MATH 516-101-2022 Homework Two

Due Date: by 6pm, October 5, 2022

- 1. (10pts) Let u be a harmonic function in $B_1(0)\setminus\{0\}=\{0<|x|<1\}\subset\mathbb{R}^2$ be such that $\lim_{x\to 0}\frac{u(x)}{\log|x|}=0$. Show that u can be extended to be a function $u \in C^2(B_1(0))$.
- 2. (10pts) Let G(x, y) be Green's function in $\Omega \subset \mathbb{R}^n$. Show that $\forall x \neq y, x, y \in \Omega$, G(x, y) = G(y, x).
- 3. (20pts) Let $u \in C^0(\Omega)$. Show that the followings are equivalent
- (i) for all $x \in \Omega$, $B_r(x) \subset\subset \Omega$,

$$u(x) \le \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy$$

(ii) for all $B \subset\subset \Omega$ and for all $h: \bar{B} \to R$ which satisfies

$$-\Delta h = 0, \ x \in B, \ h \ge u \text{ for } x \in \partial B$$

one has $u(x) \le h(x)$ for all $x \in \bar{B}$. Here $B = B_r(y)$.

(iii) for all $x \in \Omega$, $B_r(x) \subset\subset \Omega$,

$$u(x) \leq \frac{1}{|\partial B_r(x)|} \int_{\partial B_r(x)} u(\sigma) d\sigma$$

- (iv) for all $x \in \Omega$ and for all $\phi \in C^2$ such that $u \phi$ has a local maximum at x, then $-\Delta \phi(x) \le 0$.
- 4. (30pts) This problem is concerned with Perron's method.
- (a) Let $\xi \in \partial \Omega$ and w(x) be a barrier on $\Omega_1 \subset \subset \Omega$: (i) w is superharmonic in Ω_1 ; (ii) w > 0 in $\overline{\Omega}_1 \setminus \{\xi\}$; $w(\xi) = 0$. Show that w can be extended to a barrier in Ω .
- (b) Let $\Omega = \{x^2 + y^2 < 1\} \setminus \{-1 \le x \le 0, y = 0\}$. Show that the function $w := -Re(\frac{1}{\ln r(x)}) = -\frac{\log r}{(\log r)^2 + \theta^2}$ is a local barrier at $\xi = 0$.
 - (c) Consider the following Dirichlet problem

$$\Delta u = 0$$
 in Ω ; $u = g$ on $\partial \Omega$

where $\Omega = B_1(0) \setminus \{0\}$, g(x) = 0 for $x \in \partial B_1(0)$ and g(0) = -1. Show that 0 is not a regular point. Hint: the function $-\frac{\epsilon}{|x|^{n-2}}$ is a sub-harmonic function. 5. (10pts) (a) Show that the problem of minimizing energy

$$I[u] = \int_{I} x^{2} |u'(x)|^{2} dx,$$

for $u \in C(\bar{J})$ with piecewise continuous derivatives in J := (-1, 1), satisfying the boundary conditions u(-1) = (-1, 1)0, u(1) = 1, is not attained. (b) Consider the problem of minimizing the energy

$$I[u] = \int_{0}^{1} (1 + |u'(x)|^{2})^{\frac{1}{4}} dx$$

for all $u \in C^1((0,1)) \cap C([0,1])$ satisfying u(0) = 0, u(1) = 1. Show that the minimum is 1 and is not attained.

6. (10pts) Discuss Dirichlet Principle for

$$\begin{cases} \Delta u - c(x)u + f = 0 \text{ in } \Omega \\ \frac{\partial u}{\partial y} + a(x)u = g \text{ on } \partial \Omega \end{cases}$$

7. (10pts) Let

$$\Phi(x - y, t) = (4\pi t)^{-n/2} e^{-\frac{|x-y|^2}{4t}}$$

(a) Let n = 1 and f(x) be a function such that $f(x_0-)$ and $f(x_0+)$ exists. Show that

$$\lim_{t \to 0} \int_{R} \Phi(x - x_0, t) f(y) dy = \frac{1}{2} (f(x_0 -) + f(x_0 +))$$

(b) Let u satisfy

$$u_t = \Delta u, x \in \mathbb{R}^n, t > 0; u(x, 0) = f(x)$$

Suppose that f is continuous and has compact support. Show that $\lim_{t\to +\infty} u(x,t) = 0$ for all x.