MATH 516-101 Homework TWO

Due Date: October 14, 2016, by 5:30pm

1. (a) using the Green's function in a ball to prove

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

whenever u is positive and harmonic in $B_{r}(0)$.
(b) use (a) to prove the following result: let u be a harmonic function in R^{n}. Suppose that $u \geq 0$. Then $u \equiv$ Constan
2. This problem concerns the heat equation

$$
u_{t}=\Delta u
$$

Let

$$
\Phi(x-y, t)=(4 \pi t)^{-n / 2} e^{-\frac{|x-y|^{2}}{4 t}}
$$

(a) Show that there exists a generic constant C_{n} such that

$$
\Phi(x-y, t) \leq C_{n}|x-y|^{-n}
$$

Hint: maximize the function in t.
(b) Let $f(x)$ be a function such that $f\left(x_{0}-\right)$ and $f\left(x_{0}+\right)$ exists. Show that

$$
\lim _{t \rightarrow 0} \int_{R} \Phi\left(x-x_{0}, t\right) f(y) d y=\frac{1}{2}\left(f\left(x_{0}-\right)+f\left(x_{0}+\right)\right)
$$

3. Consider the following general parabolic equation

$$
L[u]=a(x, t) u_{x x}+b(x, t) u_{x}+c(x, t) u-u_{t}
$$

where

$$
0<C_{1}<a(x, t)<C_{2},|b(x, t)| \leq C_{3}, c(x, t) \leq C_{4}
$$

(a) Show that $L[u] \geq 0$, then

$$
\max _{\Omega_{T}} u \leq e^{C_{4} T} \max _{\partial^{\prime} \Omega_{T}} u^{+}
$$

Here $\Omega_{T}=(0, L) \times(0, T), \partial \Omega_{T}=\partial \Omega_{T} \backslash((0, L) \times\{T\})$ and $u^{+}=\max (u, 0)$.
Hint: consider the function $v:=u e^{C_{4} t}$
(b) Prove the uniqueness of the initial value problem

$$
\left\{\begin{array}{l}
L u(x, t)=f(, t), \operatorname{in} \Omega_{T} \\
u(x, 0)=\phi(x), x \in \Omega \\
u(x, t)=g(x, t), x \in \partial \Omega, t \in(0, T]
\end{array}\right.
$$

4. (a) Use d'Alembert's formula to to show that Maximum Principle does not hold for wave equation, i.e.,

$$
u_{t t}=c^{2} u_{x x}, 0<x<L, 0<t<T
$$

$$
\begin{gathered}
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x) \\
\max _{U_{T}} u(x, t)>\max _{\partial^{\prime} U_{T}} u(x, t)
\end{gathered}
$$

Hint: Let $f=0$ and $g=1, U=(-1,1)$ and choose T large.
(b) Let u solve the initial value problem for the wave equation in one dimension

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x} \text { in } R \times(0,+\infty) \\
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x)
\end{array}\right.
$$

where f and g have compact support in R. Let $k(t)=\frac{1}{2} \int u_{t}(x, t)^{2} d t$ be the potential energy and $p(t)=\frac{1}{2} u_{x}^{2}(x, t) d x$ be t potential energy. Show that
(a) $k(t)+p(t)$ is constant in t
(b) $k(t)=p(t)$ for all large enough time t.
5. This problem concerns Sobolev space
(a) Let $U=(-1,1)$ and

$$
u(x)=|x|
$$

What is its weak derivative u^{\prime} ? Prove it rigorously. Does the second order weak derivative $u^{\prime \prime}$ exist?
(c) Let $U=R^{n}$ and

$$
u(x)=\frac{1}{|x|^{a}}
$$

Find out its weak derivative. Prove it rigorously.

