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Abstract

We construct entire solutions of the magnetic Ginzburg-Landau
equations in dimension 4 using Lyapunov-Schmidt reduction. The zero
set of these solutions are close to the minimal submanifolds studied by
Arezzo-Pacard[1]. We also show the existence of a saddle type solution
to the equations, whose zero set consists of two vertical planes in R
These two types of solutions are believed to be energy minimizers of the
corresponding energy functional and lie in the same connect component
of the moduli space of entire solutions.



1 Introduction

In this paper, we consider the following system of magnetic Ginzburg-
Landau equations:
—Aav+ ([P - Dy =0 in R, o
d*dA — Im(V 4¢ - ) = 0 in R™.

Here 9 : R® — C is a complex valued function, A € Q!'(R",R) is a one form,
and A > 0 is a parameter. We use V4 = V — iA to denote the covariant
gradient and Ay = V4 - Va, d* = (=1)"FFD+H « gy - QF(R?) — QF-1(R™),
where the operator * : QF — Q"% is the usual Hodge star operator on R"
with the standard metric.

The standard macroscopic theory of superconductivity is due to Ginzburg
and Landau in [10] . The equations can be derived from the microscopic the-
ory by the works of Bardeen, Cooper and Schrieffer [9], [11] . The constant
A > 0 is depending on the material in question: when A < 1, the material is
of type I; when A > 1, the material is of type II.

In the case of dimension n = 2, the system (1) has a family of “radial”
j-vortex solutions of the form u; = (), AU, j =1, ..., with

W (2) = Uj(r)e??, and AV = V;(r)V(j9). (2)

Here (7, ¢) is the polar coordinate and j = deg ¥»U) is an integer, and U;,V;
are real valued functions determined by a system of ODE. Moreover, both
U; and Vj tend to 1 as 7 — oo with exponential rate. Existence of this
kind of solutions was proved in [2] using variational methods. The stability
properties of these solutions were established in [12]. More precisely, we now
know that for A < 1, u; is stable; for A > 1, u; is stable provided that j = £1.
Using these j-vortex radial solutions as basic blocks, nonradial solutions in
R? of equation (1) has been constructed in [24] using a finite dimensional
Lyapunov-Schmidt reduction procedure. Using similar methods, solutions to
the magnetic Ginzburg-Landau equation with external potential have been
constructed in [20].

The magnetic Ginzburg-Landau equations (1) is the Euler-Lagrange
equations for the following energy functional:

B = [ Vvl + 1P + 50 0P Q

Note that after a rescaling by a parameter €, the magnetic Ginzburg-Landau



equations become

—A40 + 3 (1Y - 1)y =0,
d*dA — Im(V atp - 1) = 0.

The corresponding energy functional is
A
BAw) = [ [Vauf + AP + 250 - PR

For A =1, it is called the self-dual case. In this case, the system can be
reduced to first order equations. In this special case, it is proved in [21] that
if (A, 1) is a family of critical points for E. with a uniform finite energy
bound, then as € — 0, the energy measures

1 2, 2 2, A 2219y
fe = - [[Vate? + EldAL + S5 (1= o) TH",

(where H™ means n-dimensional Hausdorff measures) converge subsequen-
tially to the weight measure p of a stationary, integral (n — 2)-varifold. In
other words, when € tends to 0, the zero sets of 1. are close to a codimen-
sion two minimal submanifold. They also proved existence of varifold type
solutions using variational methods.

In this paper, we shall investigate the general case of A > 0. We would
like to construct some special smooth solutions from certain minimal sub-
manifold with nice geometrical structure. We will focus on the case of n = 4.
Let us consider the following two planes:

I := {(5517917070) € R4 ST, YL € R}’
Iy := {(O7Oax2ay2) € R4 T2,Y2 € R}
They intersect at the origin. Let (r1,61) and (ra, 62) be the polar coordinates

in II; and Ils, respectively. Our first result states that there exists a saddle
type solution. This is the content of the following

Theorem 1.1. For n = 4, there exists a solution (A,) to (1), satisfying

b = f(r,re)e 1 H02),
A = g(’l”l, T'Q)del + h(T‘l, Tg)deg,

where f,g,h are three real valued functions satisfying a system of second
order PDE in the (r1,r2) variables. The function f vanish at the azxes of the
r1-ro plane.



We shall call the solution stated in Theorem 1 as a saddle type solution.
This is motivated by the saddle solution of the Allen-Cahn equation

—Au+u® —u=0, in R". (5)

Indeed, for n = 2, the Allen-Cahn equation has a solution v which vanishes
precisely at the two axes of the plane.

To proceed, let us recall the following minimal submanifold studied in
Arezzo-Pacard[1]. Let

T ={(pe,: p~ ') : p,0 € R}.

Consider the scaled surface T, := %F. As € tends to oo, formally I'e tends
to II; U Ily. Our second result is the following theorem, where we use +1
vortex solutions to construct solutions in R*.

Theorem 1.2. For e > 0 small enough, there exists a sequence of solutions
(Ae,e) to (4). As € — 0, whose zero sets of . and A. converge to I’
uniformly in the entire space.

We use infinite dimensional Lyapunov-Schmidt method to construct these
solutions. More precise asymptotic behavior of these solutions will be pro-
vided in the subsequent sections. We point out Brendle has done some
related works for the self-dual magnetic Ginzburg-Landau equation in the
unpublished paper[5]. Part of our arguments in this paper are inspired by
his work.

It is expected that the saddle type solution described in Theorem 1.1
and the solutions in Theorem 1.2 lie on the same connected component
of the moduli space of entire solutions of the magnetic Ginzburg-Landau
equation. This is also analogous to the case of Allen-Cahn equation. Indeed,
for any even dimension not less than 8, the Allen-Cahn equation has a
saddle type equation which vanishes on the Simons’ cone. Moreover, there
is family of solutions whose zero sets are asymptotic to the Simons’ cone,
See [6, 19, 18, 23] for related results. These solutions are conjectured to be
global minimizers of the corresponding Allen-Cahn energy functional, since
the Simons’ cone is area minimizing when the dimension n > 8. One also
know that dimension 8 is the critical dimension. Sine the union of the two
planes IT; and Il are also area minimizing(See [15]) in R*, we formulate the
following

Conjecture 1.1. The solutions of the magnetic Ginzburg-Landau equations
provided in Theorem 1.1 and Theorem 1.2 are energy minimizers of the
energy functional.



This paper is organized as follows. In Section 2, we show the existence
of saddle type solution and proved Theorem 1.1. Sections 3-8 will be de-
voted to the proof of Theorem 1.2. Section 3 studies the Fermi coordinate
with respect to the minimal submanifold. Section 4 deals with the Jacobi
operator. In Section 5 we define the approximate solution and estimate its
error. Section 6 is devoted to the linear theory of the linearized operator
around the approximate solution. In Section 7, we study a projected nonlin-
ear problem. Then in Section 8 we show the existence of true solutions and
finish the proof of Theorem 1.2. We put some of the tedious computations
in Appendix.

Acknowledgement Y. Liu is partially supported by “The Fundamen-
tal Research Funds for the Central Universities WK3470000014,” and NSFC
no. 11971026. J. Wei is partially supported by NSERC of Canada.

2 A saddle type solution whose zero set are two
planes

In this section, we show the existence of saddle type solution and prove
Theorem 1.1. We seek for a solution to the magnetic Ginzburg Landau
equations (1) with the form:

¥ = f(ry, o)’ H02),
A= g(’l“l, r2)d91 —+ h(?"l, Tg)d&g
_gsin91 _ hsin 05 . h cos 05

= dxi + dy1 dxo
1 1 T2 )

g cos 6y

dysa,

and {¢ =0} =1II; UTls.
Let us denote g; := 0y, g, hj := 0;,;h and f; := 0, f.

Lemma 2.1. If (A, ) is the solution to (1), then (f,g,h) satisfies

1—¢)? 1—h)2 )
Fot sy 2 SO0 JAZNT A 4y (0 (g
T T9 7’1 7"2 2
911+922—ﬂ+@+f2—f29:0a (7)
1 T2
he h
Bt + hay — —2 + —= 4+ 2 — f2h =0, (8)
\ T9 ™



with the energy functional

E(fah) =g [ B4~ 107 0+ g [ = SHP B )+ 00— 12
pe / (VIR +1(F = £9)? + Vg2l + [(f — FR) + VAP S
r1,72>0 i U5

A
+ Z(l - f2)2}7’1T2d7’1d7’2.

Proof. We compute

Vath = Vip —iA
= V. et02) o joiO1t02)g (9, 4 0y) . f —ie 102 £ (gV0, + hV,).

We also have

dA = dg A dby + dh A dbs
= (cos by - g1dr1 4 sin by - g1dyy + cosbs - gadxs + sin by - gadys) A dby
+ (cos by - hidxy + sin by - hidyy + cos Oy - hadxg + sin by - hodys) A dbs

in 0 0 h A1 sin 6
_ @dxl /\dy1 i (gg S1n 01 COS U9 o 1 COS V71 sIn z)dl‘l /\dajg
T1 T1 T9
sin 6 sin 6 h1 cos By cosf cos 01 cos 6 h1 sin 01 sin 6
+(92 r1 2, M Tl 2)d:z1/\dy2+(—92 Tl 2 rl 2)dy1/\dx2
1 2 1 2

go cos 1 sin 6y N h1 sin 81 cos 04

h
+ ( )dy1 A dya + %dazg A dys.
2

r1 )
Moreover,

Aptp = Ap+id*A-op — 2 < A, dp > —| A,

eony =+ L Ly 2T
™ 1 T9 3
. gsin 0y g cos 0y h sin 0 h cos 05
d"A = 0y ( ) = Oy (F——) + Oz (———) = Oy (———) =0,
1 1 2 T2

e 01+02) 4 dy >= z'f(grl_2 + th_Q).
It follows that

e UOHOIN oy = OO (A 4 id* A - p — 20 < A, dip > —|A|P)

T L A (- NNl
(&) 7“1 9 7“2



Let d*dA = (d*dA)ld.’L'l + (d*dA)gdyl + (d*dA)gdCCQ + (d*dA)4dy2. Then

there holds
h1 cos 61 sin 69 n go sin 01 cos O )

Ay — g (9L _
(@A) = 0,y (22 + 0y (212 .
+ 0, h1 cos 01 cos 05 . go sin 01 sin 02)
T2 r1

:(911 Q;Jr 92 +@)sin«91,
1 1 r17T9 1

hisinf;sinfy  go cos By cos by )

9
d*dA)g = — 0y, (= o (—
(@A) = ~01y (24) + 00y (2122 .
h1 sin 61 cos 6 g cos 1 sin 0
1, 1 Tl 2 92 1 2)
2 T1
g22

:_(911 91+ 92 + 92y cos 0y,

T1 T% riro T1

h1 cos 01 sin 05 N g9 sin 01 cos 92)

d*dA)s = — 0y, (—
( )3 8 1( o 1
hl sin 91 sin 92 g2 COS 91 COS 92 h2
LI )+ 0u(-2)
2 T1 72
h h h h
= (2 -2+ L+ )sinby,
79 r5  T1T2 79
(d*dA); = —axl(hl cos 01 cos 69 i go sin #1 sin 92)
T9 T1
h1sinfi cosfly g9 cos by sin Oy ha
*Byl( - ) *8962(7)
) 71 )
h h h h
= (=2 - % + — + Lycosby.
2 5 T17r9 T2
Besides, we have:
Im(Vap-9) = (f* = fPg)doy + (f* — f*h)dbs
sin 69 n cos 09

ino 0
I g 4+ S gy 1 (2 = F2R)(— day
1 [ T2

= (f* = f*9)(

dyg).



Therefore, the energy functional for f and g, h has the form

E(fah) =g [ 410 = 107 0t + g [ = PP 0 1)+ G0 1
2
:% / HVﬂ“HU—fw-+Wm]ﬁ (F — F) + VAP
r1,ro>0 1 2
+ %(1 — f2)2}7'17"2d7"1d7'2.

Then the equations (1) with respect to f and g, h in the form

( o 2 _ 2

futpo+ 1 B IS JUEWE e yr—o, ()
r{ ry 2

911—*+*+922+f2 f?g=0, (10)

m—@+@+m+ﬁ fh =0, (11)

\

O]

Theorem 2.1. There exists a triple (f,g,h), such that the equations in
Lemma 2.1 hold, and satisfies the boundary condition:

f =0, on Il Ulls.
Moreover, g(r1,r2) = h(re,r1) and g vanishes at the ro axis.

Proof. We minimize the energy functional.

Although r1, 79 are polar coordinates and they are nonnegative, for con-
venience, during the proof we shall also consider the negative r1 region by
reflection. Let us consider the bounded region: Q, := {(r1,r2) : 711 € R,7ry >
0} N By, where By is the ball of radius & in the r;-r9 plane, centered at the
origin.

Consider the corresponding energy functional

Bl o) = [ (VP47 — f0 + V05 41 = 5 + 94

2

A
+ —(1— f2) }TlT’Qd?“ld?"Q.

4(

Define the space

Hy, .= {(f,9.h) : f.g,h € Hj(Q); g(r1,7m2) = h(ra, 1),
f(ri,m2) = —f(=r1,72),9(r1,72) = g(—7r1,72), 0800.}.



Here ﬁ&(Qk) is obtained by replacing the weight by 7179 in the usual H} ()
space. Let us consider the variational problem:

inf  Ei(f,g,h).
(onl, Exlf9.h)

The existence of a minimizer of the action functional E}, in this space follows
from a straight forward modification of standard argument, by using the fact
that the functional E}, is coercive and satisfies the P.S. condition.

We can assume that the minimizer satisfies 0 < fi, gx, hiy < 1. So using
the interior estimates, we know (fg, gk, hr) converges to some (f,g,h) in
H} ({r1,r2 > 0}). Hence (f, g, h) is smooth in R*\(IT; UTL,).

Next, we need to show the (¢, A) corresponding to (f, g, h) is smooth in
R4, In fact, let us first consider (i, Ay) corresponding to (fx, g, hx) and
rewrite (1) as

—AY = 31— [P0 + 20(gr 2 + hry?) — w(gPrT 2 + WPy 2),
—AA = (f?— f29)d0; + (f> — f?h)dbs.

Note that (fx, gk, hi) € Hpy1 and Ep 1 (fr, 9ks k) = Bkt (frt1, 915 hkt1)
so we always have:

Ek(f’gah) < Clv

where (' is a constant.
Thus we know

12 = fRae)do: || 2@ay < [1(fe — frge)ry llrzmsy < VO
Then HAkHWZQ(R‘l) < (.
Similarly, we can also get that

A _ _ _ _
H§(1 — k) r + 20k (gr 2 + hr3 ) — Ye(gPry + B2r3?) | p2ray < Cs.

Then Hwkuw2,2(R4) < (O4.

Therefore, (A, 1)) converges to some (A,v) in W12(R*) norm. Hence
(A,) is one solution to (1) and it is smooth. By minimum principle, we
know in R*\(IT; U Iy), f > 0. O

3 Fermi coordinates

Instead of working in the usual Euclidean coordinate, we shall work in
the coordinate adapted to the minimal submanifold, which we call Fermi



coordinate here. Let us recall the minimal submanifold I" studied in [1]:

I — (@pew, gpflezﬂ)'

We rewrite the minimal submanifold I" as:
eis

v/sin 2s

where s € (0,%), © = (cosf,sinf) € S'. The rescaled manifold T is given

by
(@peié’ @p_lew)
2e " 2¢ ’

The tangent vector of I' can be written in the form

I'= o,

6—ZS 628

O = ———0, T = o,
(sin 25)% ’ Vsin 2s

where ©1 = (—sinf,cosf). We also have the unit tangent vector e; =
e 0, ey = €01, and unit normal vector m = ie 0, n = ie"* O .
Define a map T : (s,0,a,b) — (z1,29) € C?:

Y=T.+am-+bn

CoS S . . sin s
= <@—|—asms .© —bsins - O,
€

v/sin 2s €vsin 2s

Denote % := {(s,60,a,b) : a®> + b*> < —+—-}. We would like to show that if

€2 sin 2s

(s,0,a,b) € X, then Y =T’ + am + bn defined a smooth coordinate system
around the minimal submanifold. To see this, we need several lemmas.

@—i—acoss-@—i—bcoss-@L).

Lemma 3.1. Let P = (pleiel,pzew?), p1 # p2. If there are two points Py,
P, €T satisfying dist(Pj, P) = dist(T'¢, P), then P, = Ps.

Proof. The distance between P and P is

1, 1
d* = inf 5P+ 5P+ 0+ 05— V201pcos(0 — 01) — V2pap™ cos(0 — 62)

o1 1 _
= ugf 5/)2 + 5P 24+ ol 4 p3 — \/i\/p;‘:pQ + p3p=2 + 2p1pa cos(By — 62).

Set f(p) = 50° + 5072 = V2/p1p? + p5p=2 + 2p1p2 cos(61 — 62).
Suppose p1 > p2 . We observe that if p > 1, then

flp) < f(ph),

10



Moreover, “=" holds iff p = 1. So inf f(p) = inf f(p).
p>0 p=1

Suppose there exist r1, 79 > 1, satisfying

f(r1) = f(re) = inf f(p),

p>0

then f'(r1) = f'(r2) = 0. Let us define o = 6 — 0, we have

2 2 -3
1N -3 P1P — PP
Fo)y=p—p?—V2ms = :
VPiP% + p3p~2 + 2p1p2 cos(a)
V(o1 = p2)% 4+ 2p1p2(1 + cos a)
L —V20pt = pd)
P1 — P2
= —V2(p1 + p2) < 0.

So p = 1 is not an extreme point. As a result, we obtain r; > ro > 1. If
f'(p) =0, then

Ly 15 pip—p3p®
= — - _27
flp)=5p"+5p =
el it Ut i SN
2(p* - 1) S
Since ( 3 1)3 3( 2 2)
2(p° — p~H)? +16p%(p7 — p
g'(p) = L2 >0,

2(p* — 1)

g is strictly increasing. If g(p1) = g(p2), we have r; = 7y, which is a
contradiction. So when p; # pa, the closest point is unique, which completes
the proof. O

The proof of the next three lemmas relies on careful analysis of the
geomeotric structure around the minimal submanifold. The computation is
straight forward but tedious, we put the proof in the Appendix.

Lemma 3.2. Suppose p; > 0, then (p1e%', p1e'%) has two different closest
points to I if and only if p1 > /2 + 2 cos a.

Next, we want to show what the conditions on a, b are needed, if y =
(p1e™1, p2e??) € Y has a unique closest point to I'.

11



Lemma 3.3. If y = (p1e%1, poe™®) = T(s,0,a,b), then y has a unique
closest point to T'c if and only if a® + b < = Siln 35 -

Lemma 3.4. Ify = T(s,0,a,b), and a® + b < Wlnzw then dist(y, T'¢) =
va? + b2,

;From previous arguments, we know that if

y="T(s,0,a,b)

sin s

CoS 8§
=(—_0©+asins-O —bsins- O+, —>
<e " ev/sin 2s

v/sin 2s
e T(X).

We can define a map S: T'(X.) — X as follows: if P € T(X), then we
6\/2:107280@0 € I, satisfying a3 + b3 <
L By Lemma 3.4, Qo is the closest point. But we know P € T(X,),

€2 sin 2s
so the closest point is unique. As a result, let S(P) = (so, 6o, ao, bo),
a = (P_QO).mCU
b:(P_QO)'n07
where mg, ng are the normal vector at Q. Then T is well-defined and T oS =
Id, SoT =1d. So Y =T'c+ am + bn is a coordinate in 3.
Denote a = rcos ¢, b = rsin ¢. By the definition, we know r and ¢ are

smooth in ¥¢. Finally in this section, we show the regularity of r and ¢ in
R%.

@+acoss-@+bcoss-@L)

suppose P = T'(sg, 0y, ap, bp) and Qp =

Lemma 3.5. ¢ is Lipschitz continuous near C2\X. and r is Lipschitz con-
tinuous in C?. Especially ¢ is CY' near 0.

Proof. As |[Vr| < 1, 1 is Lipschitz continuous, but not C!. Because when
xr € C?\X,, the nearest point is not unique. So r is continuous but not
smooth. Next we will show that ¢ is continuous.

Consider I' = —£~——0. Denote P = (p1€'?1, ppe?®) # 0. Suppose Q1 is

V/sin 2s
a closest point to P:

2 /92 .
Q1= (\gpe”’, \gp‘le’e

Then the normal vectors at P are:

).

0 i0
,coss-ev),

mj = (sins - €’
ny = (—sins - e, cos s - ie'?),

\/§ COS S 9 COSS

p= = —
2 7 v/sin 2s p sin s

12



JFrom previous arguments, we get

p1pcos by + pap~! cos by

cosf = )
VPi0* + p3p=2 + 2p1p2 cos(61 — 62)
00 p1psinby + pap~!sin by
SV = = ——— — 0
VP3P + p3p2 + 2p1pa cos(fy — b3)
cos(0 — 0y) = p1p + p2p” "t cos(By — 01)
V0% + p3p~2 + 2p1pa cos(0r — )
sin( — 0,) = pap " sin(0; — 01)
Vi + pzp ~2 4+ 2p1pacos(fy — b))’
cos(6 — 0y) — p2p~ " + prpcos(fz — 61)
VPR0% + p3p=2 + 2p1pa cos(01 — 03)
- 6 — 0
sin(f — 03) = p1p 5 (0 V )

VP2P% + p3p2 + 2p1pa cos(fy — bs)

COS S sin 25
psins = -sins =
sin s

sin 2s
COSS =
p- 5
al = (P — Ql) -m

~Lcos(y — 6 2

— prsins - —= P1/)+2,02P cos(f — 01) B ipsins—i—

VP® + p3p~2 + 2p1pacos(6y — 6y) 2
-1 6y — 6 2
D 08 5 - p2p~" + pipcos(f2 — 1) _ip,lcoss,

V32 + p3p 2+ 2p1pacos(fy — b)) 2
pap~Lsin(fe — 07)
VP3P% + p3p2 + 2p1pa cos(fy — b3)
p1psin(fy — 61)
V0% + p3p~2 + 2p1pa cos(01 — 03)

If p1 = p2 > 0, then there are two closest points to P, one of which is
Q1. Let the other be Q3. By symmetry, we know:

£ -1 19 \[ i@)‘
2 2

b1 = pysins-

pP2COS S -

Q2 = (

We observe that, when Q1 — Q2, we have p — p~!, 5 — (5 —5). So
ap = ag, bl = b2.

13



If p1 # p2, let p1, p2 tend to 0. As a result, p will tend to 1, and

a1 = —1,
by =0.

So ¢(0) = 7. Therefore ¢ is continuous around C?\¥.. So it is Lips-
chitz continuous around C?\X.. At the origin, we consider two directions:
(p1,01,p2,02), (p1,01 + 7, p2,02 + 7). As p is Lipschitz continuous near 0,
we deduce V¢(0) = 0. So ¢ is O near the origin. O

We remark that from the expression of aq, b, we deduce that

B(p1,01, p2,02) = —@(p1,02, p2,61) = (p2, 01, p1,02) = —@(p1, =01, p2, —02);
’r(plv 015 PQ, 92) - T(p27 917p1)92) - T(Ply 927/)25 01) — T(Pl, _915 PQ, _92)

4  The Jacobi operator

In this section, we show that the Jacobi operator naturally arise from the
projection of the error of a naturally defined approximate solution around
the manifold. We recall that the energy functional in R? is:

1 A
B(w,4) = 5 [ (1940 +1dAP + (0P - DR,
R4
for the fields
A= (A1,A2yA3,A4) : R4 - R47
Y =1 +ihy : R = C.

And V4 = V — ¢A is the covariant gradient. As we can consider A as a
1-form on R%, then dA is well-defined.

IVav|? = 511059 — A0,
|dA|? = |0; Ay — A2

Critical point v = (¢, A) of E(¢, A) satisfies the Ginzburg-Landau (GL)
equations

A
—Aap+ (0 =Dy =0, (12)
ShjOk(OrA; — 0jAR) + Im((Va)e;tb - ) = 0,5 =1,2,3,4. (13)
Equations (13) has the form

d*dA = Im(V 49 - ). (14)

14



We also have

AAllJ = VAVA@Z)
= A — i0;Aj1p — 2iA;0;0 — | A%
= Ay +id" A — 20 < A, dip > —| APy
Let us define

A+ (- 1)
F(u) = <d*d?4 — I?n(VAU) ) > '

Let W := (AW ) = (V(r)Ve,U(r)e’®) be the +1 vortex solution.
Then we have:

Az = Vv sing, Ay = Kcoscb,
r r
!/
83143 = K2 sin Qd) - K sin 2¢,
r 2r
/
04 A3 = —K sin’ ¢ — KZ cos 29,
r r
!
O34y = v cos? ¢ — K2 cos 20,
r r
!

O4A4 = K sin2¢ — K sin 2¢.
2r 72

In the following context, we use the following properties(see [2], [22] ):

V/
L-V'+—-U?*+VU?=0,
T
2.U =cr,V=dr? asr — 0,
3U=1+4+0("™7),V=140(e") as r — oo, with my := min (VA 2).
Let € be a small parameter and denote t; = a — €f, to = b —€g, t1 +
ity = 7e'®. When it is close to T, we define the following (3, A) as the
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approximation solution:

¥(a,b) =W (a—ef,b—eg),
A= Ajdyj
= V(F)V(p(a—ef,b—eg))
= (—efsAs — egsAr)dy" + (—efoAs — egpAa)dy®
+ Agdy® + Aydy*

= (efs 2 sind — egy - = cos )dy"
7 Iz
Voo Voo
+ (efp - ?sinqﬁ — €gp - ?cosqb)aly2
— Z sin (;Edy?’ + Z cos quy‘l.
7 7

Denote y = (%@—i—a sin s-© —bsin s-01, \/%G)—i—acos 5:©+bcoss-

1 _ 1y _ cos s sin 2 :
©-),and I'c = ;I = (e\/sinQSG’ enTs ©). Then we can get a coordinate

with respect to (s, 6, a,b) near I'c. Denote p = (sin 25)7% for simplicity.
Recall the Jacobian operator of I' (see [1]): For normal vector field N =
ie S f - O +ie* g0t = fm + gn, we have
LN =ie” 0[(sin2s)02f + 2(sin 25)* cos 25 - D5 f +sin2s - Of f—
2sin 25 cos 2s - Jpg + 2(sin 2s)® - f — sin 2s(cos 25)? - f] + ie*OL
[(sin 25)*02g + 2(sin 25)? cos 25 - Dsg + sin 2s - Igg + 2sin 25 cos 25 - Iy f+

2(sin 2s)® - g — sin 2s(cos 25)? - g].
(15)
In this section, we show

Theorem 4.1. When € is small enough, the equations

< F(u), (831# — iAgw, —(9314 + VAg) >= 0,
< F(U), (641# - iA4¢7 —04A + VA4) >=0,

can be written as

LH(f>g) = (le G2)

where the inner product is the integral over the whole space (a,b) € R2.
G1,Ga = O(e) is of higher order in f,g

Before we prove Theorem 4.1, we first give several lemmas, whose proof
can be found in the Appendix, since again they follows from tedious but
routine computations.
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Denote dA = 2j<kAjkdy7 A dy*, then we have:

Ajk = 0j A — O A;,

A12 = O(Gz),

A3 = €gs(03A4 — 04 A3),

A1y = —efs(03A4 — 04A3),

Aoz = €gg(03As — 04 A3),

Azy = —€fp(03A4 — 04A3),
V/

Agy = 0344 — 04 A3 = 7

Lemma 4.1. There holds

— Atp = 2€%(sin 25)? cos 2s(e fsD31 + €g5011) + €2 (sin 25)° (€ f55031) + €g550a0)+
€ sin 2s(e fpa031) + €gapOs1)) 4 2b€® sin 25 cos 25 (e fpO3031 + €ggO304) )+

2a€% sin 25 cos 25(—€ fO3041) — €gg04040) + 2a€> (sin 25)3031) — O303¢)—

b%e? sin 25(cos 25)203031) 4 ae? sin 25(cos 25)%d31) 4 2abe’ sin 25(cos 25)2 03040+
be? sin 2s(cos 25)2041) + 2be? (sin 25)3040) — 04041 — a’e? sin 25(cos 25)204040+
O(e").

Lemma 4.2. We have:

d*A=ep 0 (efss Az + €gss - As) + €€ p 2 - (efop Az + €gpoAs)
+2bcos2s - € p 2 fyD3 A5 + beos2s - €6p 2gg (04 A3 + 034A4)
—acos2s-ep 2 fy(D3A4 + 04 A3) — 2acos2s - €p 2gg04 Ay
— (—ab(cos 25)%€%p2 4 2a%b(cos 25)?€3p°) (04 Az + D3 A4)
— (14 b*(cos 25)%€®p™2 — 2ab*(cos 25)%€3 p~°) D3 A3
— (14 a®(cos 25)%€2p2 — 2a3(cos 25)%€3p )04 Ay
+2e2p~*cos 2s - (efsAs + €gsAy)
+ (2a€%p™% + a(cos 25)2 % p™2 — (2a* + 4b%)(cos 25)%e3p ™ + 4b?ep?) As
+ (2b€2p7 8 + b(cos 25)%€2p™2 + 2ab(cos 25)2€3p5 — dabep™2) Ay + O(€).
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Lemma 4.3. We have:

< A,dip > = —2bcos2s - €3p 2 fyA3031h — beos2s - € p 2gg(A3041) + Ay031)
+ acos2s - € p 2 fo(Asd31p + A3041p) + 2a cos 2s - € p 2 gy Adyt)
+ (14 b*(cos 25)? - €2p~2 — 2ab*(cos 25)* - €p™°) A3 - D3¢
+ (—ab(cos 25)% - €2p~2 + 2a%b(cos 25)% - € p70) (A3040 + A4d31b)+
+ (14 a®(cos2s)? - 2p~2 — 2a3(cos 25)% - p°) Aydy1)
+ O(eh).

Lemma 4.4. If we denote d*dA = (d*dA).dy", then we have:

(d*dA), = —93A31 — 04 A41 + O(€?)

~ " ! - v &
=cos¢- 595(7 - ?2) —sing- Gfs(7 - 7?2)
+0(e),
(d*dA)2 == —831432 — 841442 + 0(62)
- " / - " /
— COS¢ . 690(7 — ﬁ) — Sln¢ . efo(7 _ ﬁ)

+0(€),

(d*dA)s = —2p %01 A13 — €2p 202 Ag3 — beos 2s - €2p 205 Aoz
+acos2s - €2p 204 sz + acos2s - €2p 202 Aus
— (—ab(cos 25)?€*p% 4 2a%b(cos 25)? €3 p°) D3 Ay3
— (1 + a*(cos2s)%€2p™2 — 2a3(cos 25)2€3p )0y Ays
— 262 p 4 cos 25 - Az + (€4)
+ (206978 4 b(cos 25)%€2p™% + 2ab(cos 25)%e3 p 0 — dabe®p) Ayz + O(e*),

(d*dA)y = —e2p7 0. 01 A1y — €2p 202494 — bcos2s - €2p 20344
+ acos2s - 62p7264A24 —bcos2s - 62p7262A34
— (14 b%(cos2s)? - €2p~2 — 2ab*(cos 25)? - €3 p7) D3 Azy
— (—ab(cos 25)? - 2p~2 + 2a*b(cos 25)% - 3p7°) Dy Azy
+ (—2€2p % cos 25) A1y + O(€%)
+ (2a€?p™8 + a(cos 25)2e?p™2 — (2a% 4 4b%)(cos 25)?3p 0 + 4b?Ep9) Azy + O(eh).
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Lemma 4.5. After calculation, we have:
. U2 -vUr . - U -VvVU?
Im(Vay ) = (efs- Tsmgﬁ — €9 -

2 2 5 2 _ 2 -
tefo- TV g e - VY s )y
T T

cos <z~5)dy1

U2 - U? ~
+ (== sing — A3y ")dy” + (— cos 6 — Aa|p[")dy".

We use the kernels (Opt) — iAgt),OhA — VAg),k = 3,4 rather than
(Ok, O A) because the inner products of them with the equations are in-
variant after gauge transformation.

Now we can prove Theorem 4.1:

Proof. By Lemma 4.1, we get:

< —Av, 059 — iAztp >
= [3p7 O fos + p 2 fog + 23 p 4 cos 25 - fo — 2e3p 2 cos 2s - gy
/

+ 26370 f — 3p2(cos 25)%f] - [/ (U2 dF + Tr?\f:g)

T

— (26%p™ % cos 25 - gg + 2€°p~*(cos 25)* - f) - [(—27TUU’ + 7VUU")dF + O(e').

'
On the other hand, from Lemma 4.2, we deduce

2 2 R
< —id* A, 031 — 1Az) >= / d*A(UT — V[~] ) sin ¢

T)¢ T /r‘

s 1 /
—/ a3y
ré T T

m(V')? 3 -6 3 -2 3 —4 3 -6 3, -2
= | == (—€p " fss—€p “foo —2€"p “cos2s- fs —2e’p " f + €’ p “cos2s - gp)
V/ V/
+ [47er(—V" + 7)(cos 25)%e3p™0 — /4wfVe3p9(—V// + ?) + O(eh).
By lemma 4.3, we have:

< Qi(A, d?/l), 331/1 — ZA31/) >
= [cos 25 - p 2gg - (—6xVUU' + 27V2UU")

+ /(cos 25)23p 2 f - (—6xVUU' + 27V2UU")

+ / (cos28)23p™0 - dn2VUU’ 4 O(€).
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By direct calculation and using the metric matrix of Fermi coordinate,
we get:

< AP, Osp — iAgtp >= / JAPUU’ cos ¢
70

= / [2A2A3 - bcos2s - €p 2 —245A4 -acos2s-e2p?
G
+ A3(1 + b*(cos 25)% - €2p2 — 2ab*(cos 25)* - €p7)

+ 2A3A4(—ab(cos 25)% - €2p~? + 2a*b(cos 25)? - 2p70)
+ A2(1 + a®(cos 25)? - €2p~2 — 2a*(cos 25)? - 2p™5)] - UU’ cos ¢

= /27TV2UU' - (cos2s)? - Ep72f — /27r172V2UU'(COS 25)%e3p™0
+ /27TV2UU/ -cos2s - €3 p2gg + O(eh).

From Lemma 4.4 and Lemma 4.5, we can get that:
< d*dA — Im(vAl/J . 1/;), 03A — VA3 >
= /(83A4 — O4A3) - [—€p70 - O1A14 — €p 202 Ags — beos2s - €p 205 A0

+ acos2s - ezp_284A24 —bcos2s - e2p_282A34

— (1 +b*(cos2s)? - €2p2 — 2ab*(cos 25)* - € p~°) D3 A3y

— (—ab(cos25)? - €2p~2 + 2a2b(cos 25)% - p7°) Oy Azy

+ (—2€%p ™t cos 25) A1y

+ (2a€?p™% + a(cos 25) %2 p™2 — (2a% + 4b%)(cos 25)%€p " + 4b?e® p~?) Ay

V/ Vl V/ ) /
= /(F> (€7 fos - =t €0~ fon - — T beos2s €p*ggsing - (=)
— (14 b*(cos2s)? - €2p~2 — 2ab*(cos 2s)? - e3p_5 03A34

p
— (—ab(cos2s)? - €2p~2 + 2a*b(cos 25)* - 2 p°) 0y Azy
!/
(2¢3p™ 1 cos 2s) f, - —
7
(2ae?p™% + a(cos 25)?e?p™2 — (2a% + 4b*)(cos 25)%€®p ™" + 4b%e?p?) A]

+ o+

— 3 (V/)2 —6 -2 4 —4
= | 7€ 7 '(2[) Jss +2p " foo +4p~" cos2s - fs
7

—p2cos2s-gp+4p Cf + p2(cos 2s)f — 6(cos 25)?p 07 4+ 4p972) + O(e?).
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Finally, from the above results, we deduce:

A _
< —Autp + (WP = Do, sy — Az > — < d*dA — Im(Vav - 1), 05A — VA3 >
= [Ep Cfos + Ep 2 fop + 23 p 4 cos 25 - fy — 2€3p7 2 cos 25 - gy

3 -6 3 -2 2 ST 7% " (V')?
+2ep " f — e’ p~*(cos 2s) f]'[/ﬂ’f‘(U)d?"—i-ﬂ'f’r:()—gﬂr F ]

T

"2
+ / wé"’@ - (6(cos 25)%p 7% — 4p~972)
| V/ V/
+ /47777V(—V” + ?)(cos 2s5)2e3p0 — /4WfV63p_9(—V// + 7)
+ /(cos 25)2e3p70 - AnPVUU' — /(cos 25)2e3p70 - 202 VEUU! + O(e?).

O]

Noting the exponential decay of U and V, we can define the cut-off

function x:

— : 2 2 1
{X—]., lfa +b 12 sin 25’

<
x =0, if a® +v% > m,
and get the conclusion:
Corollary 4.1. When € is small enough, the equations
< F(u), x(03¢ —iAzp, —03A + VA3z) >= 0,
{ < F(u), x(04¢ — iAytp, —04 A+ VAy) >=0,

has the form
Lu(f,g9) = (M, My).
My, My = O(e) is of higher order in f,g.

We remark that the principal curvatures of T'¢ in +€(sin 25)%. Indeed,
cos § sin s
F == 6, @ 9
‘ (e\/sin 25 €V/sin2s )
e1 =e 0 = —€(sin 28)%85, es = €O = eV/sin 2s - Oy,

g 4 . 3
m =ie ¥ n=ie*0t, V. m = —e(sin2s)2ey,

Ve,m = €Vsin2s (sin2s - e3 + cos 2s - n) ,

Ve, n = €(sin 23)362,

Ve,n = —€Vsin2s (—sin2s - e; + cos2s-m).
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So we observe that

Vi, ie,n = €(sin 28)%(61 + e2),
. 3
Vi, _e,n = —€(sin2s)2(e; — e3).

For any normal vector v = am + bn, a®> + b*> = 1, we have

Vi, v = €(sin 2s)

Vi,V = €(sin 2s)

det(a b>:—a2—b2:—1.
b —a

and mean curvature is 0, we find th%at for any normal direction v, the prin-
cipal curvature is always +e(sin 2s)2.

(aer + bes),

njo Njw

(bey — aes).

Because

5 The approximation solution and errors

In this section, we will give the approximation solution and calculate the

errors of it. Recall in section 1, we have alreay defined the solution when it is

near I'¢: o) = M) (a—ef, b—eg), A = A (a—ef, b—eg). We hope in the whole

space, the approximation solution has the form u = (1, A) = (We'¥, ZV).
Firstly, we will define W and Z:

W:{U(a—ef,b—eg), S e

1, r> 1
’ — 2¢v/sin2s’

1
> .
1, r= 2¢v/sin 2s

In fact, let (1, (» be a smooth partition of unity on R, subordinate to the
open sets {r < 26@}, {r> m} Let W =GU + (2, Z =GV + ¢

then we have

Z:{V(a—ef,b—eg), rgwﬁ,

W'=0(e"™"), Z' =0(e”™"), whenr > 2.

Following [17], we will "extend” the angle function ¢ to R* in the fol-
lowing way. We first consider the following equation:

Aw=0, inRNT. (16)
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w is a 1-form and satisfies for any oriented closed curve C, [,w = 27 (the
winding number of C' around I'). Then we follow the thoughts of Lin F.H.
and Riviere. T in [17] . Denote:

G(x) = m, the fundamental solution of the laplacian operator in R*.
wy = the volume of By C R
Q=RANT.

For a locally integrable k-form, we have a (4 — k)-current T}, given by
T.,(7) = [qw AT, for any 7 € D*7*(Q). For any k-current T on €2, 0T is a
(k + 1)-current defined by (oT)(7) = T(67), for any 7 € D**1(Q). And for
any k-current T on 2, 9T is a (k — 1)-current defined by (9T)(7) = T'(dr),
for any 7 € D*1(Q).

We can get such a 1-form w:

{ o(T,) =0, an
d(T,) = 2xT,

and for any oriented closed curve C, [,w = 2n(the winding number of C
around T).

In fact, if we suppose for z € ', e1(x), ..., e4(x) is a positive orthonormal
base of R*, s.t. e1(x), e2(z) is a positive base for T,.I". Let e!(z), ...,e*(z) be
the dual base, then we call x(z) = e!(z) A €?(x) the orientation form of T
Let

w(z) = —27 /F [, (G(x — ) A x()] dH2(y),

for x € R*.
JFrom (5), we know

ow =
w=0, (18)
ddw = 0.

So Aw = 0.
Then, we have fcw —d¢ =0, for any oriented closed curve C' C {p; =
p2}, so it is equal to dh for some smooth function h. It follows from the
growth of w and d¢ near I that df is C%! on {p; = p2}. Observe that w—d¢
satisfies:
Alw —dg) = —d(A¢), in {p1 < pa},
(w—dp)T = dh, on {p1 = p2}, (19)
(6 (w = d))7 = Ad, on {p1 = pa}.

Let us solve the Dirichlet problem

Agr = —Ag, in {p1 < p2},
951‘{p1:p2} = h, in {p1 < pa}.

23



Then d@; satisfies (9), so w = d¢ + dp;. Similarly, we can get w = d¢ + dpa
in {p1 > p2}, where @y satisfies:

Agy = —=Ag, in {p1 > pa},
952|{p1=p2} =h, in {p1 > p2}.
Denote ¢ =
¢+ @1, in{p1 < pa},
¢+ @2, in{p1 > pa}.
then ¢ is a solution of (5), and dg = w € C®(RNI), ¢ € C2(RN\I).
We have the following results:

Lemma 5.1. When it is on {p1 = p2}, we have

™

wr(e) = / o~y {20722 + 2v/2p 2y cos(6 — 61)
8wa Jp>1,0<0<27

+2p%p — 2v/2p1 cos(6 — 6)]db, (z)
+ (2020 — 2V2p1 cos(0 — 09) — 2p2p 3 + 2v2p1p % cos(0 — 0y)]db2(x) }dpdb.

The proof will be given in the Appendix. Next we estimate @1.
Theorem 5.1. |$1| < oo in R

Proof. Firstly, we will estimate A¢. By previous arguments, we know that
when p is large enough, A¢ = O(p~*). Besides, ¢ is smooth away from I
So we only need to estimate A¢ near I' in Bp.

A¢p = (w33 + w34+ w3+ wia)d
= 2b(sin 25)3 (cos25)% 4+ O(r~2).
Therefore, |[Ad|co,a < o0.
Next we will show that |h| < oc.

By Lemma 5.1 , we can get that in {p1 = pa2}, w(z) € span{dp; —
dps,df; + dfs}. Because of (w — d¢)T = dh on {p1 = p2}, we know:

|h91‘ < Cv |h92| < Ca |h,01| =0.

If we fix h =0 at (1, 0, 1, 0), then h < co on {p1 = p2}. So by standard
elliptic estimates, we have |¢1] < oo.
O
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Therefore, we know that the same results hold for @9 and @.
After rescaling, we can get similar results for I'.. For simplicity, we still
denote it by .

¢ =C1o(a—ef,b—eg) + 2P

In order to estimate F'(u), we define the following weighted norm:
[Bllex = sup p(P)*e’ |l g, (-

where 1 < g < 2.
For 1-form B, we define:

1B 1)[lsx = || Bllex + [ 72]| -
In order to control f, g, we define the following norm W]z’q;
I/
I/

0,k,q = Sup P(P)kHfHLQ(p(P)gpgp(P)H),
Pel'.e

2hig = SUD P(PY* N Il Lagp(py<pep(P)+1) + sup p(PY IV fll La(o(Py<p<p(P)+1)

€

+ sup p(PY 2Vl La(p(Py<p<p(P)41)s

1(Fs 92k = 1]

And we always assume that

2k, T H9H2,k7q'

1(f, 9)ll2,1,4 < C- (20)

Now, we have the following results for the error:

Theorem 5.2.
| () || < C€> (21)

1
Proof. e 1. When r > Sedenase We can get

F(u) =0.
1 1
 2.When 4ev/sin 2s <7< 2¢+/sin 2s’

1—Z,1—W =0(e™?), where 0 < § < min{my,1}.

Thus we can get that



1
e 3. When 2 <r< m, then

W=U2Z=V,o=¢

Similarly, we know at least F'(u) = O(e™°"). So if we want to get more
accurate estimates, we only need to consider the exponential decay
items in F'(u), which we have already calculated in section 1. Then
we get the errors:

F(u) = O(e2p~2e7).

e 4 When r < 2, observe that the approximate solution may not be C'*°
smooth near I'c. For example, when it is close to I'c, we have:

AY = A(We?) = AW e —We'# - |[Vp|? +2ie VW -V +ie W Agp.
Then the item We'# - |Vp|? = O(71). This is different from the case

in Allen-Cahn equation. As a result, we use the LP norm rather than
Holder norm.

We only need to care about the O(7~!) items, and get:

Bt S~ 1 = 02 ),
d*dA — Im(V atp - ) = O(257?).
Therefore, we get that:
| F(u)]|sx < Ce?.
O

Remark: We distinguish r and 7 only when it is close to I'.. Otherwise,
we see them as the same.

6 The linearized operator

From now on, we will apply standard infinite dimensional Lyapunov-Schmidt
reduction. See [19], [7].

Denote L as the linearization of the Ginzburg-Landau equations at an
approximate solution u = (A, ). Then

L(B.y) - d*dB — Im(Ve - 7+ V- ) + A(¥n + 7)) + Bly|?
W ZN\ A —id* B +2i < B,dip > 42 < A, B> ¢+ 32+ 242n —n) )

26



Define v = (4,) := u+w = (A,%)+(B,n). Note that the first equation
is not elliptic, so we always need to add some items so that the new operator
is uniformly elliptic.

Denote the new operator T : Q°(R* R) — QYR R) @ Q°(R*, C):

T(v) = (dv,iv).

We remark that in fact that the operator is the kernel of L induced by the
gauge transformation:

b = e,
A— A+ Vo.
The adjoint of T is given by:

T*(B,n) = d"B — Im(7).

) dd*B — d[Im(qv)]
TT*(B,n) = (id; (d*B — Im(ﬁ@b)) '

Finally we define L(B,n) := L(B,n) + TT*(B,n):

L) = ( ~AB -+ 2Im(Vab ) + Bl ? )
T\ chan+2i < BVAY >+ 0= D00+ A+ Bl —3n)

Here we remark that, we only use the linear part of TT7*(B,n) and the
nonlinear part will be added to the following N (w) part.
So by (21), we can define the following weighted norm:

And

Il = Stlgp/)(P)265rHnl!ww(&(m)v

where 1 < g < 2.
Similarly, we define:

1B« = [ Bll« =+ lInll-

We hope the "true” solution of the Ginzburg-Landau equation is u+w :=
(A,v) + (B,n), then we get the new equations for w = (B, n):

F(u+w)+TT*(B,n) = F(u) + Lw + N(w) =0,

where

N(w) = ( B —Im(nV an) + 3(236(15?7) + |77|2) ) '
A2¢i + ¥ + [n*)n + |BP(Y +n) + i[=nIm(i) + 2B - V an]

(22)
We now recall the nondegeneracy property of the linearized operator.
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Theorem 6.1 (See [12]). For all A > 0, the +1-vortex is stable.

Naturally, we then consider the linearized operator in the R? x R? case.
By Fourier transform, we can get:

Corollary 6.1. Let (x,y) € R? x R? and denote (A, (1)) the +1 vortex
solution to the Ginzburg-Landau equations. Define the linear operator

LO(B, ) = ( —AB +2Im(V 4 - 1) + Bl ? ) _

—Aan+2i < B,V > +3(A = D)2+ (A + $H[wPn— 3n

where (A4,9) = (AD(y), M (y)). Then if | (B, )|\ < oo, we have (B,n) =
0.

Here ||n]|, := supp 65|y|H77HW2’q(Bl(P))' With this , we can give the most
important result in this section.

Theorem 6.2. Let € > 0 be small. Suppose ||(B,n)||« < oo, [[(D,h)| <
oo, and

L(B,n) = (D,h), (23)
/ G < BLOsA = VA > SG ROy — i) =0, (9
/¢ (1< B,04A—VA, > +C1Re[77(641/; — ZA4¢)] =0, (25)

for any (s,0). Then |[(B,n)|lsw < C||(D,h)||, where C is independent of e,
D and h.

Proof. By LP theory, it suffices to show that

Sup p*€" (| Bl Lacsy (py) + 10l Lags (py)

< CSllljp p?€" (| Dl La(Bao(py) + 1l La(By(PY))-

To prove this, we argue by contradiction and and assume that there exists
a sequence e, (BW @), (DU, h7)), such that:

SI;pPQe&T(HB(j)||Lq(Bl(P)) + 109 Lagsy(py) = 1,

sup P2 (1D Laggy(py) + 1B | La(mapy) — O,
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where L(BY, () = (DU, p0)).

By the decay of (BY), 1)), we know that (BU),n0)) e W4(R*) cc
H'(R*). So there exists a subsequence, such that (BU) nl)) converges
to some (B© n©) in H'(R*). For simplicity, we still denote them as
(BU) n09)).

So for any j, there exists P;, such that:

p e (P)).

| =

1B agsyppy) + 109 pasi () =
As a result, there are three cases for the convergence of r(P;):

e 1. r(P;) will converge to some finite constant 9 > 0 , then we can
always assume P; converges to Fy. At this case, we assume that z; €
L., and P; = (z;,y;),y; € R? and define:

B(])(xvy) = p(]jj)2B(j)(‘T + 2y, y)v
79 (x,y) = p(P)*n (z + 5, y),
then we have

1

1B a8y 000 + 17N 081 (0.40)) = 16767“0 (0,50).  (26)

Then let j — oo , we get:

lim L(BY, 70y = LO(BO 70)) = 0,in R? x R2.

J—00

And because of (24) and (25), as well as Corollary 6.1, we know that
(B 70)) =0, which contradicts to (26).

e 2. r(P;) will tend to infinity. We assume that z; € I, and P =
(zj,9;),y; € R? and define a sequence of pairs (B(j), ﬁ(j)):

BY(x,y) = p(Py)*" P BI (@ + 2,y +y;),
19 (,) = (PP (@ + 2y, + )
Then (BY), 7)) will converge to some (B©), 7)), which satisfies:
—AB+ B =0, in R x R?,

—An+iA -1+ 3(A+1)n=0, in R? x R?,
supp € W (|| Bl La(s,(py) + [l Lo(ss(py) < 1, in R? x R2.
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Thus (B©,7©)) = 0. But we have:

I

(BN passi0) + 17l La(ss(0)) >

This is a contradiction.

O

Denote 77 = (4 (83A—VA3, 831/}—iA3¢), o= (64A—VA4, 841/}—iA4¢).

Then we have:
/ <Ty, T, >= 0(62[)_2).
r7¢

Define orthogonal projections:

7 := L* — orthogonal projection onto span{Ty,Ts},
ati=1—m.
Then we will solve the projected linear problem:

Theorem 6.3. If [|(D,h)||« < oo and w(D,h) = 0, then for e sufficiently
small there exists a unique solution (B,n) to

mL(B,n) = (D, h), @
Jro < (Byn), Ty >=0, forj=1,2,

and we have
(B, m)l« < ClI(D, h)[x,

with C' only depending on q, v, 9.

Proof. The proof is standard. We first solve the equation in bounded do-
mains.

{WL]L(B,TI) = (D, h) in By(0), (28)

B,n =0 on 0B(0).
And define the space

H:={w=(B,n): B,n¢e H&(BM),FL(B,U) =0}.

We equip H with the inner product:

[wl,wg] = / < VB{,VBy > +R6/ V1 - V.
B (0) B (0)
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Then H is a Hilbert space.

The equation can be rewritten in its variational form. Namely, for any
w = (B,n) € H:

/ <VB,VB>+Re/ Van - Van
B (0) B (0)

+/ <2Im(VA1/J-77),B’>+/
B (0)

< BlY|*,B > —Re/ 2 < B,V > 17
B (0)

B (0)
A
2

1 o 1 » .
+R6/ §(>\* 1)1/)27777+Re/ (A+2)le277nR€/ 7]
B (0) B (0) B

=/ <D,B>+Re/ hi).
B (0) B (0)

Then we define the linear form < k(x)w,- > on H:

2 (0)

< k(z)w,w >::/ <2]m(VA¢-77),B>+/ < B|Y|?,B >
B (0) B (0)
—Re/ % < B,V ath > i
B (0)
+ Re 5 (A= 197 + Re (A + )1 — Re 57
B (0) B (0) B (0)

Similarly, we denote z := (D, h) and < z,- > the linear form defined by:

<z,1D>::/ <D,B>+Re/ hi).
B (0) B (0)

Then the equation can be written as
[w, W]+ < k(x)w, 0 >=< z,0 >,V € H.

Using the Riesz representation theorem, we can find a bounded linear
operator K on H, and an element Z of H depending linearly on z. Thus
the equation has the following operational form:

w+ K(w) = z. (29)

Besides because of the compact Sobolev injection Hg (B (0)) CC L?(Ba(0)),
we get that K is compact. Then by Fredholm’s alternative, we deduce the

existence of w satisfying (29) if the homogeneous equation only has the

trivial solution. In this case, we have z = 0.
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Now let us rewrite the equation (27):
L(Ba 77) = (5’ G)Tl + 02(87 0)T2

We will estimate ¢; and co. Here we always "modify” Bjs(0), such that
{(s,0,7,¢) : r < 3} C Bp(0) for all (s,0,0,0) € Bp(0). (For example,
we can use the Fermi coordinates, and use the region {p < M}). Then
multiply the equation with 77 and integral on {(s,0,r,¢) : r < 3} for any
(S, 0) el'.N BM(O)

1

1= <L(B,n), Ty > +O(62p_2)02,
€1 Jrg
1

2= — <L(B,n), Ty > —I—O(62p_2)cl,
€2 Jro

where
cj-—/ <T;,T; >,j=1,2.
r7¢

So we only need to estimate LT;. Note that there are no first order
differentiation items. So we can always divide A and A4 into two parts
individually.

L:=1L; + Lo,

where

LB =

Then for any fixed (s, 0)

—AB+ Ar,B >
—Aan+Aarn)’

/ <Ly(B,n), Ty > :/ < (B,n), L1 >
T’d) T7¢

+O(62p_2)/ o @B+ V(B ).
TS Sevemas

By the condition (27), we know

| ) <L1(B,n), T1 > llo2q = O) (B, )]s
r?

Note that when € tends to zero, LoT7 also tends to zero. So we only need to
consider the O(e) items in LoT}. Recalling the calculation in Section 1, we
finally get:

LQTl = O(€2p_2€_5r).
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Therefore
lejllo2.q = OB, 1)«
By Theorem 6.2, we have:

1B, n)llx < Ce*[I(B,m)]l.

So we get that (B,n) = 0 for the homogeneous equation. Then for any large
enough M, we obtain the existence of a solution of (28) satisfying:

1B, )« < ClI(D, h)]|«s-

with C independent of M. Note that in the previous arguments the norm
II[l+, |||+« are adapted to deal with the bounded domain situation. Similarly
in the proof of Theorem 6.2, we can get a subsequence such that (B,n) —

(B,n) in HL (R*) with (B,n) solving (27) in R*.
O
7 A projected nonlinear problem
In this section we will solve the equation:
7 [F(u) + Lw + N(w)] = 0. (30)

Theorem 7.1. If € is small enough, for any f, g satisfying (20) , there
exists one w = (B,n) such that (30) is true and w(w) = 0 for any (s,0).
And we have

w|ls < Cé?.
Proof. The proof is standard. Here we always choose 1 < g < 2 is close
to 2. For example, we can let ¢ = %. Different from the cases in [19],

where Holder norm is widely used, we need to check that || N(w)].« < C62
if ||wl]|« < do.
By (22), we know that we only need to show:

3, |V - < C&. (31)

4 4
Then by Sobolev embedding, we know W24 —; Whia < L% . Thus by
Holder inequality, as long as % < ¢ < 2 and € is small enough, (31) holds.
When € is small enough, by Theorem 6.3, L is invertible. Then we can
rewrite the equation (30) as a fixed point equation:
7 Lw = -7t F(u) — 7 N(w)

=w = S(w),
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where S(w) := L™ [~ F(u) — 7t N (w)].
Denote the ball B(% ={w: [Jw|« < d}N{w: m(w) = 0}, where 9 > 0
is small. Then for € small enough and any w € B%, we have:

IS(w)][« < C|| = 7 F(u) = 7" N (w) ] s,
< C||F(u)|lw + C8
< Ce? + C88 < dp.

Therefore S(w) is also in B%. Hence we get that for w,w' € B(i
1S(w) = S(w)]« = IL™ 7" N(w) =L~ 7N (w') o
1
< gllw—wll.

Thus the map S is a contraction map and has a unique fixed point in B(%.
Finally we will estimate the fixed point w:

[wll« < NSO+ + [[S(0) = S(w)]l«
1
< ClIE @)l + S llwlls
=lwlls < Ce.
O

In the last of the section, we show the Lipschitz continuity of w with
respect to f and g.

Theorem 7.2. If (fj,g5),7 = 1,2 are two pairs of functions satisfying

(i 9i)ll21,4 < C,

then the two solutions w; to (30) with respect to (fj,g;) in Theorem 7.1
satisfy:
lwr = walle < CEN(f1,91) — (f2, 92) 2,14

Proof. Denote u; is the approximate solution with respect to (f;,g;) and
rewrite (30):
WJ‘[F(UJ‘) + Lw; + Nj(w]‘)} =0.
So we denote Sj(w) : ]L;l[—ﬂLF(uj) — mtNj(w;)]. Then we only need
to estimate F'(u1) — F'(u2).
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In fact, by the results in section 1, we get :

1F (u1) = F(ug)lsex < C2|(f1,91) — (f2,92)lI2,10-

Thus we have:

w1 — w2l = [|S1(w1) — Sa(w2)]|«
< |[[S1(w1) = Si(w2) |« + [[S1(w2) — S2(w2) ||«

1
< Sl = walls + CllF(ur) = Fua)lls.
Therefore we get:

w1 — walls < CE(|(f1.91) — (f2:92)|[2,1,4-

8 From Jacobi operator to the true solution

In the section, we hope to find appropriate f and g, which satisfies (20),
such that the equation holds:

F(u) + Lw+ N(w) = 0.

This is involved with Jacobi operator, which is discussed in Arezzo-Pacard
[1]. Becasue of the decay of f and g, we can get similar results for the Jacobi
operator in dimension 4.

Multiply 7 and integral on {a, b}, then using the results in section 1 we
get:

p_ﬁﬁszf +2p % cos2s-Dsf +p 2 83]” —2p"2cos2s-0pg+2p"C - f
— p%(cos2s)? - f = Fy,

—642 —4 -2 A2 —2 —6
p 059+ 2p "cos2s-0sg+p 7 -0pg+2p “cos2s-0pf +2p " - g
— p%(cos2s)? - g = Fy,

(32)

where
1 Fjllo,24 < C-

If we denote N = ie % f.© +ie*¥g- O, then we can rewrite (32):

LN =ie ™F, - O +ic"F, - OF.

35



Next we will recall the results of Arezzo-Pacard in [1]. Define the variable
t by:

_o¢  Sin2s  coss
¢ T 1 cos2s  sins
Then we have:
dt = — ! ds, sin2s = (cosh2t)™!,
sin 2s

cos 2s = — tanh 2¢.

We define the conjugate operator:
Ly = (sin2s) 'Ly,

then we have:

3

LuN =07 (f,9)+ (S 9) + 2anh 2t 9ul9,~1) + [ o552

—1J(f,9)-

Let t tend to —oo, we get that Lg is asymptotic to the following differ-
ential operator:

LoN = 8} (f,9) + 9;(f,9) — 200(9, ) = (f.9).
On S', the spectrum of A? and A! are given by:

o(A%) = {k*: k> 0},
o(AY) = {k?: k> 0}.
We remark that we consider g - ©1 as the tangent vector field on S'.

Then the corresponding 1-form is gd#.
We define

V0= {(f,9) : df = 0,dg = 0},
For all £ > 1, we define:

Vk = {(fa g) : A(fa g) = _kQ(f)g)}

In fact, we know the eigenfunctions of A® corresponding to eigenvalue k2
are cos kf and sin k. So we can always assume that:

f=fo+ me cos kO + ka,g sin k6,

k>1 k>1
g =go+ Z g1 cos kO + Z g2 sin k0.
E>1 k>1
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This time the equation L (f,g) = 0 yields the couple system:

frea — k2 freq + 2ktanh 2t - gp o + | 5 — 1 fr1 =0, (33)

(cosh 2t)

& 5 laa =0, (39

Gro — k2 2k tanh 2t - —
Jk,2 gk2 + 2k tan Je1+ [(Cosh B

when k # 0. If we denote hy1 = fi1 + gr2, P2 = fr,1 — k2, then we
have:

.. 3
hiq — k*hgy + 2k tanh 2t - by g + [W —1]hgy =0,  (35)
.. 3
hk’z — k2fk72 — 2k tanh 2t - hk72 + [W — l]hk,Q =0. (36)

And for k = 0 ,we get:

. 3 _
go —[1 = shamzlgo = 0

{fo—[l—(cosﬁ’gt)z]fo:(),

We find that when k& = 0, the asymptotic behavior of fy, go at both +oc0
is governed by the exponents

pE = +1.

And when k& > 0, the asymptotic behavior of f;;, gi; at both foo is
governed by the following sets of indicial roots:

@i = £k +1),vf =£(k - 1).

In [1], Arezzo-Pacard introduced all the geometric Jacobi fields as well
as their explicit expression.

e 1. Jacobi fields corresponding to translation:
f=(a-O)sin(a+s),g=(a-0)sin(a —s),
where o € R and a € R?

e 2. Jacobi fields corresponding to dilations:

f= (sin25)%,g =0.
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e 3. Jacobi fields corresponding to the action of SU(2) :
f = (sin 25)_% cos2s(A© - ©),
g = (sin2s)"2(A0 - ©1),
where A is a 2 X 2 symmetric matrix.
e 4. Jacobi fields corresponding to the action of O(4)/SU(2)
f=0,g=(sin 28)%(146 .01,
or
f=0,9g=(sin 28)_% cos2s - (AO - O1),
where A is a 2 x 2 skew-symmetric matrix.
We observed that the Jacobi field 2 and 4 are in V9, and 1 is in V!. As

for the Jacobi field 3, its decay is bad. Besides, similarly in Proposition 11.2
and 11.3 in [1], we get:

Proposition 8.1. There exists ty > 0 such that if (f,g) is a solution of
L(f,g) =0 in (t1,t2) x S', for some t; < —ty and ty > to (with U =0 on
the boundary if either t; > —oo or ty < 00, satisfying

H(f’g)HO,(S,q < 17

for some 0 < 6 < % and with the property that for any t € (t1,t2), (f,9)(t,")
is orthogonal to V° in the L? sense on S', then (f,g) = 0.

The proof is the same as Proposition 11.3 in [1]. In fact we can drop
the condition for #g, since the equations can be reduced to (35) and (36).
Finally we can get the following two results:

Proposition 8.2. Assume 0 < § < i s fixed. Then for all tg € R, there
exists an operator

Gio - W3 ([tg, +00) x SR x R) — W([tg, +00) x SR x R),

such that for all V := (F1, F») € Wg’q([tg, +00) x SL R xR), if for all t > tg,
V(t,-) is orthogonal to V° in the L? sense on S!, then U = G,V is the
unique solution of

LuU =V, in [ty, +00) x S,

V =0, on {tp} x S,

which belongs to W;’q([to,—i-oo) x SHR x R).  Furthermore, |Ull2s, <
ClVllos.g-
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Proposition 8.3. Assume that 6 > 1 is fired. There exists some const
¢ > 0 and an operator

Gio - W3 ([tg, +00) x SR x R) — W3 ([tg, +00) x SR x R),

such that for all V .= (Fy, Fy) € Wg’q([tg, +00) x SL R xR), if for all t > to,
V is constant on S, then U = G,V is the unique solution of

LU =V, in [tg, +00) X St
V =0, on {tp} x S,

which belongs to Wg’q([to,—l—oo) x S5 R x R).  Furthermore, |Ull2s, <
ClIVlo.s.q-

With these results, we can solve the last Jacobi operator equations (32):

Theorem 8.1. When € is small enough, there exists a solution to (32),
satisfying:
ICf, 9)ll2,10 < C-

Proof. By the previous calculation, we can rewrite(Fy, Fs):

(F17F2):(FiaFé)'i_(F{/?Fé/)?

3 _ 5 (V')? 2 —5-2 4 —9:2
e F = [ e - - (6(cos28)°p™ 2T — 4p~7T7)

171/ 14 23 -5 Y3 9y v’
+ [ 4nrV(=V" + —)(cos 2s)“€’p AniVep 2 (=V" + —)

T T

+ /(COS 25)%e3p75 - AnPPVUU — /(cos 25)2e3p75 - 202 VAU,

T T
In fact (Fy, F}) comes from the proof of Theorem 4.1 and does not depend
on (f,g). Besides, we know:

F/ = 63/ <Lw+ N(w), T} > .
7‘7¢

If we suppose ||(f, 9)[]2,1,4 < ¢~ and define the operator J(f,9) = L (F1, F),

then ||(FY, Fy)|lo,1,4 < Ce? and by Proposition 8.2 and 8.3, we have:

1

1J(f, 92,14 < Cll(F1, Fa)llo1,q < C <€ 2.

1 toB

1
€ 2 €

So J maps from B in Wg’q([t0,+oo) x SR x R).

1
2
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Similarly in the proof of Theorem 7.1, we get that J is a contraction
map and has a fixed point. And we can also get:

H(f7 g)”Q,l,q <C.
O

In the end, we will explain that we have got the desired solution when
f, g are the ones in Theorem 8.1: (see [5])

Theorem 8.2. If w satisfies that:
F(u)+Lw+ N(w) =0,

then F(u+w) = 0. In other words, v := u+ w is the solution to Ginzburg
Landau equations.

Proof. We only need to show that T7*(B,n) = 0. For short, we define

&=T*(B,n) and v = (A,v) + u + w. Recall that:

T¢ = (d€,icy),
T*(B,n) = d'B — Im(ij®)).

Then by the definition of F'(v) = 0, we get:
D -
Al S0P~ )3+ igd =
d*dA — Im(V g3 - ) + dé = 0.

Therefore we have:

—A¢ = d*d¢ = d* Tm(V 39 - )
= Im(V5V 30 - )
= Im(—ig} - ) = —€[d*
So we conclude that & = 0. O

A The proof in section 3

A.1 The proof of Lemma 3.2
Proof. d*> =inf 1p? + $p72 +2p2 — /2p1\/p2 + p~2 + 2cos a.
P
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Suppose t = \/ p%2 4+ p~2+2cosa, then we only need to consider the
function h(t) = 5% — V2p1t + 2p — cosa, t > /2 + 2cosa.
So when p; > /1 + cos a, we have

inf h(t) = h(vV2p1) = 2p7 = p* +p 7% + 2cos .

At this case, there are two closest points p', p”, satisfying p'p” = 1.
When p; < v/1+ cosa, we have irtlfh(t) = h(v/2 + 2cos ), then p = 1.

So there is only one closest point. This completes the proof. ]

A.2 The proof of Lemma 3.3

Proof. 1f p1 # p2, then s # 7 and the conclusion naturally holds by Lemma
3.1 . Now we have a? + b* < = Siln%.
If p1 = p2 and there is only one closest point, then by symmetry we

know s = 7. As a result,

(@ a® O+ © a® b@l>
y=\—rm=+—7m=—-——F7= =t 7=+,
V2 V2 V2 V2 V2 V2

2 _ (a+e 12 4 b2 Gi(01=02) _ el4a—bi

p

2 ’ el4+a+bi

So by p1 < g\/Z + 2cos(fy — 62) from Lemma 3.2 , we have

2 4
((a +e )’ b2> < S+’ = (a+e)2+02 <2 at el
€
(37)
If a > —e !, then (1)= a? +b? < 2.
Ifa<—e1 then (1)= (a+e1)2+b> < -2 a+e)
= (a+2¢71)2 +b? < €72 At this case, we observe that

_(_® +(a+%)@_b@J‘_@ +(a~|—%)e+b9L
Ve T v VR Ve R R
This means the two different cases about a in fact are the same.

In conclusion, when a? + b? < m, then y = T'(s, 0, a,b) has a unique

nearest point to I'. [
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A.3 The proof of Lemma 3.4

Proof. If p1 = pa, then from the previous arguments in Lemma 3.2 , after
rescaling, we know

dist(y,Te) = € 2 +2p7 — 2p1e V1 + cos
=a® + b2
If p1 > p2, then 0 < s < 7. From Lemma 3.1, we know the closest point
in I'c toy isin {p1 > p2}. Next, we will show that there is only one extreme

point of distance in {p; > p2} NT. For simplicity, we only need to consider
I rather than I'.. Denote d = dist(y,T").

1, 1
F(0,0) = 5" + 57"+ Pl + 5 — V2p1pcos(f) — 01) — V2p2p™" cos(0 — 0),

d*> =inf f(p,0).
p,0

For Vp, 36y, we have

of of
2L (p,00) = == (p, 0 =0
59 (P2 00) = 55 (p,60 +7) =0,
1 1
F(p:00) = 5p* + 507" + p + p3 — ﬁ\/p?pQ + p3p=2 + 2p1pa cos(61 — B2),
1 1
f(p, 0 +m) = 5p2 + i;f2 + p7+ p3 + \/i\/ppr + p3p=2 4+ 2p1pa cos(0y — 02).

So we know that f(p, 0y + ) is strictly increasing in [1,400), which means
there is no extreme point.
On the other hand, by Lemma 3.1, if 79 > 71 > 1 satisfy g—f;(rl,ﬁo) =

g—ﬁ(m, 0o) = 0, then f(r1,00) < f(r2,0p). So there is only one local minimum

point in {p; > p2}, and it is also a global minimum point. By rescaling, the

cos s sin s )
eVsin2s  ey/sin2s
is the minimum point. So we have dist(y, X¢) = va? + b?. This completes

the proof. ]

conclusion also holds for I'.. By calculation, we know (

B The proof in section 4

The metric matrix of Fermi coordinates is

ay a2 0 0
| ax as9 —bcos2s acos2s
(9i5) = 0 —bcos2s 1 0 ’
0 acos2s 0 1
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and

2
1 2 —2b
~ B a— 3 +b —
A= (CLZ‘J‘) = ( €(sin2s) 2 > €Vsin 2s
—2b 2 b2 1 2a+V/sin 2s
€v/sin 2s a” + + €2 sin 2s + €
The inverse matrix of (g;5) is:
1 4b? 2b 2b2 cos 2s —2abcos 2s
c c?ec? sin 2s ceev/sin 2s ceev/sin 2s ceev/sin 2s
2 1 bcos2s —acos2s
( ij) _ ceey/sin 2s € € €
g - 2b2 cos 2s bcos2s 14+ b2 cos? 2s —abcos? 2s
ceev/sin 2s e e e
—2abcos 2s —a cos 2s —abcos? 2s 1+ a? cos? 2s
ceey/sin 2s e e e

By direct calculation, we have:

2s(VGQ)
VG

= —4(sin2s) " cos 25 + o(e> "7 p~2),

9.(VG)

AN eV —2a62(sin 28)3 + 0(64[)_9)>

N
h(VG)

= —4(sin2s) " cos 25 — 6(a? + b*)e® - (sin 25)2 cos 2s + O(e'p™°)

®
Q

= —2be%(sin 25)% + O(e'p™?),

R

1
= = e*sin® 25 4 2a¢e3(sin 25)g + (3a® — b%)et (sin 25)® 4 o> p~12),
c
1
0Os <> = 6¢? sin® 25 cos 25 + 18a€> (sin 25)% cos2s + O(e*p™19)
c
1
Oa () = 2¢3(sin 28)% + O(e*p™12),
c
1 4 12
81) E = 0(6 p ),

N

1
— = €%sin2s — 2a€(sin 25)% + 3(a® 4 b*)et (sin 25)* + o(277p8),
e

3
2

= 2¢? cos 25 — 10ae3(sin 25)2 cos 25 + O(e*p ™),

Q
)

&
Y YR

—263(sin 28)g +O(e*p™®),

DI = O

—— ~ ~—
Il

O(e*p™®).

®
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Using the formula: if o = ail_nipdxil A ... Adx™, then

Oy iy

* _ kl
(d a>i1-~~ip71 - _-g ( axl

J o
- Fklajzl...zp,1)7

with )
Iy, = §gﬂ(gkz,z + Glik — Gkii)

A=Ady",
with yl = s,y2 = 9,y3 = a,y4 =b
So we have: 94
* k j
a'A= —g*(G ot - TAy)

If we define d*dA = (d*dA).dy", then

aAk!T
oyt

(d*dA), = —g*( —T7,A;).

The most complicated item is B7 := gklfil.
On the other hand, we have another definition for d*:
If o = oy, 4,.dz"t N ... Adz', then

— .. P o) Jr41 J
Q= nll---l'r]r+1.-.]na de " VANPYRAN dl’ n’

d* o = (_1)n(r+1)+1 % dx,

with
Wiy i = VGO
ot = gtk g ag, .
Therefore, for A = A;dy' we have:
d*A = —9;A7 — %(VG) 4
VG
. (VG .
= (—0;9" - ]\(/»G) g A - g™ oA
As a result, we get:
Bi— gt BVG)

VG
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First, we have the following estimates for (¢*/) when it is close to the
minimal surface:

g = p7 4 20630 4+ 3(a% + 1)l p12 + (7 p12),
912 = 26397 + o(77p10),

g'3 =20%cos2s - p~ " +o(e'p?),

gt = —2abcos2s - p~" + o(e*p?),

G2 = p? — 2470 +3(a% + 1)t p S + o(E7 8,
g*3 =bcos2s-€2p 2 —2abcos2s - 3p0 +o(eVp ),
gt = —acos2s-€2p 2 +2a%cos2s - 6p P 4+ o(eV7p 7
>3 =1+b%(cos2s)? - 2p~2 — 2ab*(cos 25)% - p~° + 0
gt = —ab(cos 25)? - €2p72 + 2a2b(cos 25)% - €70 + o(er 7T p7H),

g =14 a%(cos2s)? - 2p2 — 2a3(cos 25)? - p7° + o(eT 7 p7Y).

),
(e7p™)

€ )

Besides we also have:
Bl = —26%p™* cos 25 — 8ae®p " cos 25 + O(e*p~®),
B = —4be®p~S cos 25 + O(e*p™ ),
B3 =2a€’p7% + a(cos 25)2€2p2 — (2a% + 4b?)(cos 25)%€3p ™0 + 4623 p~? + O(e*p™),
B* = 2be?p75 4 b(cos 25)2€%p2 + 2ab(cos 25)%€3p5 — dabe3p~? + O(e*p™ 7).

B.1 The proof of Lemma 4.1

Proof. Denote w;; = %81 <\FGgij 8j) and we only consider the O(€?) items
because of the exponential decay.

wi = -262(Si1’1 25)? cos 25 + 10ae*(sin 25)% cos 2s + 0(64)} 05+
€?(sin 2s)3 + 2a€3(sin 25)g + 0(64)] 0505

wa 1 = _2b63(Sin 28)% + 0(64)] 85897

z
2

w31 = O(e*) 05 + [2b263(sin 25)2 cos 2s + 0(64)} 0504,

z
2

Wy = _—20,63(8111 25)2 cos 2s + 0(64)} 0s + {—Qabe?’(sin 23)% cos2s + O<€4):| 050p.
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7
2

wip = [6be3(sin 23)% cos 2s + 0(64)} O + [2b63(sin 25)2 + 0(64)] 050,
wo o = [62 sin 2s — 2ae>(sin 23)g + 0(64)] 0gOp,

w39 = [—2be3(sin 28)2 cos 2s + 0(64)] Og+

[662 sin 25 cos 25 — 2abe>(sin 25)3 cos 2s + 0(64):| 0400,

wag = O(")0p + [—aeQ sin 2s cos 2s + 2a%€3(sin 23)3 cos 2s + 0(64>} Op0p.

w3 = [66263(Sin 25)g(cos 25)% — 4b?€3(sin 25)% + 0(64)] Oa

+ [2b263(sin 25)% cos 2s + 0(64)} 0504,

wa,3 = bcos2s [62 sin 2s — 2ae’ (sin 28)g + 0(64)} 0904,

w33 = [—QGGQ(SiH 25)% — 2b%€3(sin 25)2(608 25)% + 0(64)} Ou+

[1 + b?€% sin 2s(cos 25)? — 2ab?e3(sin 23)% (cos2s)? + 0(64)} 0400a,
Wyg = [—aez sin 2s(cos 25)% + 2a%€3(sin 25)3 (cos2s)? + 0(64)} O+

[—abe2 sin 2s(cos 2s)% + 2a2be (sin 28)% (cos 2s)? + 0(64):| 040p-

wi4 = [—6abe3(sin 25)% (cos 25)? + 4abe®(sin 23)% + 0(64)} O

+ [—2ab63(sin 25)% cos 2s + 0(64)] 050,

W4 = —acos2s |:€2 sin 2s — 2ae>(sin 28)% + 0(64)} OyOp,
w34 = [—be2 sin 2s(cos 2s)% + 4abe> (sin 23)3 (cos2s)? + 0(64)] Op+
[—a,be2 sin 25(cos 25)% + 2a%be3 (sin 23)3 (cos2s)? + 0(64)] 00 0p,
Wy g = [—2b€2(sin 25)3 + 0(64)] Op+

[1 + a?€? sin 25(cos 25)* — 2a°€3(sin 23)3 (cos2s)? + 0(64)} OpOp.

The we can get the conclusion. O
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B.2 The proof of Lemma 4.2
Proof.

d*A = —g’“%ﬁf + BIA;
u0AL 9 0As 3043 4044
B ayl_g 8yl_g 8yl_g Oyt
=€p 0 (efss - Az + €gss - A1) + €p7% - (efoo A3 + €gapAd)
+2bcos2s - €3p 2 fp03A5 + bcos 2s - 63p7299(84A3 + 03Ay)
—acos2s - egp_2f9(83A4 + 04A3) — 2a cos 2s - p 29901 A4
— (—ab(cos 25)2€2p™2 + 2a2b(cos 25)%€3 p ) (94 A3 + O3 Ay)
— (14 b*(cos25)%€%p2 — 2ab?(cos 25)2 € p) D3 A3
— (1 + a*(cos 25)%*p™2 — 2a3(cos 25)%€® p )04 Ay
+2e2p 4 cos 25 - (ef Az + €gsAg)
+ (2a€?p~% + a(cos 25)2€%p2 — (24 + 4b?)(cos 25)2€3p ™0 + 4?3 p~9) A3
+ (20€2p™ % 4 b(cos 25)%€2p™2 + 2ab(cos 25)2€3 p° — dabe®p?) Ay + o(€*).

-+ BlAl -+ BgAg =+ B4A4

O]

B.3 The proof of Lemma 4.3
Proof.

< A,dip > = —2bcos2s - €3p 2 fyA3031p — beos2s - € p2gg(A3041) + Ay031)
+ acos2s - € p 2 fo(AsD31p + A3041p) + 2a cos 2s - € p2 gy Aydyt)
+ (14 b*(cos 25)? - €2p™2 — 2ab*(cos 25)* - €p™°) A3 - O30
+ (—ab(cos 25)% - €2p~2 + 2a%b(cos 25)% - p75) (A3040 + A4dz1b)+
+ (14 a®(cos2s)? - 2p~2 — 2a3(cos 25)% - p°) Aydy1)
+ o(eh).
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B.4 The proof of Lemma 4.4

Proof.
(d*dA)l = —031431 — 841441 + 0(62)
~ V// V/ o~ V// V/
=Cos¢- 695(7 - 7?2) —sing- €fs(7 - 7?2)
+0(e),
(d*dA)Q == —(931432 - 841442 + 0(62)
~ V// V/ . ~ " V/
= cos - ego(—— — —5) —sind- efo(— — =)
+0(e%),

(d*dA)s = —e2p7 001 A13 — 2p 202 Aoz — bcos2s - €2p 205 Aoz
+ acos2s - 62/)72841423 + a cos2s - 62,07282/143
— (—ab(cos 25)?€2p2 4 2a%b(cos 25)?€3p™°) D3 Ays
— (14 a®(cos 2s)%€%p™2 — 2a3(cos 25)%€3p™5) D4 Ays
—2e2p 4 cos 25 - A1z + O(e?)
+ (2b€2p~ % 4 b(cos 25)2€%p2 + 2ab(cos 25)%€3p° — dabe®p~?) Ays,

(d*dA)y = —2p7 0. 91 A1y — €2p 202404 — bcos2s - €2p 203494
+ acos2s - 62;)_284/124 —bcos2s - 62;)_232/134
— (1 +b*(cos2s)? - 2p™2 — 2ab*(cos 25)* - € p )3 A3y
— (—ab(cos 25)? - €2p~2 + 2a2b(cos 25)% - 3p7°) Oy Azy
+ (—2€%p™ cos 25) A1g + O(€*)
+ (2a€?p™% + a(cos 25)%e?p™2 — (2a* + 4b%)(cos 25)? € p 7 + 4b*e®p~?) Aay.

O]
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B.5 The proof of Lemma 4.5
Proof.

m(Vath - ) = (Y101hg — Yadithy — Aq|Y|*)dy
+ (110932 — 1hadath — As|y|?)dy?

U? U?
+(—78m¢ Azl dy?® +(= cos  — Ag[¢)*)dy
2 _ 2 - 2 _ 2 ~
et VY GG — g, - wcosqb)dyl
T T
U2 -vu? ~ U? -vu? ~
+(€fg'Tsin¢—egg-#cos¢)dy

U? ~ U? ~
+ (——sing — A0 P)dy” + (— cos 6 — Aqf)dy’

C The proof of lemma 5.1

Proof. Recall that
w(z) = —2n /F e (G — ) A x(v)] dH2 ()
- /F oy (X)) dH2 ().

dwy jo—yl*

Denote z = (p1e'', ppe'®), y = (\{pele ‘[ L), o = 0y — ;. Let e; =

\/ﬁ(ﬁpl — p720,,), €2 = \/%(891 + (992) which are induced by 0,

and Jg. Then by direct calculation, when p; = p2, we have:

1) If V14 cosa < py, then

ﬁ(lE)Q + p(z ) 4+ 2cosa = 2p1, where (\2[/)610 \2[ ~1 ,9

a(x) = cosay/p? — cosa, b(x) = sinay/p? — cosa,

dist(z,T) = 1/ p? — cos a,
dp = —db + dbs.
2) If /1 + cosa > p1, then

a(x) = p1vV1+cosa—1, b(x) = %.

) is the closest points in I' to z.
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so dp = —j(a)dh; + j(a)db2, where j(«) is a smooth function.
1 1
el = 2= (p%db; + p 2dba),

————(dpr — p%dpa), e
Vitp 1t 2p% + 2p~2

1 1 1 1
(14 px = Epdpl A dby + El)igdpl A dby — ﬁﬂildpz Ndby — \ﬁp’5dpz N dbs.

The metric matrix with respect to (p1, 01, p2,602) is :

( )

#(dpy A dfs) = —p1py tdpa A dby,
( ) = —pi ' padp1 A dbs,
( )

= p1py 'dpy A db.

So we can get :

1 1
(L4 p ) xx = —zp 'dpa Adby — —=p~"dpy A dby

V2 V2
+ ——p3dpy Adby — —=p~3dpy A dby,
\@P P1 2 \/ﬁp P1 1

1, 1 _ B
o=yl = pl+ 05+ 50" + 507" = V2p1pcos(0 — 1) — V2p2p™" cos(0 — ).

In T", we know:
Op = Op, — Pi2apaa
Oy = 891 + 892.

We remark that, we denote dp; as dpi(y) for simplicity. Similarly df,
dpa, dfs are the same.

dp1(z) = cos(0 — 61)dp; — sin(0 — 91)?,0d91,
p1(x)dOy(z) = sin(6 — 01)dp1 + cos(0 — 01)\?pd01,

dpa(x) = cos(0 — O2)dps — sin(f — 92)?P_ld92,
p2(x)dbz(x) = sin(6 — 62)dp2 + cos(d — 92)?/?_16192
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Conversely,

dp1 = cos(§ — 61)dpi(x) + p1sin(d — 61)db:(z),

)

pdfy = \/2p1 cos(6 — 61)dfy (x) — V2sin(6 — 0;)dpy (),
dpa = cos(0 — 62)dpa(x) + p2sin(f — O2)db2(x),

p~ LBy = V/2py cos(0 — 02)dbs () — V/2sin(6 — 02)dpa(z),

delz — y|? = [2p1 — V2p cos(0 — 01)]dp1(x) — V2p1psin(0 — 0;)d6, (z)
+ 202 — V207 L cos(0 — 09)]dpa(z) — V2p2p~ sin(h — O)ds(x)

= [2p1 — V2pcos(0 — 0,)] - [cos(0 — 61)dp1 — sin(6 — ;) - ?pdﬁl]
—V2psin(0 — 6) - [sin(6 — 01)dp; + cos( — 67) - \fpdel]

+ [2p2 — V207 L cos(8 — 05)] - [cos(8 — Ba)dpy — sin(f — 6y) - \gipldeg]

—V2p7Lsin(6 — 6y) - [sin(f — 62)dps + cos(6 — ) - \éﬁp_ldeg]

= 2py cos(0 — 01)dp; —sin(0 — 0;) - \/ippldel - \/ipdpl
+ 2pg cos(0 — O2)dpa — sin(f — 60s) - \/ipflpzdﬂg - \@pfldpg,

o1



B

1
\/ip_SdHQ - 7p_3d(91)

V2

(14 pHia, ja—yp2 (+x) = [2p1 cos(8 — 61) — V2p] - (
—sin(0 — 61) - V2pp1 (V20 2dpy + V29 Pdp]

1 1
+ [2p2 cos(6 — B2) — V2p71] - (ﬁp_ldﬁg - ﬁp_ld«%)

—sin(0 — 62) - V2p~ ' pa - [=V2pdpy — V2pdp]

= [2p"2pasin(f — 62) — 2p 2 py sin(6 — 61)]dpy

+ [2p2sin(f — 69) — 2p~2py sin(0 — 61)]dpo

+ 12072 = V2p1p 2 cos(0 — 01) — V2p L py cos(0 — 62)]dO;

+ =202 +V2p3p1 cos(0 — 01) + V2p L py cos(0 — 62)]db;

= [2p"2pasin(f — 63) — 2p 2 pysin(6 — 0;)] - [cos(8 — 61)dp1(z) + py sin(f — 61)db; (z)]
+ [2p2sin(f — Bo) — 2p2py sin(0 — 61)] - [cos(0 — O2)dpa(x) 4 pasin(@ — O)dby ()]
+ 12072 = V2p1p 3 cos(0 — 61) — V2p pa cos(f — 02)]-

[V2p 1 p1 cos(0 — 601)dby (z) — V2p~  sin(6 — 0;)dpy (z)]

+ =202 +V2p3p1 cos( — 61) + V2p L py cos(0 — 65)]-

[V2pp2 cos(0 — 02)d0s(x) — V2psin(6 — 62)dpa(2)]

= [—2v2p 7 3sin(0 — 61) + 2p 2 po sin(20 — 6 — 6o)]dpy ()

+ [2v2p L sin(f — 02) — 2p 2 p1sin(20 — 61 — 6)]dpa(z)

+ =202 + 2v2p 3 p1 cos(0 — 61) — 2p 2 p1p2 cos(20 — 01 — 05)]d6, (x)

+ 203 — 2v2p L py cos (0 — 62) 4 2p 2 p1p2 cos(20 — 01 — 05)]ds ().

Besides, for the manifold T", the metric matrix with respect to (p, 6) is:

<§+§p‘4 S )
0 §p2+§p72
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Therefore, we finally get:

wiz) = = / a2 (o () AH (1)

duwy jo—y/?

1, 1
=— [ Ipi+p+5p"+5p" —V2p1pcos(f — 61) — V2pap~ " cos(6 — 6)] >
8&)4 0,0 2 2

{[~2V2p73sin(0 — 01) + 2p" 2 pasin(20 — 0, — 62)]dp1 ()
+ [2v2p L sin(f — B) — 2p 2 p1sin(20 — 61 — 65)]dpa(x)
+ [=2p%p2 + 2v2p73p1 cos(0 — 01) — 2p 2 p1p2 cos(20 — 01 — 05)]d6, ()
+ [2p3 — 2v2p L py cos(0 — 02) 4+ 2p~ 2 p1p2 cos(20 — 01 — 02)]dOy ()} - pdpdh
= 8iw4 L lz —y|™* - {[—2v2p 2sin(0 — 601) + 2p Lpasin(20 — 6y — 62)]dp1 (z)
+ [2v2sin(0 — 63) — 2p "L py sin(20 — 01 — 62)]dpa ()
+ [=2072p% + 2v2p 2 p1 cos( — 01) — 2p L p1po cos(20 — 61 — 65)]db: ()
+ [202p — 2v2p5 cos(0 — 02) + 2p~ L p1pa cos(20 — 6 — 62))dBo(x) }dpdb.
If we change 6 into —0 + 01 + 05, then:
0 —0; — —0+ 6y,
0 — 60y — —0+ 0.
Thus, if p; = pa, i.e. © € {(p1,01, p2,02) : p1 = p2}, we have
w(x) = T / Iz —y|™* - {[~2v2p 2sin(0 — 601) + 4p~ L p1 sin(20 — 6, — 65)
8w Jp>1,0<0<27
—2v/2sin(0 — 62)]dp (z)
+ [2V2sin(6 — 02) — 4p~Lpy sin(20 — 6 — 6) + 2v/2p" 2 sin(0 — 61))dpa(z)
+ [=2p73p3 +2V2p 2 p1 cos(0 — 01) + 202 p — 2v/2p1 cos(0 — 05)]dO; ()
+ (2020 — 2v2p1 cos(0 — 09) — 2p2p3 + 2v/2p1p % cos(0 — 0;)]dO2 () }dpdb.

Note that the tangent space of {p1 = p2} is spanned by 0,, + 0,,, 05,
0p,. So we get that:

™

- o~y {207 4+ 2339 1 cos(0— 1)
8wa Jp>1,0<0<2n
+202p — 2v/2p1 cos(0 — 02)]db; (z)
+ 12020 — 2v/2p1 cos(0 — 03) — 2p2p~3 + 2v/2p1p~ % cos(0 — 601)]d02(x) }dpd.

wTt ()
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