MATH 516-101, 2016-2017 Homework Six

Due Date: December 9, 2016
This homework accounts for extra points.

1. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies

$$
\begin{gathered}
a_{i j} u_{i j}+b_{i} u_{i}+c(x) u=f \text { in } \Omega \\
u+\alpha(x) \frac{\partial u}{\partial \nu}=\varphi \text { on } \partial \Omega
\end{gathered}
$$

where $a_{i j}, b_{i}, c \in L^{\infty}$ and $f \in C(\bar{\Omega}), \varphi \in C(\partial \Omega)$. Show that if $c(x) \leq 0,0 \leq \alpha \leq \alpha_{0}$, then

$$
|u(x)| \leq \max _{\partial \Omega} \varphi(x)+C \max _{\Omega}|f|
$$

2. (a) Let $\Omega=B_{R}(0)$ and $f=f(|x|, u)$ with $\frac{\partial f}{\partial r}<0$. Show that the solution to

$$
\Delta u+f(|x|, u)=0, u>0 \text { in } B_{R}, u=0 \text { on } \partial B_{R}
$$

is radially symmetric.
(b) Let Ω be a convex domain and $f(x, u)=K(x) g(u) \geq 0$. Assume that $\frac{\partial K}{\partial \nu}<0$ for $x \in \partial \Omega$. Show that there exists a fixed neighborhood of $\partial \Omega$ (independent of g) such that $|\nabla u| \neq 0$.
(c) Let Ω be any smooth and bounded domain in R^{2} and $f(u) \geq 0$. Suppose that u satisfies

$$
\Delta u+f(u)=0, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

Show that there exists a fixed neighborhood of $\partial \Omega$ (independent of f) such that $|\nabla u| \neq 0$.
If $n \geq 3$, what can you say?
Hint: consider the Kelvin transform of Laplace equation: The Kelvin transform $K u$ is defined as $K u=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)$. Show that if u satisfies

$$
\Delta u+f(u)=0
$$

then $K u$ satisfies

$$
\Delta K u+\frac{1}{|x|^{n+2}} f\left(|x|^{n-2} K u\right)=0
$$

3. Use sub-super solution method to prove the existence of a positive solution to

$$
-\Delta u=\left(1+|x|^{2}\right)^{-l} u^{p}, p>1
$$

where $l>1, n \geq 3$, with the following asymptotic behavior

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty} u(x)=c>0 \tag{1}
\end{equation*}
$$

Hint: consider the following functions

$$
c+C \int_{R^{n}} \frac{1}{|x-y|^{n-2}} \frac{1}{\left(1+|y|^{2}\right)^{l}} d y
$$

4. Use Nehari's manifold method (or constraint method) to prove the existence of a solution for the following equation

$$
\Delta u+f(u)=0, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

where $f(u)=-u+u^{p}-a u^{q}$, with $1<q<p<\frac{n+2}{n-2}, a \geq 0$.
5. Use Mountain-Pass Lemma to prove the existence of a positive solution to

$$
\Delta u+f(u)=0, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

where $f(u)=-u+u^{p}-a u^{q}$, with $1<q<p<\frac{n+2}{n-2}, a \geq 0$.
Show that the critical values obtained in Problem 4 are the same as in Problem 5.

