Non-simple Blowup solutions of Liouville equations with quantized singularities
 joint work with Lei Zhang and Teresa D'Aprile

Juncheng Wei
University of British Columbia

UFPB's Webinar on
Partial Differential Equations and Geometric Analysis
March 21, 2023

The singular Liouville equation

In this talk I will talk about the following simple equation defined in two dimensional spaces:

$$
\Delta v(x)+h(x) e^{v(x)}=4 \pi \alpha \delta_{0}, \quad \text { in } \quad B_{1} \subset \mathbb{R}^{2}
$$

where h is a positive smooth function and B_{1} is the unit ball, δ_{0} is a Dirac mass placed at the origin and $\alpha>-1$. Since

$$
\Delta\left(\frac{1}{2 \pi} \log |x|\right)=\delta_{0}
$$

Setting $u(x)=v(x)-2 \alpha \log |x|$ we have

$$
\Delta u+|x|^{2 \alpha} h(x) e^{u(x)}=0 .
$$

Geometric background

Nirenberg problem: which smooth functions K on \mathbb{S}^{2} are realized as the Gauss curvature of a metric g on \mathbb{S}^{2} pointwise conformal to the standard round metric g_{0} of $\mathbb{S}^{2} \subset \mathbb{R}^{3}$? For $g=e^{2 u} g_{0}$ the equation for the Gauss curvature h of g is

$$
\begin{equation*}
\Delta u+K e^{2 u}=1 \tag{1}
\end{equation*}
$$

so that the Nirenberg problem asks to characterize for which K is the nonlinear PDE (1) solvable.

If in a neighborhood of one point, the metric can be written as

$$
g=e^{h}|z|^{2 \alpha}|d z|^{2}
$$

we say at this point it has a conical singularity of order α. The corresponding PDE to study is

$$
\Delta u+K(x)|x|^{2 \alpha} e^{u}=0
$$

Physical Background

Mean Field Equation:

$$
\Delta_{g} u+\rho\left(\frac{h(x) e^{u}}{\int_{M} h(x) e^{u}}-\frac{1}{|M|}\right)=4 \pi \sum_{j}\left(\delta_{p_{j}}-\frac{1}{|M|}\right), \text { on }(M, g)
$$

If the singular source is quantized, i.e. $\alpha_{j} \in \mathbf{N}$, the Liouville equation has close ties with Algebraic geometry, integrable system, number theory and complex Monge-Ampere equations.

Pioneering work by Ding-Jost-Li-Wang (1997).
Chern-Simons-Higgs theory or electro-weak theory:
Y. Yang. Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001

Case 1. No singularity $(\alpha=0)$

$$
\begin{gathered}
\Delta u+h(x) e^{u}=0 \\
\int h(x) e^{u}<+\infty \\
0<C_{1} \leq h(x) \leq C_{2}<+\infty
\end{gathered}
$$

Theorem: All bubbles are simple

- Brezis-Merle (CPDE91)
- Brezis-Li-Shafrir (IUMJ93)
- Li-Shafarir (IUMJ94)
- Li (CMP1995)

classification of global solutions

Theorem
(Chen-Li (Duke94)) Let u be a solution of

$$
\Delta u+e^{u}=0, \quad \text { in } \quad \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}} e^{u}<\infty
$$

then

$$
u(x)=U_{\lambda, x_{0}}=\log \frac{e^{\lambda}}{\left(1+\frac{e^{\lambda}}{8}\left|x-x_{0}\right|^{2}\right)^{2}}
$$

for some $\lambda \in \mathbb{R}$ and $x_{0} \in \mathbb{R}^{2}$. (Liouville 1836)
$\int_{\mathbb{R}^{2}} e^{u}=8 \pi$. If $v(y)=u(\delta y)+2 \log \delta$, then $\int_{\mathbb{R}^{2}} e^{v}=\int_{\mathbb{R}^{2}} e^{u}$.

local blowup for regular equation

Let u_{k} be a sequence of bubbling solutions of

$$
\Delta u_{k}+h e^{u_{k}}=0, \quad \text { in } \quad B_{1}
$$

where h is a positive smooth function. If
(1)

$$
\max _{x} u_{k}(x)=u_{k}(0) \rightarrow \infty, \quad \text { and } \quad \max _{K \subset \subset B_{1} \backslash\{0\}} u_{k} \leq C(K)
$$

(2)

$$
\int_{B_{1}} h e^{u_{k}} \leq C
$$

(3)

$$
\left|u_{k}(x)-u_{k}(y)\right| \leq C, \quad \forall x, y \in \partial B_{1}
$$

Theorem
(Y.Y.Li, (CMP95)) Suppose $\lambda_{k}=u_{k}(0)=\max u_{k} \rightarrow \infty$, then

$$
u_{k}(x)-\log \frac{e^{\lambda_{k}}}{\left(1+\frac{e^{\lambda_{k} h(0)}}{8}|x|^{2}\right)^{2}}=O(1), \quad \forall x \in B_{1}
$$

Simple-vs-Non-simple blow-up

A blow-up is simple if after suitable rescaling

$$
\left|u_{k}-U_{\lambda_{k}, p_{k}}\right| \leq C \text { in } B_{1}
$$

Equivalently

$$
u_{k}+2 \log |x| \leq C \text { in } B_{1}
$$

Equivalently u satisfies spherical Harnack inequality around 0, which implies that, after scaling, the sequence u_{k} behaves as a single bubble around the maximum point.

Non-simple Blow-ups

$$
\Delta u_{k}+h(x)|x|^{2 \alpha} e^{u_{k}}=0, \quad \text { in } \quad B_{1} .
$$

A blow-up is non-simple if after suitable rescaling

$$
\left|u_{k}-U_{\lambda_{k}, p_{k}}\right| \gg C \text { in } B_{1}
$$

Equivalently

$$
\max _{B_{1}}\left(u_{k}+2(1+\alpha) \log |x|\right) \rightarrow+\infty
$$

Applications: Uniform Estimate

If we consider a mean field equation on a surface, say

$$
\Delta_{g} u+\rho\left(\frac{h e^{u}}{\int_{M} h e^{u}}-1\right)=0 . \quad \operatorname{vol}(M)=1
$$

Since all bubbles are simple, the uniform estimate implies
(1) Around each blowup point, there is only one bubble profile: $h e_{k}^{u} \rightharpoonup 8 \pi \delta_{p}$
(2) The height of bubbles are roughly the same.
(3) The energy $\left(\int_{M} h e^{u_{k}}\right)$ is concentrated around a few blowup points.
(4) Further refined estimates are possible

Application

Theorem
(C.C.Chen-C.S.Lin CPAM 03) Suppose u is a solution of the following mean field equation on (M, g) (volume of $M=1$)

$$
\Delta_{g} u+\rho\left(\frac{h e^{u}}{\int_{M} h e^{u} d V_{g}}-1\right)=0
$$

If $\rho>0$ is not a multiple of 8π and the genus of M is greater than 0 , then the equation has a solution.

- if $8 \pi N<\rho<8 \pi(N+1)$ we have $|u|<C$

$$
\begin{gathered}
T_{\rho}=-\rho \Delta_{g}^{-1}\left(\frac{h e^{u}}{\int_{M} h e^{u}}-1\right) \\
d_{\rho}:=\operatorname{deg}\left(I-T_{\rho}, B_{R}, 0\right)
\end{gathered}
$$

is well defined for $\rho \neq 8 N \pi$. (YY Li (2000))
Theorem
(Chen-Lin 02, 03)

$$
d_{\rho}=\left\{\begin{array}{l}
1 \quad \rho<8 \pi \\
\frac{\left(-\chi_{M}+1\right) \ldots\left(-\chi_{M}+N\right)}{N!} \quad 8 N \pi<\rho<8(N+1) \pi .
\end{array}\right.
$$

$\chi(M)=2-2 g_{e}$, the g_{e} is the genus of the manifold, which is the number of handles.
$\rho=8 \pi$, Lin-Wang (Annals Math 2008).

Case 2. Non-quantized singularity $(\alpha \notin \mathbb{N})$

$$
\begin{gathered}
\Delta u+h(x)|x|^{2 \alpha} e^{u}=0 \\
\int h(x)|x|^{2 \alpha} e^{u}<+\infty \\
\alpha \notin \mathbb{N}
\end{gathered}
$$

Theorem: All bubbles are simple

Classification Theorem

Theorem
(Prajapat-Tarantello 01) If $\alpha>-1$ is not an integer, all solutions to

$$
\Delta u+|x|^{2 \alpha} e^{u}=0, \quad \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}}|x|^{2 \alpha} e^{u}<\infty,
$$

are radially symmetric and can be written as

$$
u(x)=U_{\lambda}=\log \frac{e^{\lambda}}{\left(1+\frac{e^{\lambda}}{8(1+\alpha)^{2}}|x|^{2+2 \alpha}\right)^{2}}
$$

for some $\lambda \in \mathbb{R}$. The total integration is

$$
\int_{\mathbb{R}^{2}}|x|^{2 \alpha} e^{u}=8 \pi(1+\alpha)
$$

Non-quantized singularity

Theorem
(Bartolucci-Chen-Lin-Tarantello (CPDE 04)) Let u_{k} be blowup solutions to

$$
\Delta u_{k}+|x|^{2 \alpha} h e^{u_{k}}=0, \quad B_{1}
$$

with $\alpha>-1$ and bounded oscillation on ∂B_{1}. Suppose 0 is the only blowup point in B_{1}, then

$$
h e^{u_{k}} \rightharpoonup 8 \pi(1+\alpha) \delta_{0}
$$

and if α is not a positive integer

$$
u_{k}(x)-\log \frac{e^{u_{k}(0)}}{\left(1+\frac{h(0)}{8(1+\alpha)^{2}} e^{u_{k}(0)}|x|^{2 \alpha+2}\right)^{2}}=O(1) \quad B_{1} .
$$

Chen-Lin (CPAM 07): Topological degree when $\alpha \notin N$.

Case 3. Quantized singularity $(\alpha \in \mathbb{N})$

$$
\begin{gathered}
\Delta u+h(x)|x|^{2 N} e^{u}=0 \\
\int h(x)|x|^{2 N} e^{u}<+\infty \\
\alpha=N \in \mathbb{N}
\end{gathered}
$$

Classification Theorem

Theorem
(Prajapat-Tarantello 01) All solutions of

$$
\Delta u+|x|^{2 N} e^{u}=0, \quad \text { in } \quad \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}}|x|^{2 N} e^{u}<\infty
$$

are of the form

$$
u(z)=\log \frac{e^{\lambda}}{\left(1+\frac{e^{\lambda}}{8(1+N)^{2}}\left|z^{N+1}-\xi\right|^{2}\right)^{2}}
$$

for some $\xi \in \mathbb{C} . \int_{\mathbb{R}^{2}}|x|^{2 N} e^{u}=8 \pi(1+N)$.

Non-simple-blow-ups

If we choose $\xi_{k} \rightarrow 0$ and $\lambda_{k} \rightarrow \infty$ we can see non-simple blowup solutions.

Quantized singularity, Non-simple blowup

Let u_{k} be a sequence of solutions to

$$
\Delta u_{k}+|x|^{2 N} h(x) e^{u_{k}}=0, \quad \text { in } \quad B_{1} \subset \mathbb{R}^{2}
$$

where $h>0$ is smooth. Suppose 0 is the only blowup point and N is a positive integer, u_{k} has bounded oscillation on ∂B_{1} and $\int_{B_{1}}|x|^{2 N} h e^{U_{k}}<C$.

Theorem

(Kuo-Lin (16), Bartolucci-Tarantello (18)) For $N \in \mathbb{N}$, if u_{k} has a non-simple blowup point at 0 :

$$
\max _{x \in B_{1}} u_{k}(x)+2(1+N) \log |x| \rightarrow \infty .
$$

u_{k} has exactly $N+1$ local maximum points evenly distributed around 0 .

$$
N=6
$$

Related questions

- How to analyze the non-simple blow-ups?

Related questions

- How to analyze the non-simple blow-ups?
- Is it possible to approximate bubbling solutions by global solutions?

Related questions

- How to analyze the non-simple blow-ups?
- Is it possible to approximate bubbling solutions by global solutions?
- Are there vanishing theorems? Especially the vanishing estimate of first and second derivatives of coefficient functions?

Vanishing Theorems

Theorem
(Wei-Zhang, (2022 preprint, 2022, 2021)) Let u_{k} be non-simple blowup solutions to

$$
\Delta u_{k}+|x|^{2 N} h_{k}(x) e^{u_{k}}=0, \quad \text { in } \quad B_{1} \subset \mathbb{R}^{2}
$$

under the usual assumptions. Then along a sub-sequence

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \nabla h_{k}(0)=0 . \\
& \lim _{k \rightarrow \infty} \Delta h_{k}(0)=0 .
\end{aligned}
$$

More Vanishing Theorems when $N=1$

Theorem
(D'Aprile-Wei-Zhang) Let u_{k} be non-simple blowup solutions

$$
\Delta u_{k}+h_{k}|x|^{2} e_{k}^{u}=0 \text { in } B_{1}
$$

Then

$$
\begin{gathered}
\nabla h_{k}(0)=o(1) \\
\partial_{x x}^{2} h_{k}(0)=o(1), \partial_{x y}^{2} h_{k}(0)=\partial_{y x}^{2} h_{k}(0)=o(1), \partial_{y y}^{2} h_{k}(0)=o(1)
\end{gathered}
$$

In other words, h_{k} vanishes all up to second order:

$$
\nabla^{\alpha} h_{k}(0)=o(1),|\alpha| \leq 2
$$

Conjecture on Vanishing Theorems when $N \geq 2$

Conjecture: Let u_{k} be non-simple blowup solutions

$$
\Delta u_{k}+h_{k}|x|^{2 N} e_{k}^{\mu}=0 \text { in } B_{1}
$$

Then

$$
\nabla^{\alpha} h_{k}(0)=o(1),|\alpha| \leq N+1
$$

Conjecture on Vanishing Theorems when $N \geq 2$

Conjecture: Let u_{k} be non-simple blowup solutions

$$
\Delta u_{k}+h_{k}|x|^{2 N} e_{k}^{u}=0 \text { in } B_{1}
$$

Then

$$
\nabla^{\alpha} h_{k}(0)=o(1),|\alpha| \leq N+1
$$

Non-simple blow-ups do exist: D'Aprile (JMP 2022)

$$
\begin{gathered}
\Delta u+\lambda V(x)|x|^{2 N} e^{u}=0 \\
V(x)=V\left(z^{N+1}\right)
\end{gathered}
$$

Non-existence theorems

Surprisingly in many general situations, non-simple blow-up does not happen. D'Aprile-Wei studied the following classical Liouville equation

$$
\begin{aligned}
\Delta u+\lambda e^{u} & =\sum_{i=1}^{M} 4 \pi \gamma_{i} \delta_{p_{i}} \quad \text { in } \quad \Omega \subset \mathbb{R}^{2}, \\
u & =0 \text { on } \partial \Omega,
\end{aligned}
$$

where Ω is an open and bounded subset of $\mathbb{R}^{2}, p_{1}, \ldots, p_{M} \in \Omega, \partial \Omega$ is smooth, $\lambda>0$ and $\gamma_{i}>-1$.
Existence of multiple bubbling solutions

- $\gamma_{i}=0$ del Pino-Kowalczyk-Musso (2003)
- $\gamma_{i} \neq 0$ D'Aprile (2013)

Nonsimple blow-ups?

D'Aprile-Wei (JFA2020): Let $\Omega=B_{1}$ and $p_{1}=0$.

$$
\begin{align*}
\Delta u+\lambda e^{u} & =4 \pi N_{\lambda} \delta_{0} \quad \text { in } \quad B_{1}, \tag{3}\\
u & =0 \quad \text { on } \quad \partial B_{1},
\end{align*}
$$

Then non-simple blow-ups exist if

$$
N_{\lambda}-N \sim C \lambda \log ^{2} \lambda
$$

Nonsimple blow-ups?

D'Aprile-Wei (JFA2020): Let $\Omega=B_{1}$ and $p_{1}=0$.

$$
\begin{align*}
\Delta u+\lambda e^{u} & =4 \pi N_{\lambda} \delta_{0} \quad \text { in } \quad B_{1}, \tag{3}\\
u & =0 \quad \text { on } \quad \partial B_{1},
\end{align*}
$$

Then non-simple blow-ups exist if

$$
N_{\lambda}-N \sim C \lambda \log ^{2} \lambda
$$

Conjecture: When $\Omega=B_{1}, N_{\lambda}=N$, there are no non-simple blow-up phenomena (3).

Theorem
(D'Aprile-Wei-Zhang-22) Let u_{k} be a sequence of blowup solutions of

$$
\begin{aligned}
\Delta u+\lambda e^{u} & =\sum_{i=1}^{M} 4 \pi \gamma_{i} \delta_{p_{i}} \quad \text { in } \Omega \subset \mathbb{R}^{2}, \\
u & =0 \quad \text { on } \quad \partial \Omega,
\end{aligned}
$$

with parameter λ_{k} that satisfies $\int_{\Omega} \lambda_{k} e^{u_{k}}<C$. Then u_{k} is simple around any blowup point in Ω.

Battaglia (PAMS2019): If Ω is simply connected and there is only one singularity, then

$$
\lambda \int_{\Omega} e^{u} \leq C
$$

As a result we have completely solved D'Aprile-Wei conjecture: Corollary: When $\Omega=B_{1}, \gamma_{i}=N$, there are no non-simple blow-up phenomena (2).

$$
\begin{align*}
\Delta u+\lambda e^{u} & =4 \pi N \delta_{0} \quad \text { in } B_{1}, \tag{5}\\
u & =0 \quad \text { on } \quad \partial B_{1},
\end{align*}
$$

Non-simple blow-ups are lonely

$$
\begin{gather*}
\Delta u_{k}+e^{u_{k}}=\sum_{i=1}^{M} 4 \pi \gamma_{i} \delta_{p_{i}} \text { in } \Omega \tag{6}\\
\int_{\Omega} e^{u_{k}} \leq C \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|u_{k}(x)-u_{k}(y)\right| \leq C, \quad \forall x, y \in \partial \Omega \tag{8}
\end{equation*}
$$

Theorem
(D'Aprile-Wei-Zhang-22) Let u_{k} be a sequence of blowup solutions of (6) such that (7) and (8) hold. If there are at least two blowup points in Ω, each blowup point is simple.

Summary

$$
\Delta u_{k}+h_{k}|x|^{2 N} e^{u_{k}}=0
$$

- Vanishing Theorems

$$
\begin{gathered}
\nabla h_{k}(0)=0, \Delta h_{k}(0)=0 \\
\nabla h_{k}=0, D^{2} h_{k}=0 \quad(N=1)
\end{gathered}
$$

- 2. No-simple blow-ups does not exist

$$
\Delta u+\lambda e^{u}=4 \pi \sum_{i=1}^{M} \gamma_{i} \delta_{p_{i}} \text { in } \Omega ; u=0 \text { on } \partial \Omega
$$

- 3. Non-simple blow-ups are lonely

If there are two blow-ups then non-simple blow-ups do not exist.

Local maximum points

Let $p_{0}^{k}, \ldots, p_{N}^{k}$ be the $N+1$ local maximums of u_{k}

$$
\Delta u_{k}+|x|^{2 N} h_{k}(x) e^{u_{k}}=0, \quad \text { in } \quad B_{1}
$$

Let

$$
\delta_{k}=\left|p_{0}^{k}\right|, \quad \mu_{k}=u_{k}\left(p_{0}^{k}\right)+2(1+N) \log \delta_{k} .
$$

Trivial Observations

- The study of blowup solutions looks like that of a single Liouville equation near each local maximum point.
- The relations between these local maximums plays a crucial role.
- The blowup solutions look almost like a harmonic function away from the $N+1$ local maximums.
- If there is a perturbation on a global solution, there is a corresponding perturbation on each of its $N+1$ local maximumus:

$$
V_{k}(x)=\log \frac{e^{\mu_{k}}}{\left(1+\frac{e^{\mu_{k}}}{8(N+1)^{2}}\left|x^{N+1}-\left(1+p_{k}\right)\right|^{2}\right)^{2}} .
$$

Difficulty and Problem

- The main difficulty: a priori we don't have any relation between

$$
\delta_{k} \text { (the distance between small bubbles) }
$$

and

$$
\mu_{k}=u_{k}\left(p_{0}^{k}\right)+2(1+N) \log \delta_{k} \cdot(\text { the height of bubbles })
$$

In fact it should be no relation at all, from the ground state solution:

$$
U(z)=\log \frac{e^{\lambda}}{\left(1+\frac{e^{\lambda}}{8(1+N)^{2}}\left|z^{N+1}-\xi\right|^{2}\right)^{2}}
$$

- The main problem: how do different bubbles talk to each other?

Stage 1: First Vanishing Theorems

Theorem
(Wei-Zhang, (Proc. LMS 21)) Let ϕ_{k} be the harmonic function that eliminates the oscillation of u_{k} on ∂B_{1}, then

$$
\begin{gathered}
\left|\nabla\left(\log h_{k}+\phi_{k}\right)(0)\right|=O\left(\delta_{k}^{-1} \mu_{k} e^{-\mu_{k}}\right)+O\left(\delta_{k}\right) \\
\Delta\left(\log h_{k}\right)(0)=O\left(\delta_{k}^{-2} \mu_{k} e^{-\mu_{k}}\right)+O\left(\delta_{k}\right), \quad N \geq 2
\end{gathered}
$$

Obviously we don't know if $\nabla\left(\log h_{k}+\phi_{k}\right)(0)=o(1)$ when $\delta_{k} \leq C \mu_{k} e^{-\mu_{k}}$. We cannot tell if $\Delta h_{k}(0)=o(1)$ if $\delta_{k} \leq C \mu_{k}^{\frac{1}{2}} e^{-\mu_{k} / 2}$ even for $N \geq 2$. The conclusion for $N=1$ is even weaker.

Theorem
(Wei-Zhang 21) If $\delta_{k} \leq C e^{-\mu_{k} / 4}$, then there exists a sequence of global solutions U_{k} such that

$$
\left|u_{k}(x)-U_{k}(x)\right| \leq C, \quad x \in B_{1} .
$$

For $|x| \sim 1, u_{k}(x)=-u_{k}\left(p_{0}^{k}\right)+O(1)$.

Linearized equation

Let U be the solution of

$$
\Delta U+e^{U}=0, \quad \text { in } \quad \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}} e^{U}<\infty,
$$

with $\max _{x} U(x)=1=U(0)$. By Chen-Li, $U(x)=\log \frac{1}{\left(1+\frac{1}{8}|x|^{2}\right)^{2}}$. Let ϕ be a solution of

$$
\Delta \phi+e^{u} \phi=0, \quad \text { in } \quad \mathbb{R}^{2}
$$

with $\phi(x)=o(|x|)$ at infinity. Then $\phi(x)=c_{0} \phi_{0}+c_{1} \phi_{1}+c_{2} \phi_{2}$ where

$$
\phi_{0}=\frac{1-\frac{1}{8}|x|^{2}}{1+\frac{1}{8}|x|^{2}}, \quad \phi_{1}(x)=\frac{x_{1}}{1+\frac{1}{8}|x|^{2}}, \quad \phi_{2}=\frac{x_{2}}{1+\frac{1}{8}|x|^{2}} .
$$

key ideas of the proof

Step one: A lot of Pohozaev identities.

- A Pohozaev identity for $\Delta u_{k}+h_{k} \mathrm{e}^{u_{k}}=0$ on B_{σ} is

$$
\int_{B_{\sigma}}\left(\nabla h_{k} \cdot x\right) e^{u_{k}}=\int_{\partial B_{\sigma}}\left(\frac{\sigma}{2}\left(\left|\partial_{\nu} u_{k}\right|^{2}-\left|\partial_{\tau} u_{k}\right|^{2}\right)+\sigma h_{k} e^{u_{k}}+2 \partial_{\nu} u_{k}\right) d S
$$

$$
\delta_{k} \nabla\left(\log h_{k}\right)\left(\delta_{k} Q_{l}^{k}\right)+2 N \frac{Q_{l}^{k}}{\left|Q_{l}^{k}\right|^{2}}+\nabla \phi_{l, k}\left(Q_{l}^{k}\right)=O\left(\mu_{k} e^{-\mu_{k}}\right)
$$

$$
\nabla \phi_{l}^{k}\left(Q_{l}^{k}\right)=-4 \sum_{m \neq l} \frac{Q_{l}^{k}-Q_{m}^{k}}{\left|Q_{l}^{k}-Q_{m}^{k}\right|^{2}}+O\left(\delta_{k}^{2}\right)+O\left(\mu_{k} e^{-\mu_{k}}\right)
$$

- Denoting $Q_{l}^{k}=e^{i \frac{2 \pi l}{N+1}}\left(1+m_{l}^{k}\right)$ and use this in the long computation of each Pohozaev identity, we have

$$
\left(\begin{array}{c}
m_{1}^{k} \\
m_{2}^{k} \\
\vdots \\
m_{N}^{k}
\end{array}\right)=A^{-1} \delta_{k} \bar{\nabla}\left(\log h_{k}\right)(0)\left(\begin{array}{c}
e^{i \beta_{1}} \\
e^{i \beta_{2}} \\
\vdots \\
e^{i \beta_{N}}
\end{array}\right)+O\left(\delta_{k}^{2}\right)+O\left(\mu_{k} e^{-\mu_{k}}\right)
$$

where $\beta_{I}=2 \pi I /(N+1), I=0, \ldots, N$.

$$
A=\left(\begin{array}{cccc}
D & -d_{1} & \cdots & -d_{N-1} \\
-d_{1} & D & \cdots & -d_{N-2} \\
\vdots & \vdots & \cdots & \vdots \\
-d_{N-1} & -d_{N-2} & \cdots & D
\end{array}\right)
$$

where

$$
d_{i}=\frac{1}{\sin ^{2}\left(\frac{i \pi}{N+1}\right)}, \quad i=1, \ldots, N, \quad D=d_{1}+\ldots+d_{N}
$$

key ideas

1.Let $v_{k}(y)=u_{k}\left(\delta_{k} y\right)+2 \log \delta_{k}$. Since δ_{k} is the distance from a local maximum of v_{k} to the origin, and Δ is invariant under rotation of coordinates, we can assume that v_{k} has a local maximum at e_{1}. Then we use a global solution V_{k} that agrees with v_{k} at e_{1} :

$$
\begin{gathered}
\Delta V_{k}+h_{k}\left(\delta_{k} e_{1}\right)|y|^{2 N} e^{V_{k}}=0 . \\
V_{k}(y)=\log \frac{e^{\mu_{k}}}{\left(1+\frac{e^{\mu_{k}} h_{k}\left(\delta_{k} e_{1}\right)}{8(1+N)^{2}}\left|y^{N+1}-e_{1}\right|^{2}\right)^{2}} .
\end{gathered}
$$

V_{k} has $N+1$ local maximums located at exactly $e^{2 \pi i l /(N+1)}$ for $I=0, \ldots, N$.
Let $w_{k}=v_{k}-V_{k}$. Then w_{k} is very small near e_{1}.
2. By Harnack inequality, this smallness will be passed to control all the regions away from the N other bubbling disks.

key ideas of the proof

3. The difference between the Pohozaev identities. Let Ω_{s} be the region about Q_{s}. Then the Pohozaev identity for v_{k} in this region is

$$
\begin{aligned}
\int_{\Omega_{s}} \partial_{\xi}\left(|y|^{2 N} h_{k}\left(\delta_{k} y\right)\right) e^{v_{k}}-\int_{\partial \Omega_{s}} e^{v_{k}}|y|^{2 N} h_{k}\left(\delta_{k} y\right)(\xi \cdot \nu) \\
=\int_{\partial \Omega_{s}}\left(\partial_{\nu} v_{k} \partial_{\xi} v_{k}-\frac{1}{2}\left|\nabla v_{k}\right|^{2}(\xi \cdot \nu)\right) d S \\
\int_{\Omega_{s}} \partial_{\xi}\left(|y|^{2 N} h_{k}\left(\delta_{k} e_{1}\right)\right) e^{V_{k}}-\int_{\partial \Omega_{s}} e^{V_{k}}|y|^{2 N} h_{k}\left(\delta_{k} e_{1}\right)(\xi \cdot \nu) \\
=\int_{\partial \Omega_{s}}\left(\partial_{\nu} V_{k} \partial_{\xi} V_{k}-\frac{1}{2}\left|\nabla V_{k}\right|^{2}(\xi \cdot \nu)\right) d S
\end{aligned}
$$

Main ideas

Using these in the computation of the $N+1$ Pohozaev identities we have

$$
\begin{aligned}
\nabla\left(\log h_{k}+\phi_{k}\right)(0) & =O\left(\delta_{k}^{-1} \mu_{k} e^{-\mu_{k}}\right)+O\left(\delta_{k}\right) \quad N \geq 1 \\
\Delta \log h_{k}(0) & =O\left(\delta_{k}^{-2} \mu_{k} e^{-\mu_{k}}\right)+O\left(\delta_{k}\right), \quad N \geq 2
\end{aligned}
$$

and a corresponding estimate for $N=1$.

Stage 2, better first order estimates

Key ideas to prove the vanishing rate of $\nabla h_{k}(0)$ (for simplicity ϕ_{k} is ignored). Let $w_{k}=v_{k}-V_{k}$, then we have this key estimate:

$$
\left|w_{k}(y)\right| \leq C\left(\left|\nabla h_{k}(0)\right| \delta_{k}+\delta_{k}^{2} \mu_{k}\right) .
$$

Only need to consider $\delta_{k} \leq o\left(\epsilon_{k}\right)$. The equation of w_{k} can be written as

$$
\Delta w_{k}+h_{k}\left(\delta_{k} y\right)|y|^{2 N} e^{\xi_{k}} w_{k}=\delta_{k} \nabla h_{k}\left(\delta_{k} e_{1}\right) \cdot\left(e_{1}-y\right)|y|^{2 N} e^{V_{k}}+E
$$

where

$$
E=O\left(\delta_{k}^{2}\right)\left|y-e_{1}\right|^{2}|y|^{2 N} e^{V_{k}} .
$$

It is important to observe that the right hand side is zero when $y=e_{1}$. The analysis is first carried out near e_{1} and pass to other regions by Harnack inequality

First order vanishing estimate

Let $M_{k}=\max \left|w_{k}\right|$ and let $\tilde{w}_{k}=w_{k} / M_{k}$. It is crucial to observe that we still have

$$
\tilde{w}_{k}\left(e_{1}\right)=\left|\nabla \tilde{w}_{k}\left(e_{1}\right)\right|=0 .
$$

This important information will make us obtain

$$
\tilde{w}_{k}\left(e_{1}+\epsilon_{k} z\right) \leq C \epsilon_{k}^{\sigma}(1+|z|)^{\sigma}, \quad|z|<\epsilon_{k}^{-1}
$$

where $\epsilon_{k}=e^{-\mu_{k} / 2}$ and $\sigma \in(0,1)$. Because of the smallness of $\left|Q_{s}^{k}-e^{i \beta_{s}}\right|, \tilde{w}_{k}$ is supposed to converge to a kernel of

$$
\Delta \phi+e^{u} \phi=0
$$

around each Q_{s}^{k}. The same argument can also be applied around each Q_{s}.

At Q_{s}^{k}, v_{k} is very close to another global solution V_{s}^{k} which agrees with v_{k} at Q_{s}^{k} and $\nabla V_{s}^{k}\left(Q_{s}^{k}\right)=0$. The expression of V_{s}^{k}, which satisfies

$$
\Delta V_{s}^{k}+h_{k}\left(\delta_{k} Q_{s}^{k}\right)|y|^{2 N} e^{V_{s}^{k}}=0, \quad \text { in } \quad \mathbb{R}^{2}
$$

is

$$
V_{s}^{k}(y)=\log \frac{e^{\mu_{s}^{k}}}{\left(1+\frac{e^{\mu_{s}^{k} h_{k}\left(\delta_{k} Q_{s}^{k}\right.}}{8(1+N)^{2}}\left|y^{N+1}-\left(e_{1}+p_{s}^{k}\right)\right|^{2}\right)^{2}}
$$

The function \tilde{w}_{k} is supposed to converge

$$
c_{1} \frac{1-\frac{1}{8}|y|^{2}}{1+\frac{1}{8}|y|^{2}}+c_{2} \frac{y_{1}}{1+\frac{1}{8}|y|^{2}}+c_{3} \frac{y_{2}}{1+\frac{1}{8}|y|^{2}}
$$

All these coefficients are determined by $V_{s}^{k}-V_{k}$. It is standard to prove $c_{1}=0$ (this implies that the differences on the magnitudes don't matter too much). To prove c_{2} and c_{3} zero we need to use p_{s}.

If we take Q_{s}^{k} as a base and consider the kernel function around Q_{l}^{k}, then the limit function is supposed to be

$$
c_{1, s, t} \frac{y_{1}}{1+\frac{1}{8}|y|^{2}}+c_{2, s, t} \frac{y_{2}}{1+\frac{1}{8}|y|^{2}} .
$$

After some computations we have

$$
\begin{aligned}
& c_{1, s, t}=\lim _{k \rightarrow \infty} \frac{\left|p_{s}^{k}-p_{t}^{k}\right|}{2(N+1) M_{k} \epsilon_{k}} \cos \left(\frac{2 \pi s}{N+1}+\theta_{s t}\right) . \\
& c_{2, s, t}=\lim _{k \rightarrow \infty} \frac{\left|p_{s}^{k}-p_{t}^{k}\right|}{2(N+1) M_{k} \epsilon_{k}} \sin \left(\frac{2 \pi s}{N+1}+\theta_{s t}\right) .
\end{aligned}
$$

where $p_{s}^{k}-p_{t}^{k}=\left|p_{s}^{k}-p_{t}^{k}\right| e^{i \theta_{t s}}$. If limit has to exist, $p_{1}^{k}, \ldots ., p_{N}^{k}$ have to satisfy certain relations, which will lead to a contradiction if we observe the second order terms.

After proving

$$
\left|w_{k}(y)\right| \leq C \delta_{k}\left|\nabla h_{k}(0)\right|+C \delta_{k}^{2} \mu_{k},
$$

we use this estimate in the computation of Pohozaev identities around each Q_{s}^{k} to obtain

$$
\left|\nabla h_{k}(0)\right| \leq C \delta_{k} \mu_{k} .
$$

Stage 3: Laplace Vanishing Theorem

The first order estimate leads to a better estimate on the difference function:

$$
\left|w_{k}(y)\right| \leq C \delta_{k}^{2} \mu_{k}
$$

Then we use Gluck's estimate for single Liouville equation around each $Q_{s}^{k}(s \neq 1)$ to obtain the vanishing rate for $\Delta h_{k}(0)$. Recall the expansion of a blowup solution for a single Liouville equation:

$$
\begin{aligned}
u_{k}(x)= & \log \frac{e^{u_{k}(0)}}{\left(1+\frac{h(0)}{8} e^{u_{k}(0)}\left|x-q_{k}\right|^{2}\right)^{2}}+\psi_{k} \\
& -8 \frac{(\Delta \log h)(0)}{h(0)} \epsilon_{k}^{2}\left(\log \left(2+\epsilon_{k}^{-1}|x|\right)\right)^{2}+O\left(\epsilon_{k}^{2} \log \epsilon_{k}^{-1}\right)
\end{aligned}
$$

Main Idea for the proof of D'Aprile-Wei conjecture

Theorem (D'Aprile-Wei-Zhang): All blow-ups for the following problem is simple:

$$
\begin{gathered}
-\Delta u=\lambda e^{u}-4 \pi \sum_{i=1}^{M} \gamma_{i} \delta_{p_{i}} \text { in } \Omega \\
\lambda \int_{\Omega} e^{u}<C \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

We found that when non-simple blowup happens, the oscillation on the boundary has to be very special. This is the main reason that we can prove the conjecture in a very general setting. Basically, as long as we know the behavior of the blowup solutions on the boundary and it is different from that of a non-simple blowup global solutions, we can capture this difference and say that non-simple blowup cannot happen.

D'Aprile-Wei conjecture. Key Theorem

Basic set-up: Let u_{k} be a sequence of solutions of the following equation that blows up at 0 :

$$
\begin{equation*}
\Delta u_{k}+|x|^{2 N} e^{u_{k}}=0, \quad \text { in } \quad B_{1} \tag{9}
\end{equation*}
$$

Suppose the oscillation of u_{k} on the boundary of B_{1} is finite:

$$
\begin{equation*}
\left|u_{k}(x)-u_{k}(y)\right| \leq C, \quad \forall x, y \in \partial B_{1} \tag{10}
\end{equation*}
$$

for some $C>0$ independent of k, and there is a uniform bound on the integration of $|x|^{2 N} e^{u_{k}}$:

$$
\begin{equation*}
\int_{B_{1}}|x|^{2 N} e^{u_{k}}<C \tag{11}
\end{equation*}
$$

D'Aprile-Wei-Conjecture, key theorem

Set

$$
\Phi_{k}(x)=u_{k}(x)-\frac{1}{2 \pi} \int_{\partial B_{1}} u_{k}, \quad x \in B_{1}
$$

and let Φ be the limit of Φ_{k} over any fixed compact subset of B_{1}. Then our assumption of Φ_{k} is

Either $\Phi \neq 0$ or $\Phi_{k} \equiv 0$.

Theorem

Let 0 be the only blowup point of u_{k} in B_{1}, which has a uniformly bounded integration. Suppose (12) holds. Then u_{k} is a simple blowup sequence:

$$
u_{k}(x)+2(1+N) \log |x| \leq C
$$

for some $C>0$.

key-ideas

Let v_{k} be the scaled u_{k} with $p_{0}^{k}=e_{1}$:

$$
v_{k}(y)=u_{k}\left(\delta_{k} y e^{i \theta_{k}}\right)+2(N+1) \log \delta_{k}, \quad|y|<\delta_{k}^{-1}
$$

Other local maximums are very close to $e^{\frac{2 i \pi 1}{N+1}}$ for $I=1, \ldots, N$. Let

$$
V_{k}(x)=\log \frac{e^{\bar{\mu}_{k}}}{\left(1+\frac{e^{\bar{\mu}_{k}}}{8(1+N)^{2}}\left|y^{N+1}-e_{1}\right|^{2}\right)^{2}}
$$

that agrees with v_{k} at e_{1} as a common local maximum. Now we use the following expansion of V_{k} for $|y|=L_{k}\left(L_{k}=\delta_{k}^{-1}\right)$

$$
\begin{aligned}
V_{k}(y) & =-\bar{\mu}_{k}+2 \log \left(8(N+1)^{2}\right)-4(N+1) \log L_{k}+\frac{2}{L_{k}^{2 N+2}} \\
& +\frac{4 \cos ((N+1) \theta)}{L_{k}^{N+1}}+\frac{4}{L_{k}^{2 N+2}} \cos ((2 N+2) \theta) \\
& +O\left(L_{k}^{-3 N-3}\right)+O\left(e^{-\bar{\mu}_{k}} L_{k}^{-2 N-2}\right) .
\end{aligned}
$$

key ideas

The oscillating part of V_{k} is mainly

$$
4 \cos ((N+1) \theta) \delta_{k}^{N+1}+4 \delta_{k}^{2 N+2} \cos ((2 N+2) \theta)
$$

based on this we set $\phi_{v, k}\left(\delta_{k} \cdot\right)$ to be the harmonic function that is equal to 0 at 0 and represents the oscillation of $V_{k} \partial \Omega_{k}$:
$\phi_{\nu, k}\left(\delta_{k} y\right)=4 \delta_{k}^{2 N+2} r^{N+1} \cos ((N+1) \theta)+4 \delta_{k}^{4 N+4} r^{2 N+2} \cos ((2 N+2) \theta)+\ldots$.
Recall that the oscillation of v_{k} is $\Phi_{k}\left(\delta_{k} \cdot\right)$. Thus if we set

$$
\phi_{0, k}(y)=\Phi_{k}\left(\delta_{k} y\right)-\phi_{v, k}\left(\delta_{k} y\right)
$$

and $v_{0, k}=v_{k}-\phi_{0, k}$, then $v_{0, k}-V_{k}$ is a constant on the boundary, but the equation of $v_{0, k}$ is

$$
\Delta v_{0, k}+h_{0, k}|y|^{2 N} e^{v_{0, k}}=0, \quad \text { in } \quad \Omega_{k}
$$

where $h_{0, k}=e^{\phi_{0, k}}$.

key-ideas

Because of the difference on the oscillations, we can prove that $\nabla h_{0, k}\left(e^{\frac{2 \pi i s}{N+1}}\right)$ is different from zero to some extent (based on the Fourier expansions of these harmonic functions):
Lemma
There exist an integer $L>0, \delta_{k}^{*} \in\left(\delta_{k}^{L}, \delta_{k}\right)$ an integer $0 \leq s \leq N$ such that

$$
\nabla h_{0, k}\left(e^{\frac{2 \pi i 5}{N+1}}\right) / \delta_{k}^{*} \neq 0
$$

This lemma eventually leads to a contradiction: If non-simple blowup does exist, and v_{k} is so close to a global solution V_{k}, there is no way for $v_{0, k}$ to have a coefficient function different from 1 . This part of the proof is similar to that of the vanishing theorems: two functions are extremely close near one local maximum, using Harnack this closeness can be passed to the neighborhood of other local maximums, then Pohozaev identities say this is not possible.

Application to Mean Field Equation

Corollary

(Wei-Zhang-22) Let u be a solution of

$$
\Delta_{g} u+\rho\left(\frac{h e^{u}}{\int_{M} h e^{u}}-1\right)=4 \pi \sum_{j=1}^{d} \alpha_{j}\left(\delta_{p_{j}}-1\right)
$$

If all $\alpha_{j} \in \mathbb{N}$ and

$$
\Delta(\log h)\left(p_{j}\right)-2 K\left(p_{j}\right) \notin 4 \pi \mathbb{N}, \quad j=1, . ., d
$$

Then any blowup solutions u^{k} satisfy a spherical Harnack inequality around any blowup point.

Application to Toda systems

$$
\begin{aligned}
& \Delta u_{1}+2 \rho_{1}\left(\frac{h_{1} e^{u_{1}}}{\int_{M} h_{1} e^{u_{1}}}-1\right)-\rho_{2}\left(\frac{h_{2} e^{u_{2}}}{\int_{M} h_{2} e^{u_{2}}}-1\right)=0 \\
& \Delta u_{2}-\rho_{1}\left(\frac{h_{1} e^{u_{1}}}{\int_{M} h_{1} e^{u_{1}}}-1\right)+2 \rho_{2}\left(\frac{h_{2} e^{u_{2}}}{\int_{M} h_{2} e^{u_{2}}}-1\right)=0
\end{aligned}
$$

Theorem
(Lin-Wei-Yang-Zhang 18 APDE) For
$\left(\rho_{1}, \rho_{2}\right) \in(4 \pi m, 4 \pi(m+1)) \times(4 \pi n, 4 \pi(n+1))(n, m \in \mathbb{N})$ and
$u=\left(u_{1}, u_{2}\right)$ in certain Sobolev space, the following a priori estimate holds

$$
\left|u_{i}\right| \leq C, \quad i=1,2 .
$$

This theorem leads to a huge degree counting program for Toda systems.

Theorem
(Wei-Wu-Zhang (JLMS23)) If $u_{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ is a sequence of blowup solutions of SU(3) Toda system corresponding to $\left(\rho_{1}^{k}, \rho_{2}^{k}\right) \rightarrow(4 \pi m, 4 \pi n)$, if one blowup point is a fully bubbling blowup point and

$$
\Delta_{g} \log h_{i}^{k}(x)-2 K(x) \notin 4 \pi \mathbb{Z}, \quad i=1,2 .
$$

then the spherical Harnack inequality holds around each blowup point.

Applications

(1) Toda system:

$$
\begin{aligned}
& \Delta u_{1}+2 \rho_{1}\left(\frac{h_{1} e^{u_{1}}}{\int_{M} h_{1} e^{u_{1}}}-1\right)-\rho_{2}\left(\frac{h_{2} e^{u_{2}}}{\int_{M} h_{2} e^{u_{2}}}-1\right)=0 \\
& \Delta u_{2}-\rho_{1}\left(\frac{h_{1} e^{u_{1}}}{\int_{M} h_{1} e^{u_{1}}}-1\right)+2 \rho_{2}\left(\frac{h_{2} e^{u_{2}}}{\int_{M} h_{2} e^{u_{2}}}-1\right)=0 .
\end{aligned}
$$

(2) Liouville system: Let $A=\left(a_{i j}\right)_{n \times n}$ be a symmetric, non-negative matrix:

$$
\begin{aligned}
& \Delta u_{1}+a_{11} \rho_{1}\left(\frac{h_{1} e^{u_{1}}}{\int_{M} h_{1} e^{u_{1}}}-1\right)+a_{12} \rho_{2}\left(\frac{h_{2} e^{u_{2}}}{\int_{M} h_{2} e^{u_{2}}}-1\right)=0 \\
& \Delta u_{2}+a_{12} \rho_{1}\left(\frac{h_{1} e^{u_{1}}}{\int_{M} h_{1} e^{u_{1}}}-1\right)+a_{22} \rho_{2}\left(\frac{h_{2} e^{u_{2}}}{\int_{M} h_{2} e^{u_{2}}}-1\right)=0 .
\end{aligned}
$$

More Applications

(1) Fourth order equation: Q curvature equation on 4-manifold:

$$
\begin{array}{r}
P_{g} u+2 Q_{g}=2 h e^{4 u}-8 \pi^{2} \gamma\left(\delta_{q}-\frac{1}{v_{g}(M)}\right) \\
P_{g} \phi=\Delta_{g}^{2} \phi+\operatorname{div}_{g}\left(\left(\frac{2}{3} R_{g} g-2 R i c_{g}\right) \nabla \phi\right) \\
Q_{g}=-\frac{1}{12}\left(\Delta_{g} R_{g}-R_{g}^{2}+2\left|R i c_{g}\right|^{2}\right)
\end{array}
$$

Classification theorems were proved for

$$
\Delta^{2} u=6 e^{4 u}-8 \pi^{2} \gamma \delta_{0} \quad \text { in } \quad \mathbb{R}^{4}, \quad \int_{\mathbb{R}^{4}} e^{4 u}<\infty
$$

If $\gamma=0$ the classification theorem was proved by Chang-shou Lin, Wei-Xu. For $-1<\gamma<0$, the classification was done by Ahmedou-Wu-Zhang (22).
(2) Many other equations and situations.

THANKS FOR YOUR ATTENTION

