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Abstract. The singularly perturbed Gierer-Meinhardt (GM) system in a bounded d-dimensional domain (d ≥ 2)5
is known to exhibit boundary layer (BL) solutions for a non-zero activator flux. It was previously6
shown that such BL solutions can be destabilized by decreasing the activator flux below a stabil-7
ity threshold. Moreover, numerical simulations previously indicated that solutions consisting of a8
boundary layer and interior spike emerge after the destabilization of a BL solution. In this paper9
we use the method of matched asymptotic expansions to investigate the structure and stability of10
such “boundary layer spike” (BLS) solutions in the presence of an asymptotically small activator11
diffusivity ε2 ≪ 1. We find that two types of BLS solutions, one of which is unconditionally linearly12
stable and the other unstable, can be constructed provided that the activator flux is sufficiently13
small. In this way we determine that there is an asymptotically large range of activator flux values14
for which both the BL solution and one of the BLS solutions are linearly stable. Formal asymptotic15
calculations are further validated by numerically simulating the singularly perturbed GM system.16

1. Introduction. An understanding of spatial patterns generated by reaction-diffusion17

equations modelling biological systems is a hallmark of mathematical biology. The aim of18

so-called toy models is to incorporate only a few interactions so that the system remains19

analytically tractable and its results interpretable, while still retaining rich pattern forming20

behaviour reflecting that found in biological systems. The Gierer-Meinhardt (GM) system21

is one such model within which the pattern formation consequences of diffusion, activation,22

and inhibition can be investigated [5, 15]. Specifically, letting u(x, t) and ξ(x, t) denote the23

activator and inhibitor concentrations respectively the GM system takes the form of a two-24

component reaction-diffusion system. The GM system commonly takes the form25

∂u

∂t
= d∆u− u+

u2

ξ
, τ

∂ξ

∂t
= D∆ξ − ξ + u2, (x, t) ∈ Ω× (0,∞),26

where d and D denote the activator and inhibitor diffusivities respectively, and Ω ⊂ RN is27

a bounded domain on whose boundary ∂Ω additional conditions must be imposed. The GM28

system fits more broadly into the class of two-component reaction-diffusion systems exhibiting29

Turing instabilities [26] such as the Gray-Scott, Schnakenberg, and Brusselator systems [20,30

19, 22] (see also the textbook [16]).31

In the singularly perturbed limit for which d ≪ D, the GM system is known to exhibit32

localized solutions in which the activator is concentrated in the vicinity of a discrete collection33

of points. Such solutions are often referred to as multi-spike or multi-spot solutions in N =34

1 or N ≥ 2 dimensions respectively, and can also be found in other singularly perturbed35

reaction-diffusion systems [17, 29]. These localized solutions exhibit a separation of spatial36
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and temporal scales which makes them particularly amenable to both formal and rigorous37

analysis [25, 32]. Indeed, a substantial body of work has been devoted to studying the existence38

and stability of localized solutions to the singularly perturbed GM system and its various39

extensions [4, 10, 14, 8].40

Studies of pattern formation in reaction-diffusion systems typically assume homogeneous41

Neumann, or no-flux, boundary conditions. The choice of no-flux boundary conditions is42

based in part on an underlying assumption that the system is closed or isolated from its43

environment. In addition such homogeneous boundary conditions provide a technical advan-44

tage as little or no additional assumptions are needed to guarantee that the system admits45

a spatially homogeneous steady state. This latter point is particularly important as it sim-46

plifies the analysis of Turing instabilities. However, it is increasingly apparent that different47

boundary conditions can have a substantial effect on pattern formation (see for example [3]).48

Inhomogeneous boundary conditions in particular arise naturally in heterogeneous problems49

[11] as well as bulk-surface coupled systems [12, 13, 21, 6, 8].50

In the context of localized solutions there is a small but growing body of literature con-51

sidering boundary conditions deviating from standard homogeneous Neumann boundary con-52

ditions. Specifically, Maini et. al. considered in [14] the stability of spikes in the shadow GM53

system under homogeneous Robin boundary conditions for both the activator and inhibitor54

(see also [2] for an earlier analysis of the underlying half-space core problem). In addition,55

Tzou and Ward considered the effects of inhomogeneous inhibitor boundary conditions on the56

existence and stability of localized solutions to the singularly perturbed Brusselator model57

[27]. Two additional studies which most closely inform our present paper are [9, 7] in which58

the authors considered inhomogeneous boundary conditions for the activator in the singu-59

larly perturbed GM system. Importantly, the asymptotically small diffusivity of the activator60

results in the formation of a boundary layer whose existence and linear stability was investi-61

gated in [7]. In particular it was found that when Ω ⊂ RN with N ≥ 2 the boundary layer is62

unstable when the boundary flux is sufficiently small. Numerical simulations further revealed63

the emergence of an interior spike after the destabilization of a boundary layer (see Figure 9 in64

[7]). This numerical observation serves as the primary motivation for this paper, in which we65

use the method of matched asymptotic expansions to construct and study the linear stability66

of these interior and near-boundary spike solutions.67

Taking the inhibitor diffusivity D → ∞ and appropriately rescaling variables we obtain68

the shadow GM system69

∂tu = ε2∆u− u+
u2

ξ
, x ∈ Ω, t > 0,(1.1a)70

τξt = −ξ + 1

|Ω|

∫
Ω
u2dx, t > 0,(1.1b)71

ε∂νu+ κu = A, x ∈ ∂Ω, t > 0,(1.1c)7273

where 0 < ε≪ 1 is an asymptotically small parameter, τ > 0, and A > 0 is a scalar controlling74

the boundary flux. In this paper we will be interested in the existence and stability of two75

types of localized solutions. The first, which was previously considered in [7], consists of76

a boundary layer concentrating along ∂Ω and we will refer to it as a boundary-layer (BL)77
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Figure 1: Plots of the inhibitor ξε versus the rescaled activator flux ε3/2A for (left) κ = 0.4,
(middle) κ = 1.2, and (right) κ = 10. Solid curves correspond to solutions consisting of
a boundary layer with an interior spike, with the upper darkly coloured branch indicating
the stable small-shift solution and the lower lightly coloured branch indicating the unstable
large-shift solution. The dashed curves correspond to solutions consisting of only a boundary
layer with the solid dot demarcating the region where is linearly stable (darkly coloured) and
unstable (lightly coloured).

solution. The second consists of a boundary layer and an interior spike and will be referred to78

as a boundary-layer-spike (BLS) solution which emerges in two types denoted by BLS− and79

BLS+. The primary contribution of this paper is the asymptotic analysis of the existence and80

linear stability of BLS solutions and is summarized in the following result.81

Principal Result 1. Let ε≪ 1, τ ≥ 0, κ ≥ 0, and A > 0. Let wc(y) be the one-dimensional82

homoclinic solution satisfying (2.1). Additionally, let83

(1.2) W κ(y) :=

{
Wκ(y) for y ∈ RN

+ := {(y1, ..., yN ) ∈ RN | yN > 0}, if κ ≤ κ⋆,

W (y) for y ∈ RN , if κ > κ⋆,
84

and85

(1.3) CN,κ :=

{∫
RN
+
Wκ(y)

2dy, κ ≤ κ⋆,∫
RN W (y)2dy, κ > κ⋆,

86

where Wκ and W are the unique least-energy solutions to (3.3a) and (3.3b) respectively, and87

where κ⋆ > 1 is the unique threshold predicted by Theorem 1.1 of [2] (λ∗ in their notation).88

Then, there exists a threshold A = Aε
crit,bls > 0 with the limiting behaviour89

(1.4) Aε
crit,bls ∼

(1 + κ)|Ω|√
2|∂Ω|CN,κ

ε−
N+1

2 ,90

such that for all 0 < A < Aε
crit,bls the singularly perturbed shadow GM system (1.1) admits91

two equilibrium solutions (u, ξ) = (u±ε , ξ
±
ε ) in which u±ε (x) consists of a boundary layer and92
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an interior spike, and which are henceforth referred to as BLS± solutions. Specifically93

(1.5) u±ε (x) ∼ ξ±ε

(
wc

(
dist(x,∂Ω)

ε + y±ε

)
+W κ

(
x−x0

ε

))
, ξ±ε ∼ |Ω|

ε|∂Ω|η(y±ε )+εNCN,κ
,94

where y±ε = − log z± and where 0 < z− < z+ are the unique positive solutions to the cubic95

(1.6) qε

(
6z2(z + 3) + εN−1CN,κ

|∂Ω|
(1 + z)3

)
− 6z

(
1 + κ− (1− κ)z

)
= 0,96

where qε := εA |∂Ω|
|Ω| . Moreover, if τ is sufficiently small then the BLS− solution is linearly97

stable, whereas the BLS+ solution is always linearly unstable.98

In Figure 1 we summarize the bifurcation structure of the BL and BLS solutions in N=2-99

dimensions by plotting the inhibitor ξ versus ε3/2A. The solid curves correspond to the BLS100

solutions with the dark upper (resp. light lower) component of each curve corresponding to101

the BLS− (resp. BLS+) solution. On the other hand, the dashed curves correspond to the BL102

solution with the dark (resp. light) component indicating the regions where it is stable (resp.103

unstable). The solid dot in each plot indicates the point at which the BL solution changes104

stability and corresponds to a value that is A = O(ε−1) (see Section 2 below). Moreover, the105

dashed vertical line indicates the limiting behaviour of the existence threshold found in (1.4).106

Together with the results in [7] we draw the conclusions that if A > 0 is sufficiently small then107

only the BLS− solution is linearly stable, whereas if A > 0 is sufficiently large then only the108

BL solution exists and is linearly stable. Importantly, we also observe that there is a large109

range of A values over which both the BLS− and BL solutions exist and are linearly stable.110

The remainder of the paper is organized as follows. In Section 2 we summarize the111

existence and stability results found in [7] for the BL solution. In Section 3 we use the112

method of matched asymptotic expansions to calculate existence thresholds and construct113

equilibrium BLS solutions, while in Section 4 we consider their linear stability. We include114

in Section 5 a collection of numerical simulations validating our formal asymptotics while115

also suggesting that the destabilization of the BL solution leads to the emergence of the116

BLS− solution and vice versa. Throughout our calculations, a certain half-space core problem117

previously considered in [2] and arising also in [14] is prominently featured. In Appendix A118

we numerically calculate solutions to this half-space core problem while in Appendix B we119

consider its associated non-local eigenvalue problem.120

2. Boundary Layer Solutions and their Linear Stability. In this section we summarize121

the partial results for the existence and linear stability of boundary layer solutions to (1.1)122

established in [7]. Let wc(y) be the unique homoclinic solution satisfying123

(2.1)

{
w′′
c − wc + w2

c = 0, −∞ < y <∞,

w′
c(0) = 0 and wc(y) → 0 as y → ±∞,

124

Note that the solution is explicitly given by wc(y) = 3
2sech

2(y/2). Using the method of125

matched asymptotic expansion, it can be shown that a boundary-layer solution to (1.1) is126

given by127

u ∼ ξε,blwc

(
ε−1dist(x, ∂Ω) + yε,bl

)
, ξ ∼ ξε,bl :=

1

ε

|Ω|
|∂Ω|

1

η(yε,bl)
,128
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where129

(2.2) η(yε,bl) :=

∫ ∞

yε,bl

wc(y)
2dy,130

and the shift parameter yε,bl ∈ R is chosen to satisfy the inhomogeneous boundary conditions131

−w′
c(yε,bl) + κwc(yε,bl) = εA

|∂Ω|
|Ω|

η(yε,bl).132

whose solution is explicitly given by133

yε,bl = log

(
1− κ+ 3qε +

√
(1− κ+ 3qε)2 + 4(1 + κ)qε
2(1 + κ)

)
,134

where qε = εA |∂Ω|
|Ω| . In Theorem 3.1 of [7] the authors rigorously established the existence and135

linear stability of the boundary layer solution for A > Aε
crit,bl(κ) where136

Aε
crit,bl(κ) :=

|Ω|
ε|∂Ω|

(
3− κ+

√
κ2 + 3

3 + κ−
√
κ2 + 3

)(
2κ+

√
κ2 + 3

6− κ+
√
κ2 + 3

)
.(2.3)137

Furthermore, numerical simulations suggest that the boundary layer solution is unstable for138

A < Aε
crit,bl(κ) with the resulting instabilities leading to the formation of an interior spike139

(see Section 3.3 and Figure 9 of [7]). In the remainder of this paper we will use the method140

of matched asymptotic expansions to construct this interior spike solution and determine its141

linear stability.142

3. Asymptotic Construction of Boundary-Layer Solutions with an Interior or Near-143

Boundary Spike. We seek an equilibrium solution to (1.1) consisting of a boundary layer and144

spike concentrated at an interior point. Specifically we decompose the solution as145

(3.1a) uε(x) = ξε (uε,bl (x) + uε,s (x)) ,146

where uε,bl(x) corresponds to a boundary-layer satisfying147

(3.1b)

{
ε2∆uε,bl − uε,bl + u2ε,bl = 0, x ∈ Ω,

ε∂νuε,bl + κuε,bl = A/ξε, x ∈ ∂Ω,
148

and uε,s(x) corresponds to an interior spike satisfying149

(3.1c)

{
ε2∆uε,s − (1− 2uε,bl)uε,s + u2ε,s = 0, x ∈ Ω,

ε∂νuε,s + κuε,s = 0, x ∈ ∂Ω.
150

Proceeding as in [7] we readily determine that the boundary-layer is given by151

uε,bl(x) ∼ w0(x) := wc

(
dist(x, ∂Ω)

ε
+ yε,bls

)
,152

5
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where wc(y) is the one-dimensional homoclinic solution satisfying (2.1), and where the shift153

parameter yε,bls will be determined by enforcing the inhomogeneous boundary condition.154

In contrast to uε,bl, the interior spike solution uε,s can be drastically different depending155

on the value of κ ≥ 0. To understand why, it is instructive to first consider the problem156

(3.2)

{
ε2∆Uε,κ − Uε,κ + U2

ε,κ = 0, x ∈ Ω,

ε∂νUε,κ + κUε,κ = 0, x ∈ ∂Ω,
157

for which we seek a spike solution concentrating at xε = argmaxx∈ΩUε,κ(x). In Theorems158

1.1–1.3 of [2] it was rigorously found that there exists a critical threshold κ⋆ > 1 such that as159

ε→ 0+:160

(i) If κ ≤ κ⋆ then dist(xε, ∂Ω) → εd0 for some d0 > 0, xε → x0 ∈ ∂Ω, and Uε,κ(x0+εy) →161

Wκ(y) in C1 locally, where Wκ(y) is the least-energy solution to the half-space core162

problem163

(3.3a)

{
∆Wκ −Wκ +W 2

κ = 0, Wκ > 0 y ∈ RN
+ := {(y1, ..., yN ) ∈ RN | yN > 0},

∂νWκ + κWκ = 0, y ∈ ∂RN
+ .

164

(ii) If κ > κ⋆ then xε → x0 = argmaxx∈Ωdist(x, ∂Ω) and Uε,κ(xε + εy) → W (y) in C1165

locally, where W (y) is the least-energy solution to the full-space core problem166

(3.3b)

{
∆W −W +W 2 = 0, W > 0 y ∈ RN ,

W (0) = maxy∈RN W (y), and W (y) → 0 as |y| → ∞.
167

In each of the above cases, the least-energy solution refers to that which minimizes the energy168

Iκ[u] =

∫
RN
+

(
1

2
|∇u|2 + 1

2
u2
)
− 1

p+ 1

∫
RN
+

up+1 +
κ

2

∫
RN
+

u2,169

in case (i), and170

I[u] =

∫
RN
+

(
1

2
|∇u|2 + 1

2
u2
)
− 1

p+ 1

∫
RN
+

up+1,171

in case (ii). We refer the reader to Appendix A for additional discussion on the numerical172

calculation of solutions to (3.3a) and the threshold κ⋆ > 1.173

It is evident from the above discussion that the spike solution uε,s may qualitatively change174

depending on whether κ ≤ κ⋆ or κ > κ⋆, concentrating at a point that is an O(ε) or O(1)175

distance from the boundary ∂Ω in each case respectively. In order to draw such a conclusion176

we compare (3.1c) and (3.2), in light of which we make the following assumption on the shift177

parameter.178

Assumption 1. There exists a positive constant C = O(1) such that if κ ≤ κ⋆ then the179

shift-parameter yε,bls ≫ C whereas if κ > κ⋆ then yε,bls > −C.180

6
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These assumptions simplify the subsequent asymptotic analysis by controlling the contri-181

bution of the boundary-layer uε,bl(x) near the spike location xε = argmaxx∈Ωuε,s(x). Specif-182

ically, regardless of whether κ ≤ κ⋆ or κ > κ⋆, under Assumption 1 we will always have183

that w0(xε + εy) ≪ 1 for all y = O(1). Proceeding with the method of matched asymptotic184

expansions and noting that (1− 2uε,bl(x)) ≈ 1 for x near xε, we then deduce that185

(3.4) uε,s(x) ∼W κ

(
x− x0
ε

)
:=

{
Wκ(ε

−1(x− x0)), κ ≤ κ⋆,

W (ε−1(x− x0)), κ > κ⋆.
186

where Wκ(y) and W (y) solve (3.3a) and (3.3b) respectively. Defining η(yε,bls) by (2.2) and187

(3.5) CN,κ :=

{∫
RN
+
Wκ(y)

2dy, κ ≤ κ⋆,∫
RN W (y)2dy, κ > κ⋆,

188

we thus obtain the following leading order approximation for the inhibitor189

(3.6) ξε ∼
|Ω|

ε|∂Ω|η(yε,bls) + εNCN,κ
.190

The only remaining unknown in the preceding asymptotic construction is the shift pa-191

rameter yε,bls which is determined by enforcing the boundary condition in (3.1b). Changing192

to boundary-fitted coordinates and retaining only the leading-order terms we find that yε,bls193

solves194

(3.7) − w′
c(yε,bls) + κwc(yε,bls) =

A

|Ω|
(
ε|∂Ω|η(yε,bls) + εNCN,κ

)
.195

This nonlinear equation is readily rewritten as a cubic in the positive unknown z = exp(−yε,bls)196

by noting that197

(3.8) wc(yε,bls) =
6z

(1 + z)2
, w′

c(yε,bls) = −6z(1− z)

(1 + z)3
, η(yε,bls) =

6z2(3 + z)

(1 + z)3
,198

with which (3.7) becomes199

(3.9) 6z
(
1 + κ− (1− κ)z

)
= qε

(
6z2(z + 3) + εN−1CN,κ

|∂Ω|
(1 + z)3

)
, qε := εA

|∂Ω|
|Ω|

.200

It is easy to see that there is an upper threshold for qε below which (3.9) always has two positive201

solutions 0 < z− < z+, and above which it has no positive solutions. Since ε≪ 1, we see that202

z− ≪ 1 whereas z+ is bounded above by 1+κ
1−κ when κ < 1 but may become arbitrarily large203

for κ ≥ 1. Figure 2 illustrates these observations in which the dashed black curve indicates204

the left-hand-side of (3.9) whereas the coloured curves correspond to the right-hand-side for205

different values of qε shown in the legend.206
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Figure 2: Plots of the left-hand-side (dashed) and right-hand-sides (solid) of the cubic equation
(3.9) for (left) κ = 0.4, (middle) κ = 1.2, and (right) κ = 10. The plots illustrate the existence
of a threshold for qε below which the cubic admits exactly two positive real roots, and beyond
which it has none. In each plot ε = 0.02 and N = 2.

3.1. Leading Order Behaviour of the Shift Parameter. In this subsection we determine207

a leading order expression for the shift parameter yε,bls solving (3.7). Let208

(3.10) A = εγ−1A0, qε = εγq0, q0 = A0
|∂Ω|
|Ω|

,209

so that the cubic equation (3.9) becomes210 ( q0CN,κ

|∂Ω| ε
γ+N−1 + 6q0ε

γ
)
z3+

(
3
q0CN,κ

|∂Ω| ε
γ+N−1 + 18q0ε

γ + 6(1− κ)
)
z2

+
(
3
q0CN,κ

|∂Ω| ε
γ+N−1 − 6(1 + κ)

)
z +

q0CN,κ

|∂Ω| ε
γ+N−1 = 0.

(3.11)211

We seek strictly positive solutions to (3.11) in three distinct cases: γ > 0, γ = 0, and γ < 0.212

In each case, we consider only those solutions for which Assumption 1 is satisfied.213

Case I: Suppose that γ > 0. Neglecting higher order terms in (3.11) we obtain214

6q0ε
γz3︸ ︷︷ ︸

(I)

+
(
18q0ε

γ + 6(1− κ)
)
z2︸ ︷︷ ︸

(II)

− 6(1 + κ)z︸ ︷︷ ︸
(III)

+
q0CN,κ

|∂Ω| ε
γ+N−1︸ ︷︷ ︸

(IV)

= 0.215

This always admits one positive solution obtained by balancing terms (III) and (IV) and given216

by217

(3.12a) z ∼ z− :=
q0CN,κ

6(1 + κ)|∂Ω|
εγ+N−1

218

Another positive solution depends on whether 0 ≤ κ < 1, κ = 1, or κ > 1 and is obtained219

by balancing terms (II) and (III), (I) and (III), or (I) and (II) respectively. The resulting220
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solution is then given by221

(3.12b) z ∼ z+ :=


1+κ
1−κ , 0 ≤ κ < 1,√

2
q0
ε−γ/2, κ = 1,

κ−1
q0
ε−γ , κ > 1

222

In light of Assumption 1 we will neglect the solutions corresponding to z ∼ z+.223

Case II: Suppose now that γ = 0. The cubic (3.11) then becomes224

6q0z
3︸ ︷︷ ︸

(I)

+
(
18q0 + 6(1− κ)

)
z2︸ ︷︷ ︸

(II)

− 6(1 + κ)z︸ ︷︷ ︸
(III)

+
q0CN,κ

|∂Ω| ε
N−1︸ ︷︷ ︸

(IV)

= 0.225

As in Case I above we balance (III) and (IV) to get the positive solution226

(3.13a) z ∼ z− :=
q0CN,κ

6(1 + κ)|∂Ω|
εN−1.227

Moreover, we can find an additional positive solution by balancing terms (I), (II), and (III).228

This yields a quadratic from which we readily obtain the remaining positive solution229

(3.13b) z ∼ z+ := −
(
1− κ

2q0
+

3

2

)
+

√(
1− κ

2q0
+

3

2

)2

+
1 + κ

q0
230

In contrast to Case I above, the positive solution z ∼ z+ satisfies Assumption 1 when κ > κ⋆.231

Case III: Finally, we consider the case when γ < 0 for which (3.11) becomes232

(3.14) 6q0z
3︸ ︷︷ ︸

(I)

+18q0z
2︸ ︷︷ ︸

(II)

+
(
3
q0CN,κ

|∂Ω| ε
N−1 − 6(1 + κ)ε−γ

)
z︸ ︷︷ ︸

(III)

+
q0CN,κ

|∂Ω| ε
N−1︸ ︷︷ ︸

(IV)

= 0.233

Notice that (III) is the only term that may be negative, and furthermore this is possible only234

when γ ≥ 1 − N . We assume for the moment that the inequality is strict and will show235

that in fact γ ≥ 1−N
2 is required in order to have any positive solutions. In such a case, any236

positive solution will, to leading order in ε ≪ 1, require balancing the negative term (III).237

An immediate consequence is that z ≪ 1. Hence we can neglect term (I) and this yield a238

quadratic with roots239

(3.15) z ∼ z± =
1 + κ

6q0
ε−γ ± ε−γ

√(
1 + κ

6q0

)2

−
εN−1+2γCN,κ

18|∂Ω|
.240

We immediately see that γ ≥ 1−N
2 is necessary to get two positive real roots. Moreover, at the241

threshold value of γ = 1−N
2 we obtain an upper bound for q0 and hence for qε. Specifically,242

we conclude that the cubic (3.11) has exactly two positive solutions provided that243

(3.16) 0 < qε ≤ q⋆0ε
1−N
2 , q⋆0 := (1 + κ)

√
|∂Ω|
2CN,κ

,244

and it has no positive solutions otherwise, which establishes (1.4).245
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Remark 3.1. We remind the reader that solutions with yε,bls ∼ − log z± will be referred to246

as BLS± solutions respectively.247

3.2. Leading Order Behaviour of the Inhibitor. We now turn our attention towards de-248

termining the leading order behaviour of the inhibitor ξε given by (3.6) . The main idea249

throughout this calculation is that the contribution of the boundary layer (mediated by250

η(yε,bls)) relative to that of the interior spike (mediated by CN,κ) depends on the magnitude251

of the shift-parameter yε,bls.252

Consider first the case of BLS− solutions when γ > 1−N
2 . In this case z ∼ z− = O(εγ+N−1)253

so that (3.8) implies that η(yε,bls) = O(ε2N+2γ−2). Since γ > 1−N
2 we deduce that ε2N+2γ−1 ≪254

εN and therefore255

(3.17) ξε ∼ ξ− :=
|Ω|
CN,κ

ε−N .256

On the other hand, in the case of BLS+ solutions, for any κ ≥ 0 and 1−N
2 < γ < 0 we find257

that η(yε,bls) ∼ 2(1+κ
q0

)2ε−2γ , and since ε−2γ+1 ≫ εN we deduce that258

(3.18) ξε ∼ ξ+ :=
|Ω|

2|∂Ω|

(
q0

1 + κ

)2

ε2γ−1.259

When γ = 0 we must restrict our attention to κ > κ⋆ in order for the BLS+ solution to satisfy260

Assumption 1. In such a case z ∼ z+ = O(1) is given by (3.13b) so that η(yε,bls) = O(1) and261

we deduce262

(3.19) ξε ∼ ξ+ :=
|Ω|
|∂Ω|

(z+ + 1)3

6z2+(z+ + 3)
ε−1.263

In summary, for γ > 1−N
2 the dominant contribution to the inhibitor for the BLS− (resp.264

BLS+) solution comes from the interior spike (resp. boundary layer). In contrast, when265

γ = 1−N
2 we find that the contribution to the inhibitor from the interior spike and the266

boundary layer are comparable. Indeed, when γ = 1−N
2 we find that z± = O(ε

N−1
2 ) ≪ 1 and267

hence η(yε,bls) ∼ 18z2± = O(εN−1) so that268

(3.20) ξε ∼ ξ± :=
|Ω|

18|∂Ω|ζ2± + CN,κ
ε−N , ζ± :=

1 + κ

6q0
±

√(
1 + κ

6q0

)2

−
CN,κ

18|∂Ω|
.269

4. Linear Stability of Boundary-Layer with an Interior Spike. We next consider the270

linear stability of the solutions constructed in Section 3 above. Let u = uε + eλtϕ(x) and271

ξ = ξε + eλtψ so that retaining only linear terms gives272

(4.1) ψ =
2

(1 + τλ)|Ω|

∫
Ω
uεϕdx ∼ 2ξε

(1 + τλ)|Ω|
(
εj[ϕ] + εNJκ[ϕ]

)
,273

where we define the linear functionals274

(4.2a) Jκ[ϕ] :=

{∫
RN
+
Wκ(y)ϕ(x0 + εy)dy, κ ≤ κ⋆,∫

RN W (y)ϕ(x0 + εy)dy, κ > κ⋆.
275
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and276

(4.2b) j[ϕ] :=

∫ ∞

0
wc(y + yε,bls)

∫
∂Ω
ϕ(σ + εyn̂σ)dσdy,277

where n̂σ denotes the inward unit normal at σ ∈ ∂Ω. Substituting into (1.1) and keeping only278

the linear terms then gives279

(4.3) ε2∆ϕ− ϕ+ 2(w0 +W κ)ϕ− 2ξε
εj[ϕ] + εNJκ[ϕ]

(1 + τλ)|Ω|
(w0 +W κ)

2 = λϕ, x ∈ Ω.280

The relative contributions of the boundary-layer or spike are determined by whether κ ≤ κ⋆281

or κ > κ⋆ as well as whether the shift parameter is yε,bls ∼ − log z+ or yε,bls ∼ − log z−.282

In the remainder of this section we catalogue the resulting non-local eigenvalue problems283

in each of these cases. In all, four distinct cases need to be considered, with the resulting284

NLEP indicating unconditional linear stability or instability in three of these. Throughout285

the remainder of this paper we assume that τ = 0 so as to avoid oscillatory instabilities and286

remark that stability should hold more generally provided that τ is sufficiently small.287

Case A: Suppose that yε,bls ∼ − log z−, γ >
1−N
2 , and κ ≥ 0. Then ξε ∼ ξ− = |Ω|

CN,κ
ε−N and288

w0(x) ∼ 6z−e
−ε−1dist(x,∂Ω) ≪ 1 throughout Ω. Moreover, since z− = O(εγ+N−1) we deduce289

j[ϕ] = O(εγ+N−1) so that the boundary layer contribution in (4.3) is negligible. Introducing290

appropriate inner variables depending on whether 0 ≤ κ ≤ κ⋆ or κ > κ⋆ we obtain the NLEPs291

292

(4.4a)

∆Φ− Φ+ 2WκΦ− 2

∫
RN+

WκΦdy∫
RN+

W 2
κdy

W 2
κ = λΦ, y ∈ RN

+

−∂yNΦ+ κΦ = 0, yN = 0,

(0 ≤ κ ≤ κ⋆),293

and294

(4.4b)

∆Φ− Φ+ 2WΦ− 2
∫
RN WΦdy∫
RN W 2dy

W 2 = λΦ, y ∈ RN

Φ → 0, |y| → ∞,
(κ > κ⋆).295

If κ > κ⋆ then the classical NLEP theory (see for example Theorem 3.1 in [32]) implies296

that the NLEP admits only eigenvalues with a negative real part. On the other hand, for297

κ ≤ κ⋆ a similar argument (see Appendix B) likewise implies that the all eigenvalues of the298

NLEP have negative real part. The solution is therefore linearly stable for all κ ≥ 0.299

Case B: Suppose now that yε,bls ∼ − log z+, γ = 0, and κ > κ⋆. In this case z+ = O(1) and300

ξε = O(ε−1) is given by (3.19). To leading order (4.3) then becomes301

ε2∆ϕ− ϕ+ 2(w0 +W )ϕ− (z+ + 1)3

3z2+(z+ + 3)|∂Ω|
(
j[ϕ] + εN−1Jκ[ϕ]

)
(w0 +W )2 = λϕ, x ∈ Ω.302

Seeking an eigenfunction of the form ϕ(x) ∼ Φ(ε−1(x− x0)) we find that Φ must satisfy303

(4.5) ∆Φ− Φ+ 2WΦ = λΦ, y ∈ RN ; Φ → 0, |y| → ∞.304
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Since this always admits an unstable eigenvalue (see for example Lemma 13.5 in [32]) we305

deduce that this solution is always linearly unstable.306

Case C: Next we suppose that yε,bls ∼ − log z+,
1−N
2 < γ < 0, and κ ≥ 0. In this case307

z+ = 1+κ
3q0

ε−γ and ξε = O(ε2γ−1) is given by (3.18). Moreover since z+ ≪ 1 and hence308

w0 = O(ε−γ) ≪ 1 in Ω, we deduce that j[ϕ] = O(ε−γ). Assuming κ > κ⋆ and seeking a309

solution of the form ϕ(x) ∼ Φ(ε−1(x − x0)) we recover (4.5) so that this solution is always310

unstable. On the other hand, if 0 ≤ κ ≤ κ⋆ then seeking an eigenfunction of the form311

ϕ(x) ∼ Φ(ε−1(x− x0)) gives the NLEP312

(4.6) ∆Φ− Φ+ 2WκΦ = λΦ, y ∈ RN
+ ; −∂yΦ+ κΦ = 0, yN = 0,313

which likewise always has an unstable eigenvalue (see Appendix B below). Hence the solution314

in this case is always linearly unstable.315

Case D: Finally we suppose that yε,bls ∼ − log z±, κ ≥ 0, and γ = 1−N
2 . In this case316

z± = ζ±ε
N−1

2 where ζ± = O(1) and ξε = O(ε−N ) are given by (3.20). Since z± ≪ 1 we317

have w0(x) ∼ 6z±e
−ε−1dist(x,∂Ω) = O(ε

N−1
2 ) so that j[ϕ] = O(ε

N−1
2 ). The contribution of w0318

and j[·] can then be shown to be negligible for both 0 ≤ κ ≤ κ⋆ and κ > κ⋆. Introducing319

appropriate inner variables in both the 0 ≤ κ ≤ κ⋆ and κ > κ⋆ cases then gives the NLEPs320

(4.7a)

∆Φ− Φ+ 2WκΦ− 2χ±

∫
RN+

WκΦdy∫
RN+

W 2
κdy

W 2
κ = λΦ, y ∈ RN

+

−∂yNΦ+ κΦ = 0, yN = 0,

(0 ≤ κ ≤ κ⋆),321

and322

(4.7b)

∆Φ− Φ+ 2WΦ− 2χ±

∫
RN WΦdy∫
RN W 2dy

W 2 = λΦ, y ∈ RN

Φ → 0, |y| → ∞,
(κ > κ⋆).323

where324

(4.7c) χ± :=
CN,κ

18|∂Ω|ζ2± + CN,κ
.325

Both the classical full-space NLEP theory (see Theorem 3.1 in [32]), as well as the half-326

space NLEP theory discussed in Appendix B imply that the NLEP is linearly stable provided327

that χ± > 1/2. Notice that we can rewrite χ± as328

(4.8) χ± =
1

2

ω

1±
√
1− ω

, ω :=
CN,κ

18|∂Ω|

(
6q0
1 + κ

)2

.329

Since q0 ≤ q⋆0 where q⋆0 is the existence threshold given by (3.16), we deduce that 0 < ω ≤ 1330

and therefore331

(4.9)

{
0 ≤ χ+ ≤ 1

2 , χ+|ω=0 = 0, χ+|ω=1 =
1
2 ,

1
2 ≤ χ− ≤ 1, χ−|ω=0 = 1, χ−|ω=1 =

1
2 .

332

We thus conclude that the BLS+ solution is always linearly unstable whereas the BLS− solu-333

tion is always linearly stable (provided that it exists).334
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Figure 3: Numerical simulations illustrating the emergence of a boundary layer with interior
spike from the destabilization of a boundary layer when A = 0.95Aε

crit,BL, ε = 0.02, and
τ = 0, and κ = 0.4. In the left plot the blue curve (with corresponding left axis) and orange
curve (with corresponding right axis) indicate values of the activator peak value and inhibitor
respectively. The dashed blue and orange horizontal lines indicate values predicted by the
BLS− asymptotics. Insets show the activator at t = 10 and t = 40. The two right-most
plots show cross sections of the activator passing through the spike at t = 0 (top) and t = 45
(bottom), comparing numerical results (solid) with the asymptotic solutions (dashed).
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Figure 4: Description as in Figure 3 with κ = 10.

5. Numerical Simulations. We validate the asymptotic analysis of the preceding sections335

by simulating the time-dependent system (1.1) using the finite element PDE solver FlexPDE336

7 [18]. Throughout our numerical experiments we choose Ω ∈ R2 to be the unit disk, ε =337

0.02, and τ = 0. All asymptotic solutions are computed by directly solving the cubic (1.6)338

numerically, including the ε-dependent thresholds Aε
crit,bl and A

ε
crit,bls.339

In [7] it was previously observed that when A < Aε
crit,bl the BL solution is destabilized340

and transitions to a solution consisting of a boundary layer and an interior spike, which we341

anticipate corresponds to the BLS− solution. To support this prediction we perform several342
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Figure 5: Numerical simulations illustrating the destabilization of the BLS− solution as A
is increased beyond the existence threshold Aε

crit for ε = 0.02, τ = 0, and κ = 0.4. When
t = 0 a value of A = 0.98Aε

crit is used and this is increased by 0.02Aε
crit at discrete times

indicated by the vertical red dotted lines in the left plot. In the left plot the blue curve (with
corresponding left axis) and orange curve (with corresponding right axis) indicate values of the
activator peak value and inhibitor respectively. The dashed blue and orange horizontal lines
indicate values predicted by the BL asymptotics. Insets show the activator at t = 60, 170, 310.
The two right-most plots show cross sections of the activator passing through the spike at
t = 0 (top) and t = 310 (bottom), comparing numerical results (solid) with the asymptotic
solutions (dashed).

simulations starting with the BL solution and a value of A = 0.95Aε
crit,bl. In all cases we find343

that after the BL solution was destabilized it tends to the BLS− solution and we illustrate this344

in Figures 3 and 4 for κ = 0.4 and κ = 10 respectively. Note that when κ > κ⋆ the spike in the345

BLS solution should concentrate at argmaxx∈Ωdist(x, ∂Ω). Our numerical simulations indicate346

that, upon destabilizing the boundary layer, the interior spike forms near the boundary and347

then slowly drifts toward the center of the domain.348

The destabilization of the BLS− solution coincides with values of A > Aε
crit which also349

corresponds to the existence threshold. Since we don’t have a candidate solution beyond this350

threshold we instead perform numerical simulations in which A is slowly increased beyond the351

existence threshold. We find that the BLS− solution is stable when A < Aε
crit but transitions352

to the BL solution when A sufficiently exceeds the threshold A < Aε
crit. When κ < κ⋆ we353

find that values of A ≈ 1.1Aε
crit are needed to destabilize the BLS− solution whereas values354

of A ≈ Aε
crit are needed for values of κ > κ⋆. The large error for κ < κ⋆ is likely due to355

errors in the approximate solution to the interior spike equation (3.1c). Specifically, since the356

spike concentrates near the boundary for κ < κ⋆ there may be a non negligible error from357

the boundary layer in (3.1c). We illustrate the transition from the BLS− to BL solutions in358

Figures 5 and 6 for κ = 0.4 and κ = 10 respectively.359

Finally, in all our simulations we observed that the BLS+ solution is linearly unstable.360

Moreover, we found that in some cases the BLS+ solution collapsed to the BL solution whereas361

in others it transitioned into the BLS− solution. A systematic investigation of the dynamics of362
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Figure 6: Description as in Figure 5 with κ = 10.

the BLS+ solution, and in particular whether it leads to a BLS− or BL solution post-instability,363

is beyond the scope of this paper.364

6. Conclusion. In this paper we have used the method of matched asymptotic expansions365

to construct a solution consisting of a BL and an interior spike to the singularly perturbed366

shadow GM system in a bounded domain Ω ⊂ RN (N ≥ 2). These solutions were previously367

numerically observed to arise after the destabilization of a BL solution when the flux A is368

reduced below a certain stability threshold [7]. Our results improve on this previous numerical369

observation by providing an asymptotic characterization of both the structure and linear370

stability of these emergent solutions. Specifically, in Section 3 we found that the shadow GM371

system (1.1) supports two types of solutions consisting of a BL and an interior spike, which we372

refer to as BLS− and BLS+ solutions, and which correspond to positive solutions of the cubic373

equation (1.6). These solutions exist provided that A < Aε
crit where A

ε
crit = O(ε−(N+1)/2). In374

addition, in Section 4 the linear stability of the BLS± solutions was determined by considering375

certain full- or half-space NLEPs from which we deduced that the BLS+ solution is always376

linearly unstable whereas the BLS− solution is always (provided it exists) linearly stable.377

Interestingly, the BL solution was previously shown to be linearly stable provided that A >378

Aε
crit,BL = O(ε−1) [7] which implies that for N ≥ 2 there is an asymptotically large range of379

A > 0 values over which both the BL solution and the BLS− solutions exist and are linearly380

stable.381

We conclude with a few suggestions for future research. The first is to extend the present382

analysis to the case where τ is larger and for which the BLS− solution may exhibit a Hopf383

bifurcation. In this direction it would be interesting to see if oscillatory instabilities can384

lead to a periodic switching behaviour between the BLS− and BL solutions that are both385

linearly stable over the large range Aε
crit,BL < A < Aε

crit. A second collection of open questions386

involve the dynamics of the BLS± solutions beyond the onset of instabilities. Specifically,387

can it be shown that the BLS− solution jumps to the BL solution as A increases beyond388

Aε
crit? Moreover, it was numerically observed that the BLS+ solution (which is always linearly389

unstable) sometimes jumps to the BLS− solution and other times to the BL solution. Is there390
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a threshold value of A below which one behaviour takes place and above which the other?391

Finally, the present study has considered only the shadow limit for which the inhibitor is well392

mixed. In the case of homogeneous Neumann or Dirichlet boundary conditions it is known393

that multi-spike solutions can be sustained for finite values of D [10]. A natural direction394

for future work is therefore to consider the case of a finite inhibitor diffusivity and determine395

the existence and linear stability, paying special attention to the role of the boundary layer,396

of multi-spike solutions in the case of inhomogeneous boundary conditions considered in this397

paper.398

Acknowledgments. D. Gomez was supported by the Simons Foundation Math + X grant399

and NSERC. J. Wei was partially supported by NSERC.400

REFERENCES401

[1] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form language: A domain-402
specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw.,403
40(2), mar 2014.404

[2] H. Berestycki and J. Wei. On singular perturbation problems with robin boundary condition. Annali405
della Scuola Normale Superiore di Pisa-Classe di Scienze, 2(1):199–230, 2003.406

[3] R. Dillon, P. Maini, and H. Othmer. Pattern formation in generalized turing systems. i: Steady-state407
patterns in systems with mixed boundary conditions. Journal of Mathematical Biology, 32, 04 1994.408

[4] A. Doelman, R. A. Gardner, and T. Kaper. Large stable pulse solutions in reaction-diffusion equations.409
Indiana U. Math. Journ., 50(1):443–507, 2001.410

[5] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12(1):30–39, Dec 1972.411
[6] D. Gomez, S. Iyaniwura, F. Paquin-Lefebvre, and M. Ward. Pattern forming systems coupling linear bulk412

diffusion to dynamically active membranes or cells. Philosophical Transactions of the Royal Society413
A, 379(2213):20200276, 2021.414

[7] D. Gomez, L. Mei, and J. Wei. Boundary layer solutions in the gierer–meinhardt system with inhomoge-415
neous boundary conditions. Physica D: Nonlinear Phenomena, 429:133071, 2022.416

[8] D. Gomez, M. J. Ward, and J. Wei. The linear stability of symmetric spike patterns for a bulk-membrane417
coupled Gierer-Meinhardt model. SIAM J. Appl. Dyn. Syst., 18(2):729–768, 2019.418

[9] D. Gomez and J. Wei. Multi-spike patterns in the gierer–meinhardt system with a nonzero activator419
boundary flux. Journal of Nonlinear Science, 31(2):37, Mar 2021.420

[10] D. Iron, M. J. Ward, and J. Wei. The stability of spike solutions to the one-dimensional Gierer-Meinhardt421
model. Phys. D, 150(1-2):25–62, 2001.422

[11] A. L. Krause, V. Klika, P. K. Maini, D. Headon, and E. A. Gaffney. Isolating patterns in open reaction-423
diffusion systems. arXiv preprint arXiv:2009.13114, 2020.424

[12] H. Levine and W.-J. Rappel. Membrane-bound Turing patterns. Phys. Rev. E (3), 72(6):061912, 5, 2005.425
[13] A. Madzvamuse, A. H. W. Chung, and C. Venkataraman. Stability analysis and simulations of coupled426

bulk-surface reaction-diffusion systems. Proc. A., 471(2175):20140546, 18, 2015.427
[14] P. K. Maini, J. Wei, and M. Winter. Stability of spikes in the shadow gierer-meinhardt system with robin428

boundary conditions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(3):037106, 2007.429
[15] H. Meinhardt and A. Gierer. Pattern formation by local self-activation and lateral inhibition. BioEssays,430

22:753–760, 08 2000.431
[16] J. D. Murray. Mathematical biology. II, volume 18 of Interdisciplinary Applied Mathematics. Springer-432

Verlag, New York, third edition, 2003. Spatial models and biomedical applications.433
[17] Y. Nishiura. Far-from Equilibrium dynamics: Translations of mathematical monographs, volume 209.434

AMS Publications, Providence, Rhode Island, 2002.435
[18] PDE Solutions Inc. FlexPDE 7. URL: http://www.pdesolutions.com.436
[19] J. E. Pearson. Complex patterns in a simple system. Science, 261(5118):189–192, 1993.437
[20] I. Prigogine and R. Lefever. Symmetry breaking instabilities in dissipative systems. ii. The Journal of438

16

This manuscript is for review purposes only.



Chemical Physics, 48(4):1695–1700, 1968.439
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Appendix A. The Half-Space Core Problem.469

Least energy solutions of the half-space core problem (3.3a) are expected to give the local470

profile of equilibrium near-boundary spike solution to (3.1c) provided that κ does not exceed471

the existence threshold κ⋆ > 1 predicted by Theorem 1.1 of [2]. Consider the more general472

half-space core problem473

(A.1)

{
∆u− u+ up = 0, u > 0, in RN

+ := {(y′, yN ) ∈ RN−1 × R | yN > 0}
u ∈ H1(RN

+ ), − ∂u
∂yN

+ κu = 0, on ∂RN
+ ,

474

for select values of p and N satisfying 1 < p < (N + 2)/(N − 2) if N ≥ 3 and p > 1 if N = 2.475

p
N

2 3 4 5

2 1.035 1.117 1.272 1.692

3 1.109 1.485 —– —–

Table 1: Numerically computed existence threshold κ⋆ for the half-space core problem (3.3a)
for select values of p and N .
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Figure 7: (A) Relative difference between energies Iκ[Wκ] and 2I0[W ] as a function of κ for
select values of p and N . (B) Distance from ∂RN

+ of the half-space core solutions maximum
versus κ for select values of p and N . (C)

The corresponding energy is given by476

Iκ[u] =

∫
RN
+

(
1

2
|∇u|2 + 1

2
u2
)
dy − 1

p+ 1

∫
RN
+

up+1dy +
κ

2

∫
RN
+

u2dy.477

When κ = 0 the least energy solution satisfying (A.1) is given by the solution W of the full-478

space core problem (3.3b). Importantly, denoting by Wκ the least energy solution to (A.1),479

we have the following upper bound(see Section 2 of [2])480

(A.2) Iκ[Wκ] < 2I0[W ], 0 ≤ κ < κ⋆.481

In this appendix we numerically compute solutions to the half-space core problem (A.1).482

Specifically, we use the κ = 0 solution to initialize a numerical continuation in κ > 0 and483

use the upper bound (A.2) as a stopping criteria with which the critical threshold κ⋆ can be484

numerically approximated.485

When N = 1 the unique radially symmetric least energy solution to (3.3b) is explicitly486

given by487

(A.3) w(y) =

(
p+ 1

2

) 1
p−1

sech
2

p−1

(
p− 1

2
y

)
.488

If instead N ≥ 2 then this solution must be calculated numerically which, by leveraging its489

known radial symmetry, reduces to numerically solving the one-dimensional boundary value490

problem491

(A.4)

{
w′′ + (N − 1)ρ−1w′ − w + wp = 0, w > 0, in ρ > 0,

w′(0) = 0, w(ρ) ∼ Cρ−
N−1
2 e−ρ(1 +O(ρ−1)), as ρ→ ∞.

492
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where ρ = |y|. We can approximate (A.4) on a truncated domain 0 < ρ < L with the boundary493

condition w′(L) + w(L) = 0. Treating the dimension N ≥ 1 as a continuous parameter in494

(3.3b) and starting with the known solution (A.3) for N = 1, we can then slowly increment495

N ≥ 1 and use the previously calculated solution as an initial guess with which to solve the496

next nonlinear boundary value problem. We use this method to calculate the full-space core497

solutions for given values of N and p by choosing a truncated domain length of L = 20 and498

using the SciPy boundary value solver solve bvp [28].499

Next we consider the half-space core problem (A.1). By the moving plane method one500

can show that solutions to (A.1) are in fact symmetric in y′ and therefore u(y) = u(r, yN )501

where r = |y′|. As a consequence we can replace the N -dimensional problem (A.1) with the502

two dimensional problem503

(A.5)

{
∂2u
∂y2N

+ 1
rN−2

∂
∂r

(
rN−2 ∂u

∂r

)
− u+ up = 0, u > 0, in r > 0, yN > 0,

− ∂u
∂yN

+ κu = 0 on yN = 0, u→ 0 as r → ∞.
504

Letting L1 > 0 and L2 > 0 be sufficiently large we seek an approximate numerical solution505

to (A.5) by first introducing the truncated domain 0 < r < L1 and 0 < yN < L2 and then506

imposing homogeneous Dirichlet boundary conditions on (r, yN ) ∈ {L1}×(0, L2) and (r, yN ) ∈507

(0, L1) × {L2} and homogeneous Neumann boundary conditions on (r, yN ) ∈ {0} × (0, L2).508

Letting ϕ be a smooth test function vanishing on the boundaries r = L1 and yN = L2 we509

obtain the weak formulation510

∫ L2

0

∫ L1

0
∇̃ϕ · ∇̃u rN−2drdyN + κ

∫ L1

0
ϕu
∣∣
yN=0

rN−2dr

+

∫ L2

0

∫ L1

0
ϕu rN−2drdyN −

∫ L2

0

∫ L1

0
ϕup rN−2drdyN = 0,

(A.6)

511

where ∇̃ = ∂2

∂r2
+ ∂2

∂y2N
.512

We solve (A.6) numerically by using the finite element method which we implement with513

FEniCSx [24, 23, 1]. Specifically, we do this by starting with the numerically calculated514

solution W of (3.3b) when κ = 0 and then slowly incrementing κ ≥ 0, using the previous515

solution as an initial guess to solve the next nonlinear variational problem (A.6), until (near)516

equality is reached in (A.2). Using linear Lagrange elements on a structured mesh with517

(L1, L2) = (10, 20) consisting of 1000 and 2000 nodes in the x and y directions respectively we518

obtain the numerical approximations to κ⋆ shown in Table 1. In Figure 7a we plot |Iκ[Wκ]−519

2I0[W ]|/(2I0[W ]) as a function of κ for select values of N and p which illustrates that near520

equality in (A.2) is reached as κ approaches κ⋆. Additionally, in Figure 7b we plot the yN -521

component of the point where Wκ attains its global maximum which shows that this value522

appears to diverge as κ → κ⋆. In Figure 7c we plot values of
∫
RN
+
WκL −1Wκdy where the523

linear operator L is defined in (B.3) (see Appendix B for its relevance to the stability of the524

associated half-space NLEP). Finally, in Figure 8 we plot the numerically computed half-space525

core solution for (p,N) = (2, 2) at a sample of κ ≤ κ⋆ values.526
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Figure 8: Numerically computed half-space core solution for (p,N) = (2, 2).

Appendix B. The Half-Space Non-Local Eigenvalue Problem.527

Let 0 ≤ κ ≤ κ⋆. In this appendix we outline the spectral properties of the half-space528

eigenvalue problem529

(B.1)

{
LΦ = λΦ, y ∈ RN

+ ,

−∂yNΦ+ κΦ = 0, yN = 0,
530

and the half-space NLEP531

(B.2)

LΦ− µ
1+τλ

∫
RN+

WκΦdy∫
RN+

W 2
κdy

W 2
κ = λΦ, y ∈ RN

+ ,

−∂yNΦ+ κΦ = 0, yN = 0,

532

where we define the linear operator533

(B.3) L := ∆− 1 + pW p−1
κ .534

We first demonstrate that (B.1) admits an unstable eigenvalue. Indeed, if λ0 is the largest535

eigenvalue of (B.1) then536

λ0 ≥ −

∫
RN
+
{|∇Wκ|2 +W 2

κ − pW p+1
κ }dy + κ

∫
∂RN

+
W 2

κdy∫
RN
+
W 2

κdy
= (p− 1)

∫
RN
+
W p+1

κ dy∫
RN
+
W 2

κdy
> 0.537

It is easy to see that Wκ satisfies the NLEP (B.2) with λ = 0 when µ = 1. This suggests538

that µ = 1 is, as in the case of the full-space NLEP, the critical threshold for linear stability.539

In fact, under the following two assumption more can be said.540

Assumption 2. The operator L has a inverse in the class of axially symmetric functions.541
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Assumption 3. The quantity
∫
RN
+
WκL −1Wκdy is positive.542

Theorem B.1. Let Assumptions 1 and 2 above be satisfied.543

1. If µ < 1 then the NLEP (B.2) has a positive eigenvalue λ0 > 0.544

2. If µ > 1, then there exists a unique τc > 0 such that for τ < τc the NLEP (B.2) is stable, for545

τ = τc it has a pair of purely imaginary eigenvalues, and for τ > τc it is unstable.546

The proof of this Theorem is similar to that found in [30]. Additionally, see [14] for a547

similar result for the one-dimensional problem with homogeneous Robin boundary conditions,548

and Sections 3.5 and 3.6 of [31] for a discussion of NLEPs with general boundary conditions.549

We numerically observe that both assumptions required for this theorem hold for p = 2 and550

2 ≤ N ≤ 3 (see Figure 7c) though it remains an open problem to rigorously show this is true.551
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