Due Date: November 10, 2016

1. Fix $\alpha>0,1<p<+\infty$ and let $U=B_{1}(0)$. Show that there exists a constant C, depending on n and α such that

$$
\int_{U} u^{p} d x \leq C \int_{U}|\nabla u|^{p}
$$

provided

$$
u \in W^{1, p}(U),|\{x \in U \mid u(x)=0\}| \geq \alpha
$$

2. (a) Show that $W^{1,2}\left(R^{N}\right) \subset L^{2}\left(R^{N}\right)$ is not compact. (b). Let $n>4$. Show that the embedding $W^{2,2}(U) \rightarrow L^{\frac{2 n}{n-4}}(U)$ is not compact; (b) Describe the embedding of $W^{2, p}(U)$ in different dimensions. State if the embedding is continuous or compact.
3. Let $U=(-1,1)$. Show that the dual space of $H^{1}(U)$ is isomorphic to $H^{-1}(U)+E^{*}$ where E^{*} is the two dimensional subspace of $H^{1}(U)$ spanned by the orthogonal vectors $\left\{e^{x}, e^{-x}\right\}$.
4. (a). Assume that U is connected. A function $u \in W^{1,2}(U)$ is a weak solution of the Neumann problem

$$
\begin{equation*}
-\Delta u=f \text { in } U ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial U \tag{3}
\end{equation*}
$$

if

$$
\int_{U} D u \cdot D v=\int_{U} f v, \quad \forall v \in W^{1,2}
$$

Suppose that $f \in L^{2}$. Show that (3) has a weak solution if and only if

$$
\int_{U} f=0
$$

(b). Discuss how to define a weak solution of the Poisson equation with Robin boundary conditions

$$
\begin{equation*}
-\Delta u=f \text { in } U ; u+\frac{\partial u}{\partial \nu}=0 \text { on } \partial U \tag{4}
\end{equation*}
$$

5. Let $u \in W^{1,2}\left(R^{n}\right)$ have compact support and be a weak solution of the semilinear PDE

$$
-\Delta u+g(u)=f \text { in } R^{n}
$$

where $f \in L^{2}\left(R^{n}\right)$, and g is an odd smooth function of u. Prove that $u \in W^{2,2}\left(R^{n}\right)$.
Hint: mimic the proof of interior regularity but without the cut-off function.

