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The singular Liouville equation

In this talk I will talk about the following simple equation defined in two
dimensional spaces:

∆v(x) + h(x)ev(x) = 4παδ0, in B1 ⊂ R2

where h is a positive smooth function and B1 is the unit ball, δ0 is a
Dirac mass placed at the origin and α > −1. Since

∆(
1

2π
log |x |) = δ0,

Setting u(x) = v(x)− 2α log |x | we have

∆u + |x |2αh(x)eu(x) = 0.
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Geometric background

Nirenberg problem: which smooth functions K on S2 are realized as the
Gauss curvature of a metric g on S2 pointwise conformal to the standard
round metric g0 of S2 ⊂ R3? For g = e2ug0 the equation for the Gauss
curvature h of g is

∆u + Ke2u = 1 (1)

so that the Nirenberg problem asks to characterize for which K is the
nonlinear PDE (1) solvable.

If in a neighborhood of one point, the metric can be written as

g = eh|z |2α|dz |2,

we say at this point it has a conical singularity of order α. The
corresponding PDE to study is

∆u + K (x)|x |2αeu = 0.
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Physical Background

Mean Field Equation:

∆gu + ρ(
h(x)eu∫
M
h(x)eu

− 1

|M|
) = 4π

∑
j

(δpj −
1

|M|
), on (M, g)

If the singular source is quantized, i.e. αj ∈ N, the Liouville equation has
close ties with Algebraic geometry, integrable system, number theory and
complex Monge-Ampere equations.

Pioneering work by Ding-Jost-Li-Wang (1997).

Chern-Simons-Higgs theory or electro-weak theory:
Y. Yang. Solitons in Field Theory and Nonlinear Analysis,
Springer-Verlag, New York, 2001
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Case 1. No singularity (α = 0)

∆u + h(x)eu = 0.∫
h(x)eu < +∞

0 < C1 ≤ h(x) ≤ C2 < +∞

Theorem: All bubbles are simple

� Brezis-Merle (CPDE91)

� Brezis-Li-Shafrir (IUMJ93)

� Li-Shafarir (IUMJ94)

� Li (CMP1995)
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classification of global solutions
Theorem
(Chen-Li (Duke94)) Let u be a solution of

∆u + eu = 0, in R2,

∫
R2

eu <∞,

then

u(x) = Uλ,x0 = log
eλ

(1 + eλ

8 |x − x0|2)2

for some λ ∈ R and x0 ∈ R2. (Liouville 1836)∫
R2 e

u = 8π. If v(y) = u(δy) + 2 log δ, then
∫
R2 e

v =
∫
R2 e

u.
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local blowup for regular equation
Let uk be a sequence of bubbling solutions of

∆uk + heuk = 0, in B1,

where h is a positive smooth function. If

1

max
x

uk(x) = uk(0)→∞, and max
K⊂⊂B1\{0}

uk ≤ C (K )

2 ∫
B1

heuk ≤ C ,

3

|uk(x)− uk(y)| ≤ C , ∀x , y ∈ ∂B1,

Theorem
(Y.Y.Li, (CMP95)) Suppose λk = uk(0) = max uk →∞, then

uk(x)− log
eλk

(1 + eλk h(0)
8 |x |2)2

= O(1), ∀x ∈ B1.
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Simple-vs-Non-simple blow-up

A blow-up is simple if after suitable rescaling

|uk − Uλk ,pk | ≤ C in B1

Equivalently
uk + 2 log |x | ≤ C in B1

Equivalently u satisfies spherical Harnack inequality around 0, which
implies that, after scaling, the sequence uk behaves as a single bubble
around the maximum point.
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Non-simple Blow-ups

∆uk + h(x)|x |2αeuk = 0, in B1.

A blow-up is non-simple if after suitable rescaling

|uk − Uλk ,pk | >> C in B1

Equivalently
max
B1

(uk + 2(1 + α) log |x |)→ +∞
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Applications: Uniform Estimate

If we consider a mean field equation on a surface, say

∆gu + ρ(
heu∫
M
heu
− 1) = 0. vol(M) = 1.

Since all bubbles are simple, the uniform estimate implies

1 Around each blowup point, there is only one bubble profile:
heuk ⇀ 8πδp

2 The height of bubbles are roughly the same.

3 The energy (
∫
M
heuk ) is concentrated around a few blowup points.

4 Further refined estimates are possible
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Application

Theorem
(C.C.Chen-C.S.Lin CPAM 03) Suppose u is a solution of the following
mean field equation on (M, g) (volume of M = 1)

∆gu + ρ(
heu∫

M
heudVg

− 1) = 0

If ρ > 0 is not a multiple of 8π and the genus of M is greater than 0,
then the equation has a solution.
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� if 8πN < ρ < 8π(N + 1) we have |u| < C

�

Tρ = −ρ∆−1
g (

heu∫
M
heu
− 1)

�

dρ := deg(I − Tρ,BR , 0)

is well defined for ρ 6= 8Nπ. (YY Li (2000))

Theorem
(Chen-Lin 02, 03)

dρ =


1 ρ < 8π,

(−χM+1)...(−χM+N)
N! 8Nπ < ρ < 8(N + 1)π.

χ(M) = 2− 2ge , the ge is the genus of the manifold, which is the
number of handles.
ρ = 8π, Lin-Wang (Annals Math 2008).
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Case 2. Non-quantized singularity (α 6∈ N)

∆u + h(x)|x |2αeu = 0.∫
h(x)|x |2αeu < +∞

α 6∈ N

Theorem: All bubbles are simple
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Classification Theorem

Theorem
(Prajapat-Tarantello 01) If α > −1 is not an integer, all solutions to

∆u + |x |2αeu = 0, R2,

∫
R2

|x |2αeu <∞,

are radially symmetric and can be written as

u(x) = Uλ = log
eλ

(1 + eλ

8(1+α)2 |x |2+2α)2

for some λ ∈ R. The total integration is∫
R2

|x |2αeu = 8π(1 + α).
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Non-quantized singularity

Theorem
(Bartolucci-Chen-Lin-Tarantello (CPDE 04)) Let uk be blowup solutions
to

∆uk + |x |2αheuk = 0, B1

with α > −1 and bounded oscillation on ∂B1. Suppose 0 is the only
blowup point in B1, then

heuk ⇀ 8π(1 + α)δ0

and if α is not a positive integer

uk(x)− log
euk (0)

(1 + h(0)
8(1+α)2 euk (0)|x |2α+2)2

= O(1) B1.

Chen-Lin (CPAM 07): Topological degree when α 6∈ N.
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Case 3. Quantized singularity (α ∈ N)

∆u + h(x)|x |2Neu = 0.∫
h(x)|x |2Neu < +∞

α = N ∈ N
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Classification Theorem

Theorem
(Prajapat-Tarantello 01) All solutions of

∆u + |x |2Neu = 0, in R2,

∫
R2

|x |2Neu <∞,

are of the form

u(z) = log
eλ

(1 + eλ

8(1+N)2 |zN+1 − ξ|2)2

for some ξ ∈ C.
∫
R2 |x |2Neu = 8π(1 + N).
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Non-simple-blow-ups

If we choose ξk → 0 and λk →∞ we can see non-simple blowup
solutions.
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Quantized singularity, Non-simple blowup

Let uk be a sequence of solutions to

∆uk + |x |2Nh(x)euk = 0, in B1 ⊂ R2,

where h > 0 is smooth. Suppose 0 is the only blowup point and N is a
positive integer, uk has bounded oscillation on ∂B1 and∫
B1
|x |2Nheuk < C .

Theorem
(Kuo-Lin (16), Bartolucci-Tarantello (18)) For N ∈ N, if uk has a
non-simple blowup point at 0:

max
x∈B1

uk(x) + 2(1 + N) log |x | → ∞.

uk has exactly N + 1 local maximum points evenly distributed around 0.
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Related questions

� How to analyze the non-simple blow-ups?

� Is it possible to approximate bubbling solutions by global solutions?

� Are there vanishing theorems? Especially the vanishing estimate of
first and second derivatives of coefficient functions?
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Vanishing Theorems

Theorem
(Wei-Zhang, (2022 preprint, 2022, 2021)) Let uk be non-simple blowup
solutions to

∆uk + |x |2Nhk(x)euk = 0, in B1 ⊂ R2,

under the usual assumptions. Then along a sub-sequence

lim
k→∞

∇hk(0) = 0.

lim
k→∞

∆hk(0) = 0.
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More Vanishing Theorems when N = 1

Theorem
(D’Aprile-Wei-Zhang ) Let uk be non-simple blowup solutions

∆uk + hk |x |2euk = 0 in B1

Then
∇hk(0) = o(1)

∂2
xxhk(0) = o(1), ∂2

xyhk(0) = ∂2
yxhk(0) = o(1), ∂2

yyhk(0) = o(1)

In other words, hk vanishes all up to second order:

∇αhk(0) = o(1), |α| ≤ 2
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Conjecture on Vanishing Theorems when N ≥ 2

Conjecture: Let uk be non-simple blowup solutions

∆uk + hk |x |2Neuk = 0 in B1

Then
∇αhk(0) = o(1), |α| ≤ N + 1

Non-simple blow-ups do exist: D’Aprile (JMP 2022)

∆u + λV (x)|x |2Neu = 0

V (x) = V (zN+1)
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Non-existence theorems

Surprisingly in many general situations, non-simple blow-up does not
happen. D’Aprile-Wei studied the following classical Liouville equation

∆u + λeu =
M∑
i=1

4πγiδpi in Ω ⊂ R2, (2)

u = 0 on ∂Ω,

where Ω is an open and bounded subset of R2, p1, ..., pM ∈ Ω, ∂Ω is
smooth, λ > 0 and γi > −1.
Existence of multiple bubbling solutions

� γi = 0 del Pino-Kowalczyk-Musso (2003)

� γi 6= 0 D’Aprile (2013)
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Nonsimple blow-ups?

D’Aprile-Wei (JFA2020): Let Ω = B1 and p1 = 0.

∆u + λeu = 4πNλδ0 in B1, (3)

u = 0 on ∂B1,

Then non-simple blow-ups exist if

Nλ − N ∼ Cλ log2 λ

Conjecture: When Ω = B1,Nλ = N, there are no non-simple blow-up
phenomena (3).
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Theorem
(D’Aprile-Wei-Zhang-22) Let uk be a sequence of blowup solutions of

∆u + λeu =
M∑
i=1

4πγiδpi in Ω ⊂ R2, (4)

u = 0 on ∂Ω,

with parameter λk that satisfies
∫

Ω
λke

uk < C . Then uk is simple around
any blowup point in Ω.
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Battaglia (PAMS2019): If Ω is simply connected and there is only one
singularity, then

λ

∫
Ω

eu ≤ C

As a result we have completely solved D’Aprile-Wei conjecture:
Corollary: When Ω = B1, γi = N, there are no non-simple blow-up
phenomena (2).

∆u + λeu = 4πNδ0 in B1, (5)

u = 0 on ∂B1,
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Non-simple blow-ups are lonely

∆uk + euk =
M∑
i=1

4πγiδpi in Ω (6)

∫
Ω

euk ≤ C (7)

and
|uk(x)− uk(y)| ≤ C , ∀x , y ∈ ∂Ω. (8)

Theorem
(D’Aprile-Wei-Zhang-22) Let uk be a sequence of blowup solutions of (6)
such that (7) and (8) hold. If there are at least two blowup points in Ω,
each blowup point is simple.
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Summary

∆uk + hk |x |2Neuk = 0

� Vanishing Theorems

∇hk(0) = 0,∆hk(0) = 0

∇hk = 0,D2hk = 0 (N = 1)

� 2. No-simple blow-ups does not exist

∆u + λeu = 4π
M∑
i=1

γiδpi in Ω; u = 0 on ∂Ω

� 3. Non-simple blow-ups are lonely
If there are two blow-ups then non-simple blow-ups do not exist.
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Local maximum points

Let pk0 , ..., pkN be the N + 1 local maximums of uk

∆uk + |x |2Nhk(x)euk = 0, in B1.

Let
δk = |pk0 |, µk = uk(pk0 ) + 2(1 + N) log δk .
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Trivial Observations

� The study of blowup solutions looks like that of a single Liouville
equation near each local maximum point.

� The relations between these local maximums plays a crucial role.

� The blowup solutions look almost like a harmonic function away
from the N + 1 local maximums.

� If there is a perturbation on a global solution, there is a
corresponding perturbation on each of its N + 1 local maximumus:

Vk(x) = log
eµk

(1 + eµk
8(N+1)2 |xN+1 − (1 + pk)|2)2

.
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Difficulty and Problem

� The main difficulty: a priori we don’t have any relation between

δk (the distance between small bubbles)

and

µk = uk(pk0 ) + 2(1 + N) log δk .(the height of bubbles)

In fact it should be no relation at all, from the ground state solution:

U(z) = log
eλ

(1 + eλ

8(1+N)2 |zN+1 − ξ|2)2

� The main problem: how do different bubbles talk to each other?
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Stage 1: First Vanishing Theorems

Theorem
(Wei-Zhang, (Proc. LMS 21)) Let φk be the harmonic function that
eliminates the oscillation of uk on ∂B1, then

|∇(log hk + φk)(0)| = O(δ−1
k µke

−µk ) + O(δk).

∆(log hk)(0) = O(δ−2
k µke

−µk ) + O(δk), N ≥ 2.

Obviously we don’t know if ∇(log hk + φk)(0) = o(1) when

δk ≤ Cµke
−µk . We cannot tell if ∆hk(0) = o(1) if δk ≤ Cµ

1
2

k e
−µk/2 even

for N ≥ 2. The conclusion for N = 1 is even weaker.
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Theorem
(Wei-Zhang 21) If δk ≤ Ce−µk/4, then there exists a sequence of global
solutions Uk such that

|uk(x)− Uk(x)| ≤ C , x ∈ B1.

For |x | ∼ 1, uk(x) = −uk(pk0 ) + O(1).
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Linearized equation

Let U be the solution of

∆U + eU = 0, in R2,

∫
R2

eU <∞,

with maxx U(x) = 1 = U(0). By Chen-Li, U(x) = log 1
(1+ 1

8 |x|2)2 . Let φ be

a solution of
∆φ+ eUφ = 0, in R2

with φ(x) = o(|x |) at infinity. Then φ(x) = c0φ0 + c1φ1 + c2φ2 where

φ0 =
1− 1

8 |x |
2

1 + 1
8 |x |2

, φ1(x) =
x1

1 + 1
8 |x |2

, φ2 =
x2

1 + 1
8 |x |2

.
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key ideas of the proof

Step one: A lot of Pohozaev identities.

� A Pohozaev identity for ∆uk + hke
uk = 0 on Bσ is∫

Bσ

(∇hk ·x)euk =

∫
∂Bσ

(
σ

2
(|∂νuk |2−|∂τuk |2)+σhke

uk +2∂νuk

)
dS .

�

δk∇(log hk)(δkQ
k
l ) + 2N

Qk
l

|Qk
l |2

+∇φl,k(Qk
l ) = O(µke

−µk ).

�

∇φkl (Qk
l ) = −4

∑
m 6=l

Qk
l − Qk

m

|Qk
l − Qk

m|2
+ O(δ2

k) + O(µke
−µk ).
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� Denoting Qk
l = e i

2πl
N+1 (1 + mk

l ) and use this in the long computation
of each Pohozaev identity, we have

� 
mk

1

mk
2

...
mk

N

 = A−1δk∇̄(log hk)(0)


e iβ1

e iβ2

...
e iβN

+ O(δ2
k) + O(µke

−µk )

where βl = 2πl/(N + 1),l = 0, ...,N.

A =


D −d1 ... −dN−1

−d1 D ... −dN−2

...
... ...

...
−dN−1 −dN−2 ... D


where

di =
1

sin2( iπ
N+1 )

, i = 1, ...,N, D = d1 + ...+ dN .
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key ideas

1.Let vk(y) = uk(δky) + 2 log δk . Since δk is the distance from a local
maximum of vk to the origin, and ∆ is invariant under rotation of
coordinates, we can assume that vk has a local maximum at e1. Then we
use a global solution Vk that agrees with vk at e1:

∆Vk + hk(δke1)|y |2NeVk = 0.

Vk(y) = log
eµk

(1 + eµk hk (δke1)
8(1+N)2 |yN+1 − e1|2)2

.

Vk has N + 1 local maximums located at exactly e2πil/(N+1) for
l = 0, ...,N.
Let wk = vk − Vk . Then wk is very small near e1.
2. By Harnack inequality, this smallness will be passed to control all the
regions away from the N other bubbling disks.
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key ideas of the proof

3. The difference between the Pohozaev identities. Let Ωs be the region
about Qs . Then the Pohozaev identity for vk in this region is∫

Ωs

∂ξ(|y |2Nhk(δky))evk −
∫
∂Ωs

evk |y |2Nhk(δky)(ξ · ν)

=

∫
∂Ωs

(∂νvk∂ξvk −
1

2
|∇vk |2(ξ · ν))dS .

∫
Ωs

∂ξ(|y |2Nhk(δke1))eVk −
∫
∂Ωs

eVk |y |2Nhk(δke1)(ξ · ν)

=

∫
∂Ωs

(∂νVk∂ξVk −
1

2
|∇Vk |2(ξ · ν))dS .
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Main ideas

Using these in the computation of the N + 1 Pohozaev identities we have

∇(log hk + φk)(0) = O(δ−1
k µke

−µk ) + O(δk) N ≥ 1

∆ log hk(0) = O(δ−2
k µke

−µk ) + O(δk), N ≥ 2.

and a corresponding estimate for N = 1.
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Stage 2, better first order estimates

Key ideas to prove the vanishing rate of ∇hk(0) (for simplicity φk is
ignored). Let wk = vk − Vk , then we have this key estimate:

|wk(y)| ≤ C (|∇hk(0)|δk + δ2
kµk).

Only need to consider δk ≤ o(εk). The equation of wk can be written as

∆wk + hk(δky)|y |2Neξkwk = δk∇hk(δke1) · (e1 − y)|y |2NeVk + E

where
E = O(δ2

k)|y − e1|2|y |2NeVk .

It is important to observe that the right hand side is zero when y = e1.
The analysis is first carried out near e1 and pass to other regions by
Harnack inequality
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First order vanishing estimate

Let Mk = max |wk | and let w̃k = wk/Mk . It is crucial to observe that we
still have

w̃k(e1) = |∇w̃k(e1)| = 0.

This important information will make us obtain

w̃k(e1 + εkz) ≤ Cεσk (1 + |z |)σ, |z | < ε−1
k

where εk = e−µk/2 and σ ∈ (0, 1). Because of the smallness of
|Qk

s − e iβs |, w̃k is supposed to converge to a kernel of

∆φ+ eUφ = 0

around each Qk
s . The same argument can also be applied around each

Qs .
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At Qk
s , vk is very close to another global solution V k

s which agrees with
vk at Qk

s and ∇V k
s (Qk

s ) = 0. The expression of V k
s , which satisfies

∆V k
s + hk(δkQ

k
s )|y |2NeV

k
s = 0, in R2,

is

V k
s (y) = log

eµ
k
s

(1 +
eµ

k
s hk (δkQk

s )
8(1+N)2 |yN+1 − (e1 + pks )|2)2

.

The function w̃k is supposed to converge

c1

1− 1
8 |y |

2

1 + 1
8 |y |2

+ c2
y1

1 + 1
8 |y |2

+ c3
y2

1 + 1
8 |y |2

.

All these coefficients are determined by V k
s − Vk . It is standard to prove

c1 = 0 (this implies that the differences on the magnitudes don’t matter
too much). To prove c2 and c3 zero we need to use ps .
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If we take Qk
s as a base and consider the kernel function around Qk

l , then
the limit function is supposed to be

c1,s,t
y1

1 + 1
8 |y |2

+ c2,s,t
y2

1 + 1
8 |y |2

.

After some computations we have

c1,s,t = lim
k→∞

|pks − pkt |
2(N + 1)Mkεk

cos(
2πs

N + 1
+ θst).

c2,s,t = lim
k→∞

|pks − pkt |
2(N + 1)Mkεk

sin(
2πs

N + 1
+ θst).

where pks − pkt = |pks − pkt |e iθts . If limit has to exist, pk1 ,....,pkN have to
satisfy certain relations, which will lead to a contradiction if we observe
the second order terms.
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After proving
|wk(y)| ≤ Cδk |∇hk(0)|+ Cδ2

kµk ,

we use this estimate in the computation of Pohozaev identities around
each Qk

s to obtain
|∇hk(0)| ≤ Cδkµk .
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Stage 3: Laplace Vanishing Theorem

The first order estimate leads to a better estimate on the difference
function:

|wk(y)| ≤ Cδ2
kµk ,

Then we use Gluck’s estimate for single Liouville equation around each
Qk

s (s 6= 1) to obtain the vanishing rate for ∆hk(0). Recall the expansion
of a blowup solution for a single Liouville equation:

uk(x) = log
euk (0)

(1 + h(0)
8 euk (0)|x − qk |2)2

+ ψk

−8
(∆ log h)(0)

h(0)
ε2
k(log(2 + ε−1

k |x |))2 + O(ε2
k log ε−1

k )
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Main Idea for the proof of D’Aprile-Wei conjecture

Theorem (D’Aprile-Wei-Zhang): All blow-ups for the following problem is
simple:

−∆u = λeu − 4π
M∑
i=1

γiδpi in Ω

λ

∫
Ω

eu < C

u = 0 on ∂Ω

We found that when non-simple blowup happens, the oscillation on the
boundary has to be very special. This is the main reason that we can
prove the conjecture in a very general setting. Basically, as long as we
know the behavior of the blowup solutions on the boundary and it is
different from that of a non-simple blowup global solutions, we can
capture this difference and say that non-simple blowup cannot happen.
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D’Aprile-Wei conjecture. Key Theorem

Basic set-up: Let uk be a sequence of solutions of the following equation
that blows up at 0:

∆uk + |x |2Neuk = 0, in B1 (9)

Suppose the oscillation of uk on the boundary of B1 is finite:

|uk(x)− uk(y)| ≤ C , ∀x , y ∈ ∂B1 (10)

for some C > 0 independent of k , and there is a uniform bound on the
integration of |x |2Neuk : ∫

B1

|x |2Neuk < C . (11)
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D’Aprile-Wei-Conjecture, key theorem

Set

Φk(x) = uk(x)− 1

2π

∫
∂B1

uk , x ∈ B1,

and let Φ be the limit of Φk over any fixed compact subset of B1. Then
our assumption of Φk is

Either Φ 6= 0 or Φk ≡ 0. (12)

Theorem
Let 0 be the only blowup point of uk in B1, which has a uniformly
bounded integration. Suppose (12) holds. Then uk is a simple blowup
sequence:

uk(x) + 2(1 + N) log |x | ≤ C

for some C > 0.
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key-ideas

Let vk be the scaled uk with pk0 = e1:

vk(y) = uk(δkye
iθk ) + 2(N + 1) log δk , |y | < δ−1

k .

Other local maximums are very close to e
2iπl
N+1 for l = 1, ...,N. Let

Vk(x) = log
eµ̄k

(1 + eµ̄k
8(1+N)2 |yN+1 − e1|2)2

.

that agrees with vk at e1 as a common local maximum. Now we use the
following expansion of Vk for |y | = Lk (Lk = δ−1

k )

Vk(y) = −µ̄k + 2 log(8(N + 1)2)− 4(N + 1) log Lk +
2

L2N+2
k

+
4 cos((N + 1)θ)

LN+1
k

+
4

L2N+2
k

cos((2N + 2)θ)

+ O(L−3N−3
k ) + O(e−µ̄kL−2N−2

k ).
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key ideas

The oscillating part of Vk is mainly

4 cos((N + 1)θ)δN+1
k + 4δ2N+2

k cos((2N + 2)θ).

based on this we set φv ,k(δk ·) to be the harmonic function that is equal
to 0 at 0 and represents the oscillation of Vk ∂Ωk :

φv ,k(δky) = 4δ2N+2
k rN+1 cos((N+1)θ)+4δ4N+4

k r2N+2 cos((2N+2)θ)+ ....

Recall that the oscillation of vk is Φk(δk ·). Thus if we set

φ0,k(y) = Φk(δky)− φv ,k(δky)

and v0,k = vk − φ0,k , then v0,k − Vk is a constant on the boundary, but
the equation of v0,k is

∆v0,k + h0,k |y |2Nev0,k = 0, in Ωk

where h0,k = eφ0,k .

Juncheng Wei



key-ideas

Because of the difference on the oscillations, we can prove that

∇h0,k(e
2πis
N+1 ) is different from zero to some extent (based on the Fourier

expansions of these harmonic functions):

Lemma
There exist an integer L > 0 ,δ∗k ∈ (δLk , δk) an integer 0 ≤ s ≤ N such
that

∇h0,k(e
2πis
N+1 )/δ∗k 6= 0.

This lemma eventually leads to a contradiction: If non-simple blowup
does exist, and vk is so close to a global solution Vk , there is no way for
v0,k to have a coefficient function different from 1. This part of the proof
is similar to that of the vanishing theorems: two functions are extremely
close near one local maximum, using Harnack this closeness can be
passed to the neighborhood of other local maximums, then Pohozaev
identities say this is not possible.
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Application to Mean Field Equation

Corollary
(Wei-Zhang-22) Let u be a solution of

∆gu + ρ(
heu∫
M
heu
− 1) = 4π

d∑
j=1

αj(δpj − 1).

If all αj ∈ N and

∆(log h)(pj)− 2K (pj) 6∈ 4πN, j = 1, .., d .

Then any blowup solutions uk satisfy a spherical Harnack inequality
around any blowup point.
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Application to Toda systems

∆u1 + 2ρ1(
h1e

u1∫
M
h1eu1

− 1)− ρ2(
h2e

u2∫
M
h2eu2

− 1) = 0,

∆u2 − ρ1(
h1e

u1∫
M
h1eu1

− 1) + 2ρ2(
h2e

u2∫
M
h2eu2

− 1) = 0,

Theorem
(Lin-Wei-Yang-Zhang 18 APDE) For
(ρ1, ρ2) ∈ (4πm, 4π(m + 1))× (4πn, 4π(n + 1)) (n,m ∈ N) and
u = (u1, u2) in certain Sobolev space, the following a priori estimate holds

|ui | ≤ C , i = 1, 2.

This theorem leads to a huge degree counting program for Toda systems.
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Theorem
(Wei-Wu-Zhang (JLMS23)) If uk = (uk1 , u

k
2 ) is a sequence of blowup

solutions of SU(3) Toda system corresponding to (ρk1 , ρ
k
2)→ (4πm, 4πn),

if one blowup point is a fully bubbling blowup point and

∆g log hki (x)− 2K (x) 6∈ 4πZ, i = 1, 2.

then the spherical Harnack inequality holds around each blowup point.
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Applications

1 Toda system:

∆u1 + 2ρ1(
h1e

u1∫
M
h1eu1

− 1)− ρ2(
h2e

u2∫
M
h2eu2

− 1) = 0

∆u2 − ρ1(
h1e

u1∫
M
h1eu1

− 1) + 2ρ2(
h2e

u2∫
M
h2eu2

− 1) = 0.

2 Liouville system: Let A = (aij)n×n be a symmetric, non-negative
matrix:

∆u1 + a11ρ1(
h1e

u1∫
M
h1eu1

− 1) + a12ρ2(
h2e

u2∫
M
h2eu2

− 1) = 0

∆u2 + a12ρ1(
h1e

u1∫
M
h1eu1

− 1) + a22ρ2(
h2e

u2∫
M
h2eu2

− 1) = 0.

Juncheng Wei



More Applications

1 Fourth order equation: Q curvature equation on 4−manifold:

Pgu + 2Qg = 2he4u − 8π2γ(δq −
1

volg (M)
)

Pgφ = ∆2
gφ+ divg ((

2

3
Rgg − 2Ricg )∇φ)

Qg = − 1

12
(∆gRg − R2

g + 2|Ricg |2)

Classification theorems were proved for

∆2u = 6e4u − 8π2γδ0 in R4,

∫
R4

e4u <∞.

If γ = 0 the classification theorem was proved by Chang-shou Lin,
Wei-Xu. For −1 < γ < 0, the classification was done by
Ahmedou-Wu-Zhang (22).

2 Many other equations and situations.
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