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We study the properties of single boundary spike solutions for the following
singularly perturbed problem

Ay —u+uP = in 2,
uw>0 in {2 and ﬁ:o on 012.
v

It is known that at a non-degenerate critical point of the mean curvature function
H(P), there exists a single boundary spike solution. In this paper, we show that the
single boundary spike solution is unique and moreover it has exactly (N — 1) small
eigenvalues. We obtain the exact asymptotics of the small eigenvalues in terms of
H(P).

1. Introduction

Of concern are properties of boundary spike solutions of the following singularly
perturbed Neumann problem,

EAu—u+u’ =0 in £,
u>0 in {2 and %20 on 02, (1)
ov
where € > 0 is a small parameter, {2 is a smooth bounded domain in RV, v(x) is the
outer normal at z € 92 and 1 <p < (N+2)/(N —2)for N >3 and 1 < p < 400
for N =1,2.

Problem (1.1) is a typical singular perturbation problem, which arises in many
branches of applied science. It can be considered as the stationary equation to the
shadow system of the Gierer-Meinhardt system (see [11]), which models biological
pattern formation. It is also known as the steady-state problem for a chemotactic
aggregation model with logarithmic sensitivity by Keller-Segel [16] (see, for exam-
ple, [20]).

Lin et al. first in [20] established the existence of least-energy solutions and Ni
and Takagi in [22] and [23] showed that, for e sufficiently small, the least-energy
solution has only one local maximum point P. and P. € 92 (therefore, the least-
energy solutions have a boundary spike layer). Moreover, H(P,.) — maxpecgq H(P)
as € — 0, where H(P) is the mean curvature of P at 92. In [24], Ni and Takagi
constructed multiple spike solutions with spikes on the boundary in an axially
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symmetric domains. In [25], the author constructed boundary spike solutions in
general domains. To state the results, we need to introduce some notation.
It is known that the solution of the following problem,
Aw—w+wP =0 inRV,
w>0, w(z)—0 as|z|— oo, (1.2)

O =
w(0) = max w(z),

is radial [10] and unique [17]. We denote this solution as w.

Let )
1 1
Je(u):e—/|Vu|2—|——/ 2o —— [ uptt (1.3)
2Ja 2Jq p+1lJg
be the energy of u € H'(£2) and
1 1
= - Vuwl|? H - — prl 14
sy =5 [ (Ve et - — [ (1.4)

be the energy of w.

A family of solutions ue of (1.1) is called level-3 if lime_.g e VN Je(uc) = 3J(w).
Certainly, least-energy solutions are level—%.

In [25], the following result was proved.

THEOREM A. If uc is a solution of (1.1) and lime_.ge N Jc(uc) = 3J(w), then,
for € sufficiently small, u. has only one local (hence global) mazrimum point P,
and P. € 0f2. Moreover, V., H(P.) — 0 as ¢ — 0, where V., is the tangential
derivative at P..

On the other hand, let Py € 02 be a non-degenerate critical point of H(P). Then,
for € sufficiently small, there exists a solution u. to (1.1) such that e NJ (uc) —
%J(w) and u. has only one local mazimum point P, and P. € 0f2. Moreover,
PE — P().

REMARK 1.1. In [8] and [30], multiple boundary spike solutions are constructed at
multiple non-degenerate critical points of H(P). On the other hand, single and mul-
tiple boundary spike solutions with degenerate critical points of H(P) are studied
in [9,12,14,18,24,29].

In this paper, we study the properties of u, constructed in theorem 1. In particu-
lar, we establish the uniqueness of u, and the small eigenvalue estimates of the asso-
ciated linearized operator. These properties are essential in the study of existence
and stability of boundary spike solutions for the corresponding reaction-diffusion
system (such as the Gierer-Meinhardt and Keller—Segel systems). See [21,28] for
progress in this direction.

From now on, we fix the point P, € 92 to be a non-degenerate critical point of
H(P).

Our first result concerns the uniqueness of u..

THEOREM 1.2. For € sufficiently small, if there are two families of level—% solutions
Ue1 and ue o of (1.1) such that P! — Py, P? — Py, where

€ Pl - € P, € P2 - € P,
ue1(Pr) rgggu,l() ue 2(P) rgggu,a()
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Boundary spike layer 1459

then we have
Pel :Pza Ue,1 = Ue,2- (15)

The second result concerns the eigenvalue estimates associated with the linearized
operator at ue,
Lo = A —1+puf™t. (1.6)

We first note the following result.

LEMMA 1.3. The following eigenvalue problem

Ap—¢+puwP ¢ =po in RY,
¢ € HY(RY), 2 _y on ORY,
oyn

(1.7)

where RY = {y = (y1,...,yn) € RN | yn > 0} admits the following set of eigen-
values
p1 >0, pr=---=un=0, pny1<0,.... (1.8)

Moreover, the space of eigenfunctions corresponding to the eigenvalue 0 is spanned
by Ow/0y;, j=1,...,N — 1.

Proof. We extend ¢ to R by reflection
¢(y17 s 7yN—1vyN) = ¢(y17 -y YN-1, _yN)
Then this lemma follows from theorem 2.12 of [19] and lemma C of [23]. O

Next we introduce an important definition. For each P € {2, we set w, p to be
the unique solution of

T
eQAu—u—pr(

ou
— =0 a12.
ov on
For each P € 042, we may assume that 9/97;(P), j=1,...,N —1, are the (N —1)-
tangential derivatives. (To avoid clumsy notations, we use 9; to denote 0/97;(P).
Sometimes we use 0 to denote any tangential derivative.)
Then we have the following result.

)=0 mo, .

THEOREM 1.4. For € sufficiently small, the following eigenvalue problem,

€2A¢e - ¢e +pu€_1¢e = Te¢e mn Qa

O, (1.10)
¢ =0 on 012,
v
admits ezactly (N —1) eigenvalues 72 < 72+ < N7 in the interval [y 11, $11],

where (11 and pn11 are given by lemma 1.3.
Moreover, we have the following asymptotic behaviour of 77,
77 ,
6—2—>770)\j, j=1,...,N -1, (1.11)
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1460 J. Wei
where A\ < Ay < --- < Ay_1 are the eigenvalues of the matriz
G(Po) = (0;0;H(Fy)),

and
—1fRN |Z|)) zn dz

"= NTI fRf Ow/0z1)?dz

(1.12)

(Here, w'(|z|) denotes the radial derivative of w with respect to |z|)
Furthermore, the eigenfunction corresponding to 72, j =1,..., N —1, is given by
the following,

N-1
B LTS 19
— 8T¢(P€)

where P. is the local mazimum point of ue, a; = (ai;,. .. ,a(N—l)j)T is the eigen-

vector corresponding to Aj, namely,
G(Po)aj:)\jaj, ]21,,N—1 (114)

REMARK 1.5. The small eigenvalues are usually called critical eigenvalues. We men-
tion that critical eigenvalues for Cahn—Hilliard equations and other elliptic problems
with small parameters have been studied in [1-7] and the references therein.

From theorem 1.2, u, is an isolated critical point of J.. From theorem 1.4, L, is
invertible. Hence u, is non-degenerate. We thus obtain the following result.

COROLLARY 1.6. u, is an isolated non-degenerate critical point of Je.

In the rest of this section, we briefly outline the proofs of theorems 1.2 and 1.4 and
the organization of the paper. The main idea is to reduce the problem in H?({2) into
a finite-dimensional problem on the space of spikes and then compute the number
of critical points for a finite-dimensional problem. To this end, we use the classical
Liapunov—Schmidt reduction method, which has been developed in [29] and [14] for
boundary spikes (a similar method has been used in [13,26]).

We divide the proofs into the following steps.

STEP A. Choose good approximate solutions.

Fix P € 012. We choose w, p defined at (1.9) to be the approximate solution.
Note that w,_p satisfies the Neumann boundary condition and w, p is a C? function
in P. Moreover, by differentiating the equation (1.9) with respect to P, we see that
Ojw, p also satisfies the Neumann boundary condition.

The difference between w, p and w plays a very important role in the proof of
theorem 1. We collect the properties of we p in §2.

STEP B. The idea now is to write any single boundary spike solution u. in the
following form
Ue = We,p + D, (1.15)

where P is suitably chosen (near Py) and & is small. In this way, the problem (1.1)
can be reduced to looking for (P, ®).
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Boundary spike layer 1461

We first introduce some notation.

Set
flu):=uP, Q. p:={y|ey+ P e 02}. (1.16)
Let H2(£2. p) be the Hilbert space defined by
9 9 ou
H (2 p):=1u€ H* ({2 p) = Oondf2epy. (1.17)
Define
Se(u) :=Au —u+ f(u) (1.18)

for u € H2(£2. p).
Then substituting (1.15) into (1.1), we see that (1.1) is equivalent to

S (wep+®) =0, d € HX(N. p), (1.19)
where (P, @) are suitably chosen.
STEP C. Fixing any P € 942, we solve @ first.

It is natural to solve @ by using contraction mapping theorem. The problem is
the linearized operator

Le’p = Sé(we’p) ZA— 1—|—f/(w£’p) (120)

is not uniformly invertible from HB(QE’]D) to LQ(QE’p). To this end, we solve the @
module approximate kernel. This procedure has been done in [29] and [14].
Set
Kep:=span{Qwep | j=1,...,N —1} C H2( p) (1.21)

to be the approximate kernel and
Cepi=span{dwep |j=1,...,N—1} C L*(2.p) (1.22)

to be the approximate cokernel.
Let
A:={Pe€dn||P- Py < s}, (1.23)

where ¢ is so small such that Py is the only critical point of H(P) in A.
By using the standard Liapunov-Schmidt reduction procedure, for each P € A,
we can find a unique ¢ = &, p € /CEL’P such that

Se(we’p + Qse’p) S Ce’p, d.p € KéP- (1.24)
We recall this procedure in § 3.

STEP D. Reduction to a finite-dimensional problem.

We then define
K. (P):=Je(wep+Pep): A— R. (1.25)

A very important observation is the following fact.
LEMMA 3.6. ue = we @, +Pe . 5 a critical point of J. if and only if Q. is a critical

point of K. in A.
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1462 J. Wes

By the above lemma, the uniqueness problem is reduced to counting the number
of critical points of K, in A.

STEP E. Counting the number of critical points of K(P).

To count the number of critical points of K.(P), we need to compute 0K (P)
and %K. (P).
The following is the basic technical estimate in this paper.

ProprosITION 4.1. Let
K.(P)=e"{LJ(w) — eBH(P)} (1.26)
be the reduced energy, where

N -1 , 9
= N—‘H/Rf(w (I1z)*zn dz. (1.27)

Then K (P) is of C% in A and for e sufficiently small, we have
(1) K(P) = Kc(P) = o(eNT1);

(2) 0K (P) — 0K (P) = o(eNt) uniformly for P € A;

(3) if Q. € A is a critical point of K.(P), then

’K (Q.) — 0°K.(Q.) = o(eNT1).

We will prove (1) and (2) of proposition 4.1 in §4. Part (3) of proposition 4.1
will be left to §6 and the appendix.

We remark that proposition 4.1 is intuitively true. However, even formal asymp-
totic analysis is not so easy. The main reason is that when we expand 0,0;K.(P),
we need to deal with terms of four different orders: O(¢~2), O(e™1), O(1), O(e).
Since the error term @ p is just of the order O(¢), we need to expand @, p up to
order O(e?) and 9;P, p up to order O(e). The order O(€?) term of @ p is difficult to
estimate. (On the other hand, for the study of the corresponding interior peak case,
&, p can be neglected in all the computations. See [28].) As far as the author knows,
our results here are the first rigorous justifications for the asymptotical expansions
of critical spectra of boundary spike solutions. It turns out that the order O(e)
term of @, p is good enough. We use two important observations to prove (3) of
proposition 4.1. The first one is the following simple fact:

ow((xz — P)/e) N w((x — P)/e)
8a:j an

=0, j=1,...,N. (1.28)
This fact eliminates many unnecessary computations. The second one is the so-
called Pohozaev identity.

STEP F. The proof of theorem 1.2 follows from steps D and E and is done in § 4.

STEP G. Estimating the eigenvalues and the proof of theorem 1.4.
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Boundary spike layer 1463
To prove theorem 1.4, we decompose the eigenfunction of (1.10) as follows:

N—1
b = Z €ae j0jWe ., + = ICEL’QE.

j=1

Then we use the results in steps C and E to show that ¢, is very small.

This is done in §5.

Finally, we remark that all the theorems above are true if we replace u? in (1.1)
by general nonlinearities f(u) that satisfy assumptions (f1)—(f3) in [14].

Throughout this paper we denote various generic constants by C. We use O(A),
o(A) to mean |O(A)| < C|A|, o(A)/|A] — 0 as |A| — 0, respectively. Whenever we
have repeated indices, we mean summation of that index from 1 to N — 1 unless
otherwise specified.

2. Preliminaries and analysis of projections

In this section, we study the properties of the approximate function w, p defined
at (1.9). In particular, we derive the asymptotic expansion of the function as well as
its tangential derivatives. Most of the materials in this section are taken from [25]
and [29].

We first transform the boundary.

Let P € 012. Since 942 is smooth, we can find an Ry > 0 and p” : B'(Ry) — R a
smooth function such that p(0) = 0, V,p(0) = 0 and

2, = 2N B(Ry) = {(«/,2n) € B(Ry) | x — Pn > pF(a' — P},
w1 = 0NN B(Ry) = {(«',xn) € B(Ro) | an — Py = p"' (' = P')},

where 2’ = (z1,...,2Ny-1) and
B(Ry) = {z € RN | |z| < Ry}, B'(Ro) = {2’ € RN | |2/| < Ro}.

Note that

By Taylor’s expansion, we can assume that
p"(a) = 1pL(0)asa; + 2pi1.(0)aiazar + O(lal*)
for a € RN~! small, where

W
¢ 8331 ' K aarixj’

etc.

To simplify our notation, we denote p? as p if there is no confusion.

For z € 012, let v(z) denote the unit outward normal at =, J/0v denote the
normal derivative, (71 (z),...,7nv—1(x)) denote the (N — 1) linearly independent
tangent vectors and (9/971(x),..,0/07n—_1(x)) the corresponding (N —1) tangential
derivatives at x.
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1464 J. Wei
For xz € wy, we have

V(1) = e (Voo pla’ — P'),—1),

v1+ |V pl?

0 1 0 0

T s

3

zn—Pn=p(z’'—P’)

9
n(x):(0,...,1,..,0,8—32(35’—13’)), i=1,...,N 1,
0 _ 9, ,-p)=L . i=1,...,N—1
ori(x) Oz OLN |y — Py=p(a'—P7)

For each u,v € H(£2), we define
(u,v)e = e_N/ (2Vu - Vv + uv). (2.1)
2
We denote (u,u), as |lul?.

We now analyse we p. By the maximum principle, we p > 0 in {2. Let w be the
unique solution of (1.2) and

he.p(z) :w(x—ep> — we p. (2.2)

To expand he p in terms of €, we recall the following limit functions defined in [25].
Let v;5(y) be the unique solution of

Av—v=0 inRY, wveHYRY),

v 1w (2.3)
Set P
T —
vy (z) = Zpg(o)%( - ) (2.4)
ij

Let x(a) be a function such that x(a) = 1 for a € Bg,/2(P), x(a) = 0 for
a € (Bgy(P))°, where B,.(P) ={Q | |Q — P| <r}.
Set
ey =2’ — P, eyn =N — Py — p(z' — P')
and
z—P
€

hep(z) = eZ pf;(())vij( )X(x - P)+ eQM'/f(x). (2.5)

Then, by proposition 2.1 of [25], we have the following result.

LemMma 2.1. ||¥f| < C.

We next analyse 0jw, p(x). By the coordinate system we choose, we can assume
that
0 0

or;(P) ~ 0P}
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Boundary spike layer 1465
Then 0/0Pjh. p(x) satisfies
EAv—v=0 1in £,

o_20,(2=F
ov v P,

) on 0f2.

€

Let wil be the unique solution of
Av—v=0 on Rf, v E Hl(Rf),

v 1/( w" W N 06
oyn - §(|y|2 |y|3>yjykyl on 8R+.

Then we have (see proposition 2.2 of [25]) the following result.

PROPOSITION 2.2.
ow Owe, p (x—P
or,(P)  ory(P [Z pini(0 “’“( c )
- P
_QZka vjk( >j|x(x—P)—|—eu7§(x),

where w},, vji are defined above and

[Z3lle < C

3. Liapunov—Schmidt reduction

In this section, we solve problem (1.1) in an appropriate kernel and cokernel and
then reduce our problem to a finite-dimensional one. Since the procedure has been
used in many papers (see [8,13,14,18,26,29,30] and the references therein), we will
omit most of the details. We refer to §3 of [14] for further detailed proofs.

We first recall some notation in §1. Let f(u), 2. p, H2(2c.p), Se; Le.p, Ke p,
Cc,p and A be defined as in §1.

Fix P € A. Let m¢p and m}p denote the projection of L?(£2 p) onto Cc p and
CEL’P, respectively.

Our goal in this section is to show that the equation

Tip o Se(wep + Pe p) =0, PepeKlp

has a unique solution @ p if € is small enough.
We recall the following three results in [14].

PROPOSITION 3.1 (cf. proposition 3.1 of [14]). Let Ee’p = Wip oL, p. There exist
positive constants €, C such that, for all e € (0,€) and P € A,

@1l 202, ) < ClLe.p®ll 2 (0. 1) (3.1)

for all @ € ICEL’P
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PROPOSITION 3.2 (cf. proposition 3.2 of [14]). For all ¢ € (0,€) and P € A, the
map

1 el 1
LE,P = 7T£’P o LE,P . ICe,P - CE,P
1S surjective.

PROPOSITION 3.3 (cf. lemma 3.4 of [14]). There exists € > 0 such that, for any
0<e<é€and P € A, there exists a unique ® = &, p € /Cép satisfying Se(we,p +
b, p) €Ccp and

|Pc.pllaz(0. ») < Ce. (3.2)

In fact, @, p is actually smooth in P.

LEMMA 3.4 (cf. lemma 3.6 of [14]). Let @, p be defined by proposition 3.3. Then
D p is Clin P.

Next, we have the following asymptotic expansion for @, p. For the proof, please
see proposition 3.4 of [29].

PROPOSITION 3.5.

2r(@) = (20 L) st - P)) + Fp@) 53)

where
||y7£,P||e < C

and Pqy is the unique solution of
Ady — o + f'(w)Po — f'(w)vy =0 in RY,

0P N
— =0 ondR), 3.4
Oyn + (3-4)

D is orthogonal to the kernel of Ly,
where vy is defined at (2.4) and

Lo:=A—1+ f'(w): HA(RY) — L*(RY), (3.5)
with 3
Hf(Rf) = {uEHQ(Rf) ’ L —0on aR_],Y}.
Oyn

REMARK 3.6. Note that the operator Lo = A — 1 + f/(w) has a non-trivial
kernel ker(Log) = span{ow/dy; | j = 1,...,N — 1} in H2Z(RY). (This follows
from lemma 1.2.) However, the function f’(w)wv; is orthogonal to ker(Lg) (since
v (=y1,.- s —YN—1,YN) = v1(y1,...,YN-1,yn)) and thus there is a unique solu-
tion @y to (3.4).

REMARK 3.7. Formally, as € — 0,z = ey + P, Lep — Lo, 2cp — Rf and
H2 (2 p) — HZ(RY).

Finally, let us recall that K.(P) is defined in (1.25). We then have the following
result.
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LeEMMA 3.8. Q. € A is a critical point of K. if and only if ue = we g, +veg. 5 a
critical point of Je.

Proof. The proof follows from the proofs in § 5 of [14]. For the sake of completeness,
we include a proof here.

By proposition 3.3, there exists an € such that, for 0 < € < €, we have a C'! map
which, to any P € A, associates @, p € /CEL’P such that

Se(we,p + Pe,p) Z Y (P)Jwe,p

for some constants v;(P),{=1,...,N — 1.
If ue = we,p + Pe p is a critical point of Je, then

Se(we,p + Qse’p) =0.

Hence
/ (eQVuevaj(we,p + P p) + uc0j(we,p + Pe.p))
2

/fue i(We p+ e p) = /S (ue)0j(we.p + Pe.p) =0,
ie.
0;K(P)=0, j=1,...,N—1,

which means that P is a critical point of K.
On the other hand, let Q. € A be a critical point of K.. Let uc = we g. + Pcq. -
Then we have
8jKE(QE):0, j=1...,N—1,

which implies that
/ (€2vu5vaj (wE’Qe + QEaQe) + ufa] (wE’Qe + QEaQe ))
2

- /Q fu)0j(weq. + Peg.) = — /Q Se(ue)0j(weqg. +Peg.) =0

forj=1,...,N —1.
Therefore, we have

- 1(Q) [ o000, +0.0) =0 (3.
By proposition 3.3 and the fact that & o, € /CEL’QE,
/ Owe,0.0Pe.q. = —/ De.0.0101we Q. = O(eN_l). (3.7)
[0 [0
On the other hand, by proposition 2.2,
eN72(Ag +o(1)) ifl=3
0 We a'we e — ’ 3.8
J oo i {0<eN—1> it 3
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Ag = /Rf(g—;”j. (3.9)

By (3.8) and (3.7), the matrix

(/ (91’(1)6’QE (%'(’ll)e’QE + QSE’QE ))
2

is diagonally dominant and thus is non-singular. Equations (3.6) then imply that
Q) =0,1=1,...,N —1.
Hence ue = we . + P¢,q. is a critical point of J. [

where

4. Uniqueness of u,

In this section, we prove theorem 1.2.
Let K.(P) be defined at (1.25) and K.(P) be defined at (1.26).
The crucial estimate to prove theorem 1.2 is the following.

PROPOSITION 4.1. K (P) is of C? in A and, for e sufficiently small, we have
(1) Ee(P) = Ke(P) = o(eV*);
(2) K. (P) — 0K (P) = o(eNt1) uniformly for P € A;
(3) if Qe is a critical point of K.(P), then
PE(Qc) — PK(Qe) = o(eMHH). (4.1)
The proof of proposition 4.1 will be delayed until the end of this section. Let us

now use it to prove the uniqueness of ..

Proof of theorem 1.2. By lemma 3.8, we just need to prove that K.(P) has only
one critical point in A. We prove it in the following steps.

STEP 1. deg(0K.(P),A,0) = (—1)*, where k is the number of positive eigenvalues
of G(P).

This follows from (2) of proposition 4.1 and a continuity argument. In fact, by
the definition of K., we have

deg(0K(P),A,0) = (—1)F.

By (2), both K.(P) and K.(P) have no critical points on 94 and a continuous
deformation argument shows that 0K.(P) has the same degree as 0K (P) on A.

STEP 2. At each critical point Q. of K.(P), we have
deg(9K ., Bs.(Qc) N 4,0) = (=1)"

for 0. sufficiently small.
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This follows from (3) of proposition 4.1 and the fact that Py is non-degenerate
(thus the eigenvalues of the matrix (0;0;H(Q.)) are non-zero when Q. € A).

From step 2, we deduce that K.(P) has only a finite number of critical points in
A, say, k.. By the properties of the degree, we have

deg(0K(P), A,0) = k. (—1).
By step 1, k. = 1.
Theorem 1.2 is thus proved. O

In the rest of this section, we shall prove proposition 4.1. To this end, we first
estimate 0,9, p, where @, p is defined by proposition 3.3. Note that, by proposi-
tion 3.5, the first expansion of ¢ p is e®g. We will show that this expansion is valid
in C! for P. That is, the following result holds.

LEMMA 4.2. For € sufficiently small, we have

€3¢0(($ —P)/e)

8j456’p = — .
J

+0(e), (4.2)

where @ is the function defined in proposition 3.5.

Proof. Let us denote
€3¢0(($ —P)/e)

P = —
0.7 a$j
We prove (4.2) by showing
Te,p(0jPe.p — o ;) = O(e),
Tap(0;Pe.p — Do j) = O(e).

We decompose 0;P, p as follows:

N-1
0jPep = Pep;+ Z BirOhwe p, Pepj € ICEL’P. (4.5)
k=1
To show (4.3), we first estimate §;;. Since @ p L Jwep, I =1,...,N —1, we

have

N-1
Z ﬂjk/ (O1we, pOrwe, p) 2/ (0jPe, POLWe P)
k=1 2 2, p

e, P
= —/ (P pOFywe p).
¢, p

Hence, by proposition 3.5,

9w
B; =e/ (45 )A—1+062
ik o Bys0r ) 0 (e7)

8450 8w> -1 2
= —¢ —— A, + O0(€),
/Rf ( dy; oy, ) ° (<)

where Ay is given by (3.9). This proves (4.3).
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1470 J. Wes

It remains to prove (4.4).
Note that, by proposition 3.3, we have

N-1
Se(we,p + Pe.p) Z Y (P)owe, p (4.6)
=1

for some constants v;(P), I = 1,...,N — 1. To estimate ~;(P), we observe that
lemma 4.1 of [25] gives that

/ Se(we,p + ¢e,p)Owe p = OV ). (4.7)
0
By (4.6), (3.8) and (4.7), we obtain

w(P)=0(), 1=1,...,N—1. (4.8)
Applying 9; to (4.6), we have that &, p ; satisfies

S{(we,p+Pe.p)(Pe.pj)+ St (we,p+Pe,p)(BjkOkwe, p+0jwe. p) — Z Y0i;we,p € Cep,
=1

which implies that

WEL,P 0 S (we.p + Pe.p)(Pe,py)
+ 775 p 0 Si(we p + Pe.p)(BijkOkwe.p + Ojwe,p) — 7T (Z 'ylaljwe p) =
(4.9)
By (4.8),

= O(e). (4.10)

K
(L idtwer )
=1

Equation (4.4) can be proved by expanding (4.9) up to the first order and then
comparing with the equations for @ ;. We omit the details. O

L2 (02, p)

Finally, we prove proposition 4.1.

Proof of proposition 4.1. Part (1) follows from lemma 3.5 of [14] (see also proposi-
tion 3.2 in [23].)
We now prove (2) of proposition 4.1 as follows,

aJKe(P) = eN <we,P + QSE,P? awa,P>€ - / f(wE,P + QSE’P)awa’P
2
+ M(we,p + Pe p,0;Pe p)e — / f(we,p + Pc.p)0;Pe.p
2

- / Se(we,P + QSE,P)ajwe,P + / Se(we,P + QSE,P)ajdse,P
2 2
=1+ I,

where I; and Is are defined at the last equality.
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Note that by lemma 4.1 of [25] and the definition of K,(P), we have

I = 0;K 4 o(eN*1). (4.11)
By (4.8) and lemma 4.2,
N—1
L= [ Y n(P)ow.pd;dcp =O(NT2). (4.12)
2 =1

Combining the estimates (4.11) and (4.12), we see that part (2) of proposition 4.1
is thus proved.
The proof of (3) is very complicated and thus is left to §6. O

5. Eigenvalue estimates
In this section, we shall study eigenvalue estimates for
Le:= A —1+ f'(u)

and prove theorem 1.4.
By lemma 3.8, we can write

Ue = We,Q. + Peq.,

where Q. € A, Qc — Py and Q. is a critical point of K.. Let us denote {2 ¢, as {2.
Let (7, ¢¢) be a pair such that

Lepe = 1epe  in 12

5.1
09 =0 on 0. (5-1)
ov

Suppose 7. € [$pun+1,341) and [|¢elle = 1. We now look for the first expansion
for ¢..

Let us first find the limit of 7. If 7. — 79 # 0, then after a scaling argument and
by taking a subsequence, we have that

¢e(y) = ¢E(QE + €y) - ¢Oa

where ¢q is a solution of

Ago — ¢o + f'(w)po = 0Py in RY,

0 5.2
¢o € HY(RY), 90 _, on ORY. (5:2)
dyn
By lemma 1.3, 79 = g1, or 79 = HN+1,-.-.- This is impossible. Thus, for any

T € [%,uNH, %,ul], we must have 7. — 0 as € — 0. Then, after a scaling and limiting
process as before, we have ¢.(y) = ¢(Qc+€y) — ¢o, where ¢ is a solution of (5.2)
with 79 = 0. By lemma 1.3, there exists a; such that

N-1 ow
¢0 = Z aj—.
o9y
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Thus we can now decompose ¢, as

N—-1

= Z €ae ;0jWe Q. + be,

j=1

where ¢, 1 K.q, and ||l = o(1).
We estimate ¢, first in order to show that it can be neglected. Observe that qbe
satisfies

L. b+ Z ac ;[ f (ue)edjwe . — f'(w)edjw]
N-1

=T Z e, j€0;We, 0. + Tehe, e € ICéQE, (5.3)
j=1

By propositions 3.1 and 3.2, we have

I bell 2. < c||2a” (ue)edjwe,q. — [ (w)ed;w]l r2(a,)

< Ce Z lac.;]. (5.4)
j=1
On the other hand, by proposition 3.3, for P € A, we have

Se(we,p + Pe. p) Z Y1 (P)Ojwe p-

Applying 0; to the above equation and setting P = @, we have
Se(ue)0j(we.q. + Peq.) — N(Qe)0j0weq. € Ceq. -
Since w, is a solution, (@) =0,1=1,...,N — 1. Thus we have
Se(ue)0j(we,q. + Peq.) € Ceq.
which implies that
Le(0jPeq.) + [ (ue)djwe,q. — f'(w)edjw] € Ceq.. (5.5)

Comparing (5.5) and (5.3), we see that

N—1 N-1
b= Y o0y + Ol 3 ).
j=1 i=1
Hence

N—-1
Z 1e,56(0; (W, +Peq.)) +o(|n|e )3 |ae,j|). (5.6)

Jj=1
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Multiplying (5.3) by Ok(w, g, + Pe,g.) and using (5.6), we obtain

N-1
Qe,j / €(0j(we,q. +Pe,q.)) + O(|TE|€2§V:_11|GE,J'|))ak(w6,Qe +Pc.q.)]

=1

<.

_Zn/ e l€(0; (werq. + Be))Oh (Weg, +Be))]
(5.7)

Note that
| (L0000 + 8010w, + Puc.)
~ [ (L0} + 200k, + )

— / SE(U)E’QE + QSE’QE)aj(wE,QE + @E’Qé)ak (wE,QE + QSE’QE)
2

(since ue = we, Q. + Pe,@. is a solution of (1.1))
= —0;0,K(Qe).

Thus, by (3.7), (3.8) and (5.7), we have
- N-1
—a.,;j€0;0L K (Qe) = ae,kfeN(Ao +o(1)) + O(eN|7'E| Z |a6,j|> ,
j=1

where Ay is given by (3.9).
By part (3) of proposition 4.1, we have 7. /€2 — 19\, where 7 is given by (1.12)
and Ao satisfies
G(Po)a, = )\Oa,

with @ = (lime_0 Ge1,-- ., im0 aE,N_l)T.
In conclusion, we have proved the following result: let (7, ¢¢) satisfy (5.1) with
T € [%,uNH, %,ul]. Then

N—1
= e\ + ofe Z €(aij + 0(1))0we,q. + o(1) (5.8)
=1

for some j =1,...,N — 1, where \;, a; = (a1, ... ,a(N_l)j)T satisfy
G(Po)a,j = )\jaj.

Finally, let us now use perturbation analysis to show that there exist exactly
(N — 1) pairs (e, ¢e) to (5.1) which satisfy (5.8). (Then theorem 1.4 is proved.)
By (5.8) and the fact that K. p has dimension N — 1, all we need to show is that
the space F. of eigenfunctions of (5.1) with small eigenvalues has dimension at least
N — 1. Suppose not, let dim(F,) < N — 1. We shall derive a contradiction.

Set

a 1= min(2p, Hpun ). (5.9)
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From the proof of (5.8), it is easy to see that there exists

N—-1

U= Y aed(weq, +Peq), J=1. N1,
1=1

such that aj; — a;; and 9§ are orthogonal functions in L?(£2.). Moreover, it is easy
to see from the previous computations that

€ 2 €
Ly = e no A5 +ry,
where
17512 (00 = o(1).

Note that, by (5.8), for € small, F. is also the span of eigenfunctions of L.
with eigenvalues in I = [—a, a]. Let & be the span of 9§, j = 1,..., N — 1. Let
H := L*(£2.) and

d(&, F.) =sup{d(z,F.) |z € &, |lz||lg = 1}.
By (5.8), we can write F, = span{l/;;-i |i=1,...,dim(F.)}, where
b5, — w5,

Since dim(F.) < dim(&), there is a 5 € & for some 7y such that

LZ(QE) = 0(1).

P5 s =o(1), i=1,...,dim(F.),
which implies that
dé,F)=21-9 (5.10)

for some ¢ small.
We are now in a position to use the following lemma due to [15].

LEMMA 5.1. Let A be a self-adjoint operator on a Hilbert space H, I a compact
interval in R, and {11, ...,v¥n} linearly independent normalized elements in D(A).
Assume that the following conditions are true.

(1) Ay = pjby +rj, rjll <€ and p; €1, j=1,...,N.
(ii) There is a number a > 0 such that I is a-isolated in the spectrum of A,
(c(A\NDH) NI+ (—a,a)) =0.
Then N1/2g0
d(E,F)=sup{d(z,F) |z € B, ||lz||lg =1} < O )72

where

E = span{#1,..., %N},
F = closed subspace associated to o(A) NI,
Amin = the smallest eigenvalue of the matriz ({1;,1;)).
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Applying the above lemma to A = L., E = &, F = F., ¢; = 4§, I = [—a,a],
with a defined by (5.9) and € small, we have

d(gea]:e) = O(e/)a

which contradicts (5.10).

6. Estimate of 9;0;K.

In this section, we compute 9;0; K. and therefore finish the proof of part (3) of
proposition 4.1.
Let Q. be a critical point of K (P) in A. By part (2) of proposition 4.1,

O H(Q) = ——p;(0) = o(1), j=1,...,N—1. (6.1)

Let

We first recall the following facts.
LEMMA 6.1.

(1) Djgi(w((z—Qec)/€)) =0 and D;gz(w'((z — Qc)/€)) = 0, where g1 and g are
any C' functions.

(2) If ue is a solution of (1.1), then we have
/ 2| Vue]® + 3u? — F(ue)lyjdz =0, j=1,...,N, (6.2)
o

where

F(u) = /OU f(s)ds.

Proof. (1) follows by direct computations. (2) follows from (2.14) of lemma 2.3
of [27]. |

Using (1) of lemma 6.1, we can prove the following;:

J = / D;i[Vue - VOj(we,g. + Pe,q.) + uclj(we,q. +Pe,q.)
2

- f(U)E,Qe + QSE,Qe)(aj('wE,Qe + QSE,Qe))]
= o(eN ). (6.3)

The proof of (6.3) requires some work. Please see the appendix.
We can now estimate 0;0;Kc(Q¢). The main idea is to use D; to reduce integrat-
ing in {2 to integrating on A2 and then use the Pohozaev identity.
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By definition, we have
0;0;Kc(Qc) = € (95 (we,q. + De,q.) 0j(we,q. + Peq.))e
- / f/(wE,Qe + QSE,Qe)ai(WE,QE + QSE,Qe)aj (WE,QE + QS&QE)
0
+ eV (we g, + Peq., 07 (weq. + Peq.))e

- [ 1w+ 20 0w, + 00

= /Q 0i[Vue - VOj(we,q. + Peq.) + uedj(We,q. + Peq.)
— f(we,q. + Peq.)(0(we,q. + Peq.))]
- /Q 8?:1 [Vue - VOj(we,q. + Pe,q.) + uedj(we,q. + Peq.)
— f(we,q. + Peq.)(0(we,q. + Peq.))]
+ /Q Di[Vue - VOj(we,q. + Peq.) + uelj(we,q. + Peq.)
— f(we,q. + Peq.)(0(we,q. + Peq.))]

[ OBEITuP + )~ Fluea, + Pog ) ile) dr + ol ™)
o9

(integrating by parts and using (6.3))

0
= | 3 BEVul + ) = Flueq, + Peq)l(@) o+ oM H)
J
(using D; and (1) of lemma 6.1)
0
= o e [%(62|Vu6|2 +u?) — F(weg. + P, )vi(x)] dz + o(eVFY)
J

- LQ[%(€2|Vue|2 Ful) = F(we,q. + Peq.)vij(x)dz + o(eV 1)
= I3+ Iy,

where I3 and I are defined at the last equality.
We first compute I3,

A N [(%nwuwﬂ—F(w))w(ey)]¢1+|Vp|2dy+o<eN+1>

N -1 eayj

_eN-1 /RN_I[(%“VwP—Fw?] F(w))v;(ey)] Wdzﬁ—o N+1

= -Vt /RN_I [(G[IVw]? + w?] = F(w))piryel pjmpmiyi dy + o(e" )
= =" pipimpm; /RN—I [(G[IVw]? + w?] = F(w))]yf dy + o(e" ).

(Here, the function p and its derivatives are computed at Q..)
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To estimate I, we note that

1 VpVp;
vij(z) = —(pij — pi——" )

V1+]Vp2 L+ |Vp[?
Since vy = —1/+/1 + |Vp|2, we have

Vij (@) + p5 (0)VN = pijmTm + %pijmkxmxk — pikpitPimTmzr + O(|z|*).  (6.4)

Applying part (2) of lemma 6.1 with j = N, we have
/ [2€%|Vue]® + 3u — F(ue)lvy dz = 0. (6.5)
o8

By (6.5), we have

Iy —/ (L2 Vue|® + $u? — Fu)vi () de + O(e /%)
o

- /a T+ 4 = P @) + o O do + o)

- [ B + 4 = o
2

1
2 / [1€2|Vue? + $u? — F(ue)] pijmiTmTx
o

[ BV + 32 - F@lpmpipsmai o) (hy (6.4)
o8

~ o [ 190+ b F )
RN—l
+ €N+1{Ptmpikpjt / GVl + gu? - F(w))ymyk} +o(eM ).
RN-1
Combining the estimates for I3 and I together, we obtain

I+ Is = —%pumkeN“/  GIVul + fu? = F@))ymyn + o(e¥ )
R —1
—L(N - 1)0;0;H(Qc)eN T

x/ ( |Vw|2—|— Lw? F(w))y%dy—ko(eNH)
RN 1

=—-10:0;H(Q NH/RN 1 |Vw|2—|—%w2—F(w))|y|2dy—|—o(eN+1).

By lemma 3.3 of [22],

N -1

B = / 2
N1 WDt

= %(N - 1)/1%N{%(|vw|2 +w?) — F(w)}zy dz.
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Since w is radially symmetric, it is not hard to see that

1
/ {%(|Vw|2 +w?) — F(w)}zydz = —/ {%(|Vw|2 +w?) — F(w)}|z)? dz.
Rf N - 1 RN—l
Thus 1
B2 [ QITuP+ b Pl dy
RN—l
and

Is+ 1y = —€N+1Ba¢ajH(Qe) + O(€N+1).

Part (3) of proposition 4.1 is thus proved.

Appendix A. Estimates of J

In this appendix, we give the proof of the estimate for J in § 6. Some of the estimates
are long and straightforward. We shall omit most of the details.

ESTIMATE A.

T — Qe
Djwe g, = _ezkafj(O)Ukl( - ) + O(€),
ij

where vy is defined by (2.3).
Proof. By direct computations. O

EsTtiMATE B.
N (Di(weq. + Peq.): 0j(Weq. + Peq.))e
- [ Dittwea. + Bea 0y, + Pg) = ol ),
Proof.

Left-hand side = / [f (w)0;wD;(we.q. + Pegy.)
o

— f(we,q. + Pe,q.)Di(we,q. + Pe,q.)0j(we,q. + Pe,q.)]
= o(eNH)

3

since the first term in D;(w, g, + P . ) is an even function. O

EsTIMATE C.

DJWU)E Qe = mekl wkl( ) _szm Juji + O(e),

where wil is defined by (2.6).

Proof. By direct computations. O

Downloaded from https://www.cambridge.org/core. The University of British Columbia Library, on 18 Feb 2022 at 19:18:10, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50308210500001487


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500001487
https://www.cambridge.org/core

Boundary spike layer 1479

ESTIMATE D.
€N<(w5aQ€ + QEaQe)’ Dla] (wEaQe + QEaQe )>€
a / Fweq. + Peq.)Didj(weq. + Peq.) = o(e" ).
Q

Proof.

Left-hand side = / [f(w) = fwe,q. + Pe.g.)]Di0j(we,0. +Peq.)-
0

Note that the first expansion of f(w)— f(we,g. +Pe,@. ) is an even function, while by
estimate C, the first expansion of D;0;(we,qg. + Pe@.) consists of an odd function
and an even function. For the odd function part, it is of o(eV*1). For the even
function part, we obtain €Y1 p% (0) + o(eNt1) = o(eN+1) by (6.1). O

Combining estimates B and D, we obtain the estimate for .J.
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