundary value}$

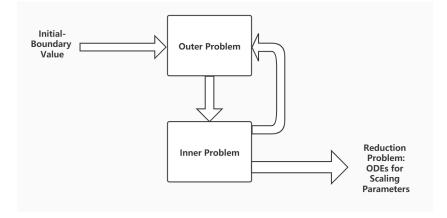
+ higher order terms from scaling parameters etc.

The inner-outer gluing mechanism works thanks to the fact that

A B < 1

This follows from a fast decay estimate away from the bubble domains, where we mainly rely on a Gaussian bound on heat kernels associated to a parabolic operator with small Hardy term

Feedback between inner and outer components



< 4 ∰ > <

31 / 40

э

Introduce an inner coordinate system around $\xi_i(t)$ by

$$y := rac{x-\xi_i(t)}{\lambda_i(t)}, \qquad au = au(t),$$

where

$$\tau'(t) = \lambda_i(t)^{-2}, \qquad \tau(0) = 0.$$

< 67 ▶

3

Introduce an inner coordinate system around $\xi_i(t)$ by

$$y := rac{x-\xi_i(t)}{\lambda_i(t)}, \qquad au = au(t),$$

where

$$\tau'(t) = \lambda_i(t)^{-2}, \qquad \tau(0) = 0.$$

Let
$$\varphi_{i,K}(y,\tau) := \lambda_i(t)^{\frac{n-2}{2}} \phi_i(x,t) \eta_{i,K}(x,t)$$
. Then

$$\begin{cases} \partial_\tau \varphi_K - \Delta_y \varphi_K = p W^{p-1} \varphi_K + \lambda^{-1} \left(-\dot{a} + \mu_0 a, \dot{\xi}, \dot{\lambda} \right) \cdot Z + E_K, \\ \int_{\mathbb{R}^n} \varphi_K(y,\tau) Z_i(y) dy = 0, \quad \forall \tau. \end{cases}$$

Non-degeneracy of the linearized operator \implies exponential decay in τ .

Outer problem

The outer component satisfies

$$\partial_t \phi_{i,out} - \Delta \phi_{i,out} = O\left(\frac{\delta}{|x - \xi_i(t)|^2}\right) \phi_{i,out} +$$

+ terms from inner component and λ'_i ...

33 / 40

where $\delta \ll$ 1, thanks to the fast decay away from bubble point.

The outer component satisfies

$$\partial_t \phi_{i,out} - \Delta \phi_{i,out} = O\left(\frac{\delta}{|x - \xi_i(t)|^2}\right) \phi_{i,out} +$$

+ terms from inner component and λ'_i ...

where $\delta \ll 1$, thanks to the fast decay away from bubble point. Key Heat Kernel Estimates: The heat kernel G(x, y; t, s) of the operator $\partial_t - \Delta - (\frac{\delta}{|x-\xi(t)|^2} + C) + \xi'(t)\nabla$ $G(x, y; t, s) \leq C(t-s)^{-\frac{n}{2}}e^{-c\frac{|x-y|^2}{t-s}}(1 + \frac{\sqrt{t-s}}{|x|})^{\gamma}(1 + \frac{\sqrt{t-s}}{|y|})^{\gamma}$

$$\gamma = \frac{n-2}{2} - \sqrt{(\frac{n-2}{2})^2 - 4\delta}$$

(Saloff-Coste (2012), Moschini-Tesei (2007))

Then $\phi_{i,out} = \phi_{i1} + \phi_{i2} + \phi_{i3} + \cdots$, where

- ϕ_{i1} solves the Cauchy-Dirichlet problem, and it is almost regular in the interior;
- ϕ_{i2} is determined by $\phi_{i,inn}$, ϕ_{i3} is determined by λ'_i ..., all enjoying a fast decay away from bubble point;

Then $\phi_{i,out} = \phi_{i1} + \phi_{i2} + \phi_{i3} + \cdots$, where

- ϕ_{i1} solves the Cauchy-Dirichlet problem, and it is almost regular in the interior;
- ϕ_{i2} is determined by $\phi_{i,inn}$, ϕ_{i3} is determined by λ'_i ..., all enjoying a fast decay away from bubble point;
- the last property gives us a small transmission coefficient (inner to outer), which closes our estimates on \(\phi_i\).

- ϕ_i are uniformly bounded in L^{∞} ...
- Linearzing local Pohozaev identity \Longrightarrow

$$\begin{cases} \lambda_i'(t) = c_1(n) \left[\phi_i(\xi_i(t), t) + h.o.t. \right] \lambda_i^{\frac{n-4}{2}}, \\ \xi_i'(t) = -c_2(n) \left[\nabla \phi_i(\xi_i(t), t) + h.o.t. \right] \lambda_i^{\frac{n-2}{2}} \end{cases}$$

Corollary

For positive solutions of (1), bubble towers are unstable.

Proof: By a rescaling, we can choose $u_{\infty} = W$. Then λ_i increases, which forces $\xi_i(t)$ to move to infinity, so bubble towers will be transformed into bubble clusters.

Setting: $\forall t$, there are exactly $N \ (\geq 2)$ bubbles located at $\xi_{ij}^*(t)$, with height $\lambda_{ij}^*(t)^{-\frac{n-2}{2}}$, satisfying for some large M, $|\xi_{ij}^*(t) - \xi_{ik}^*(t)| \geq M \max\left\{\lambda_{ij}^*(t) + \lambda_{ik}^*(t)\right\}.$ Setting: $\forall t$, there are exactly $N \ (\geq 2)$ bubbles located at $\xi_{ij}^*(t)$, with height $\lambda_{ij}^*(t)^{-\frac{n-2}{2}}$, satisfying for some large M, $|\xi_{ij}^*(t) - \xi_{ik}^*(t)| \geq M \max\left\{\lambda_{ij}^*(t) + \lambda_{ik}^*(t)\right\}.$

- We can still take localized orthogonal and inner-outer decomposition for each bubble.
- A new term describing the interaction between different bubbles: $\sum_{k \neq j} W_{ij}^{p-1} W_{ik}.$
- The interaction term is positive (~ repulsive force between bubbles).

Unstable mechanism in bubble clusters

A simple case: distances between different bubbles are comparable. Then

$$egin{split} &\left(\sum_{j=1}^{N}\lambda'_{ij}\geq -\mathcal{C}\left(\sum_{j=1}^{N}\lambda_{ij}
ight)^{rac{n-4}{2}}, \ &\left|\left|\sum_{j=1}^{N}\xi'_{ij}
ight|\lesssim \sum_{j=1}^{N}\lambda'_{ij}+\mathcal{C}\left(\sum_{j=1}^{N}\lambda_{ij}
ight)^{rac{n-4}{2}} \end{split}$$

• The location of bubbles doesn't move too much unless λ_{ij} changes a lot;

Unstable mechanism in bubble clusters

A simple case: distances between different bubbles are comparable. Then

$$egin{split} &\left| \sum_{j=1}^{N} \lambda'_{ij} \geq - \mathcal{C} \left(\sum_{j=1}^{N} \lambda_{ij}
ight)^{rac{n-4}{2}}, \ &\left| \left| \sum_{j=1}^{N} \xi'_{ij}
ight| \lesssim \sum_{j=1}^{N} \lambda'_{ij} + \mathcal{C} \left(\sum_{j=1}^{N} \lambda_{ij}
ight)^{rac{n-4}{2}} \end{split}$$

- The location of bubbles doesn't move too much unless λ_{ij} changes a lot;
- Inter-distances between different bubbles can't decrease too much unless λ_j has changed a lot;

Unstable mechanism in bubble clusters

A simple case: distances between different bubbles are comparable. Then

$$egin{split} & \left\{ \left. \sum_{j=1}^{N} \lambda'_{ij} \geq - \mathcal{C} \left(\sum_{j=1}^{N} \lambda_{ij}
ight)^{rac{n-4}{2}},
ight. \ & \left| \left. \left| \sum_{j=1}^{N} \xi'_{ij}
ight| \lesssim \sum_{j=1}^{N} \lambda'_{ij} + \mathcal{C} \left(\sum_{j=1}^{N} \lambda_{ij}
ight)^{rac{n-4}{2}} \end{split}
ight. \end{split}$$

- The location of bubbles doesn't move too much unless λ_{ij} changes a lot;
- Inter-distances between different bubbles can't decrease too much unless λ_j has changed a lot;
- Bubble clusters are unstable, too.

$$\lambda_{a} = \left(\sum_{j \in \mathcal{G}_{a}} \lambda_{j}^{2}\right)^{1/2}, \quad \xi_{a} = \frac{1}{|\mathcal{G}_{a}|} \sum_{j \in \mathcal{G}_{a}} \xi_{j}.$$

э

$$\lambda_{a} = \left(\sum_{j \in \mathcal{G}_{a}} \lambda_{j}^{2}\right)^{1/2}, \quad \xi_{a} = \frac{1}{|\mathcal{G}_{a}|} \sum_{j \in \mathcal{G}_{a}} \xi_{j}.$$

Similar relations between λ'_a and ξ'_a by an inductive analysis
 ⇒ Inter-distances between different subgroups can't decrease too much unless λ_a change a lot.

Conclusion: eventually there is only one bubble near the blow up time.

• If blow up is Type II \implies formation of bubbles (blow up analysis);

< 67 ▶ <

- If blow up is Type II \implies formation of bubbles (blow up analysis);
- Refined blow up analysis ⇒ Eventually no bubble tower and cluster, only one bubble forming as t → T⁻.

- If blow up is Type II \implies formation of bubbles (blow up analysis);
- Refined blow up analysis ⇒ Eventually no bubble tower and cluster, only one bubble forming as t → T⁻.

Applying all of the above analysis to

$$\begin{split} \widetilde{u}^t(y,s) &:= (T-t)^{\frac{n-2}{4}} u\left(\sqrt{T-t}y, T-ts\right), \quad \forall t \in (-1/4,0) \\ \text{ives an ODE for } \lambda(t) &= \min u(x,t)^{-\frac{2}{n-2}}: \\ & \left|\lambda'(t)\right| \lesssim (T-t)^{\frac{n-2}{4}} \lambda(t)^{\frac{n-4}{2}}. \\ & \Longrightarrow \lambda(t)^{-\frac{n-6}{2}} \lesssim (T-t)^{-\frac{n-6}{4}}, \end{split}$$

so the blow up is Type I.

g

Thanks for your attention!