MATH 516-101-2022 Homework One

Due Date: September 21st, 2022

1. (10pts) Find the explicit solution to

$$
\begin{gathered}
u_{t}+2 u_{x}+3 u_{y}+4 u=e^{x} \\
u(x, y, 0)=x^{2}
\end{gathered}
$$

2. (20pts) Let $f \in C_{c}^{\alpha}\left(R^{2}\right)$, where $\alpha \in(0,1)$. Here $f \in C^{\alpha}$ means $f \in C^{0}$ and $|f(x)-f(y)| \leq C|x-y|^{\alpha}$. Show that the following function

$$
v(x)=\frac{1}{2 \pi} \int_{R^{2}}(\log |x-y|) f(y) d y
$$

satisfies
(a) $v \in C^{2}$
(b) $\Delta v(x)=f(x), x \in R^{2}$.
3. (20pts) This problem concerns the Newtonian potential

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}^{n}} \frac{1}{|x-y|^{n-2}} \frac{1}{(1+|y|)^{l}} d y \tag{1}
\end{equation*}
$$

where $n \geq 3$.
a) Show that for $l \in(2, n),|u(x)| \leq \frac{C}{|x|^{-2}}$ for $|x|>1$
b) Show that for $l=n$, then $|u(x)| \leq \frac{C}{|x|^{n-2}} \log (|x|+2)$ for $|x|>1$
c) Show that for $l>n$, then $|u(x)| \leq \frac{C}{|x|^{n-2}}$ for $|x|>1$

Hint: For $|x|=R \gg 1$, divide the integral into three parts

$$
\int_{R^{n}}(\ldots) d y=\int_{|y-x|<\frac{|x|}{2}}(\ldots)+\int_{\frac{\mid y}{2}<|y-x|<2|x|}(\ldots)+\int_{|y-x|>2|x|}(\ldots)
$$

and estimate each parts. For example in the region $|y-x|<\frac{|x|}{2}$ we have $|y|>|x|-|x-y|>\frac{|x|}{2}$ and

$$
\int_{|y-x|<\frac{|x|}{2}} \frac{1}{|x-y|^{n-2}}|f(y)| d y \leq \int_{0}^{\frac{|x|}{2}} \frac{r^{n-1}}{r^{n-2}} d r \frac{C}{|x|^{\mid}} \leq \frac{C}{|x|^{\mid-2}}
$$

4. (10pts) For $n>2$, the Kelvin transform is defined by

$$
v(x)=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)
$$

Suppose u satisfies $-\Delta u(x)=u^{p}$. Find out the new equation satisfied by v. Find out for which exponent p the equation is invariant.
5. (10pts) Let u be a harmonic function in $B_{1}(0) \backslash\{0\}=\{0<|x|<1\}$ be such that $\lim _{x \rightarrow 0}|x|^{n-2} u(x)=0$. Show that $u \in C^{2}\left(B_{1}(0)\right)$. Here $n \geq 3$.
6. (10pts) Let u be harmonic in $\Omega \subset \mathbb{R}^{n}$. Show that for all $x_{0} \in \Omega$

$$
\left|\nabla u\left(x_{0}\right)\right| \leq \frac{n}{d_{0}}\left[\sup _{\Omega} u-u\left(x_{0}\right)\right], d_{0}=d(x, \partial \Omega) .
$$

Hint: Do gradient estimate for $\sup _{\Omega} u-u(x)$. Note that this function is nonnegative.
7. (20pts) Let $G(x, y)=\Gamma(|x-y|)-H(x, y)$ be the Green's function in Ω and define:

$$
v(x)=\int_{\Omega} G(x, y) f(y) d y
$$

Suppose that f is bounded and integrable in Ω. Show that $\lim _{x \rightarrow x_{0}, x \in \Omega} v(x)=0$ for any $x_{0} \in \partial \Omega$.

