MATH 516-101 (2016-2017) Homework THREE Due Date: October 27, 2016

1. Consider the following function

$$u(x) = \frac{1}{|x|^{\gamma}}$$

in $\Omega = B_1(0)$. Show that if $\gamma + 1 < n$, the weak derivatives are given by

$$\partial_j u = -\gamma \frac{x_j}{|x|^{\gamma+2}}$$

i.e., you need to show that

$$\int u\partial_j\phi = \int \phi\gamma \frac{x_j}{|x|^{\gamma+2}}$$

As a consequence, show that $u \in W^{1,p}$ if and only if $(\gamma + 1)p < n$.

2. Let $\eta(t) = t$ for $t \leq 0$ and $\eta(t) = 0$ for t > 1. Let $f \in W^{k,p}(\mathbb{R}^n)$ and $f_k = f\eta(|x| - k)$. Show that $||f_k - f||_{W^{k,p}} \to 0$ as $k \to +\infty$. As a consequence show that $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}(\mathbb{R}^n)$.

3. Let $u \in C^{\infty}(\bar{R}^n_+)$. Extend u to Eu on R^n such that

$$Eu = u, x \in \mathbb{R}^n_+; Eu \in \mathbb{C}^4(\mathbb{R}^n); ||Eu||_{W^{4,p}} \le ||u||_{W^{4,p}}$$

Here $R_{+}^{n} = \{(x', x_n); x_n > 0\}.$

4. (a) If n = 1 and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If n > 1, find an example of $u \in W^{1,n}(B_1)$ and $u \notin L^{\infty}$.

5. Prove the following Poincare type inequality: Suppose that $\Omega \subset \{a < x_1 < b\}$. Then for $u \in W_0^{1,2}(\Omega)$ it holds that

$$||u||_{L^{2}(\Omega)} \leq 2(b-a)||\partial_{x_{1}}u||_{L^{2}(\Omega)}$$

6. (Gagliardo-Nirenberg inequality) Let $n \ge 2, 1 and <math>1 \le q < r < \frac{np}{n-p}$. For some $\theta \in (0,1)$ and some constant C > 0 we have

$$\|u\|_{L^{r}(R^{n})} \leq C \|u\|_{L^{q}(R^{n})}^{1-\theta} \|\nabla u\|_{L^{p}(R^{n})}^{\theta}, \forall u \in C_{c}^{\infty}(R^{n})$$

(i) Use scaling to find the θ .

(ii) Prove the inequality.

Hint: Do an interpretation of L^r in terms of L^q and $L^{\frac{np}{n-p}}$ and then apply Sobolev.