MATH 516-101 (2016-2017) Homework THREE

Due Date: October 27, 2016

1. Consider the following function

$$
u(x)=\frac{1}{|x|^{\gamma}}
$$

in $\Omega=B_{1}(0)$. Show that if $\gamma+1<n$, the weak derivatives are given by

$$
\partial_{j} u=-\gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

i.e., you need to show that

$$
\int u \partial_{j} \phi=\int \phi \gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

As a consequence, show that $u \in W^{1, p}$ if and only if $(\gamma+1) p<n$.
2. Let $\eta(t)=t$ for $t \leq 0$ and $\eta(t)=0$ for $t>1$. Let $f \in W^{k, p}\left(R^{n}\right)$ and $f_{k}=f \eta(|x|-k)$. Show that $\left\|f_{k}-f\right\|_{W^{k, p}} \rightarrow 0$ as $k \rightarrow+\infty$. As a consequence show that $W^{k, p}\left(R^{n}\right)=W_{0}^{k, p}\left(R^{n}\right)$.
3. Let $u \in C^{\infty}\left(\bar{R}_{+}^{n}\right)$. Extend u to $E u$ on R^{n} such that

$$
E u=u, x \in R_{+}^{n} ; E u \in C^{4}\left(R^{n}\right) ;\|E u\|_{W^{4, p}} \leq\|u\|_{W^{4, p}}
$$

Here $R_{+}^{n}=\left\{\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\}$.
4. (a) If $n=1$ and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If $n>1$, find an example of $u \in W^{1, n}\left(B_{1}\right)$ and $u \notin L^{\infty}$.
5. Prove the following Poincare type inequality: Suppose that $\Omega \subset\left\{a<x_{1}<b\right\}$. Then for $u \in W_{0}^{1,2}(\Omega)$ it holds that

$$
\|u\|_{L^{2}(\Omega)} \leq 2(b-a)\left\|\partial_{x_{1}} u\right\|_{L^{2}(\Omega)}
$$

6. (Gagliardo-Nirenberg inequality) Let $n \geq 2,1<p<n$ and $1 \leq q<r<\frac{n p}{n-p}$. For some $\theta \in(0,1)$ and some constant $C>0$ we have

$$
\|u\|_{L^{r}\left(R^{n}\right)} \leq C\|u\|_{L^{q}\left(R^{n}\right)}^{1-\theta}\|\nabla u\|_{L^{p}\left(R^{n}\right)}^{\theta}, \forall u \in C_{c}^{\infty}\left(R^{n}\right)
$$

(i) Use scaling to find the θ.
(ii) Prove the inequality.

Hint: Do an interpretation of L^{r} in terms of L^{q} and $L^{\frac{n p}{n-p}}$ and then apply Sobolev.

