MATH 516-101, 2021-2022 Homework Six Due Date: By 6pm on December 8, 2021

10pts each unless otherwise stated.

1. (20pts) Let u be a weak sub-solution of

$$-\sum_{i,j}\partial_{x_j}(a^{ij}\partial_{x_i}u) + c(x)u = f$$

where $\theta \leq (a^{ij}) \leq C_2 < +\infty$. Suppose that $c(x) \in L^{\frac{n}{2}}(B_1), f \in L^q(B_1)$ where $q > \frac{n}{2}$. Show that there exists a generic constant $\epsilon_0 > 0$ such that if $\int_{B_1} |c|^{\frac{n}{2}} dx \leq \epsilon_0$, then

$$\sup_{B_{1/2}} u^+ \le C(\|u^+\|_{L^2(B_1)} + \|f\|_{L^q(B_1)})$$

Hint: following the De Giorgi-Nash-Moser's iteration procedure.

2. Show that $u = \log |x|$ is in $H^1(B_1)$, where $B_1 = B_1(0) \subset R^3$ and that it is a weak solution of

$$-\Delta u + c(x)u = 0$$

for some $c(x) \in L^{\frac{3}{2}}(B_1)$ but u is not bounded. 3. Assume that $u \in H^1(\Omega)$ is a bounded weak solution of

$$-\sum_{i,j=1}^n \partial_j(a^{ij}\partial_i u) = 0 \text{ in } \Omega$$

Show that \mathbf{u}^2 is a weak sub-solution.

4. Let $u \in H_0^1(\Omega)$ be a weak solution of

$$-\Delta u = |u|^{q-1}u$$
 in $\Omega; u = 0$ on $\partial\Omega$

where $1 < q < \frac{n+2}{n-2}$. Without using Moser's iteration Lemma, use the $W^{2,p}$ – theory only to show that $u \in L^{\infty}$ and then use Schauder theory to show that $u \in C^{2,\alpha}(\Omega)$.

5. Assume that u is a smooth solution of

$$Lu = -a^{ij}u_{ij} = f \text{ in } U$$
$$\mathbf{u} = \mathbf{0} \text{ on } \partial \mathbf{U}$$

A barrier at x^0 is a C^2 function w such that

$$Lw \ge 1$$
 in $Uw(x^0) = 0, w \ge 0$ on ∂U

Show that if w is a barrier at x^0 , there exists a constant C such that

$$|Du(x^0)| \le C |\frac{\partial w}{\partial \nu}(x^0)|$$

Hint: Since u = 0 on $\partial \Omega$, $|Du(x^0)| = |\frac{\partial u}{\partial \nu}(x^0)|$. 6. Let u be a smooth function satisfying

$$-\Delta u + u = f(x), |u| \le e^{\frac{1}{2}|x|}, \text{ in } R^n$$

where

$$|f(x)| \le Ce^{-|x|}$$

Deduce from maximum principle that u actually decays

$$|u(x)| \le Ce^{-\frac{1}{2}|x|}$$

7. Let Ω be a smooth bounded domain in \mathbb{R}^n . Assume that u is a smooth solution of

$$\partial_t u - \Delta u = 0$$
 in $\Omega \times (0, T); u \|_{\partial\Omega} = 0, u(x, 0) = g$

Prove the exponential decay estimate

$$||u(\cdot,t)||_{L^{2}(\Omega)} \le e^{-\lambda_{1}t} ||g||_{L^{2}(\Omega)}, t \ge 0$$

where $\lambda_1 > 0$ is the principle eigenvalue of $-\Delta$ with Dirichlet boundary condition. 8. (20pts) Let Ω be a smooth bounded domain in \mathbb{R}^n , and $\{w_k\}_{k=1}^{\infty}$ be an orthonormal basis of $H_0^1(\Omega)$. Show that the set of functions

$$\mathcal{F} = \{ v(t) = \sum_{k=1}^{m} d^{k}(t) w_{k} \mid d^{k}(t) \in C^{1}([0,T]), m \in \mathbb{N} \}$$

is dense in $L^2(0,T; H^1_0(\Omega))$.