10pts each unless otherwise stated.

1. Consider the following convection-diffusion problem

$$
\begin{gathered}
-\Delta u+\sum_{j=1}^{n} b_{j} \partial_{j} u+c u=f \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

Assume that $f \in L^{2}(\Omega), b_{j} \in C^{1}(\bar{\Omega}), c \in L^{\infty}$. Show that if $c-\frac{1}{2} \sum_{j=1}^{n} \partial_{j}\left(b_{j}\right) \geq 0$ then the above problem has a unique weak solution.
2. Let $n=3$ and $\Omega$ be the ball $|x|<\pi$. Show that a solution of $\Delta u+u=f(x), f \in L^{2}$ with $u=0$ on $\partial \Omega$ can only exist if

$$
\int_{\Omega} f(x) \frac{\sin |x|}{|x|} d x=0
$$

3. Use the space $W^{1,2}(\Omega)$ to discuss the weak solution formulation of the following boundary value problem

$$
\begin{gathered}
-\Delta u+u=f \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=g \text { on } \partial \Omega
\end{gathered}
$$

Show that if $u \in W^{2,2}(\Omega) \cap W^{1,2}(\Omega)$ is a weak solution, then it satisfies the equation in the sense of distributions and the boundary condition in the sense of trace.
4. (20pts) (a) Show that

$$
\int_{\Omega}(\Delta v)^{2}=\sum_{i, j=1}^{n} \int_{\Omega}\left(\partial_{i j} v\right)^{2} d x=\left\|\nabla^{2} v\right\|_{L^{2}}, \forall v \in W_{0}^{2,2}(\Omega)
$$

(b) Discuss the weak solution of the following boundary value problem

$$
\begin{gathered}
\Delta^{2} u=f \text { in } \Omega, u \in W_{0}^{2,2}(\Omega) \\
u=\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{gathered}
$$

(Introduce the bilinear form on $W_{0}^{2,2}$ and prove the existence by Lax-Milgram and uniqueness of the weak solution.) 5. (20pts) Let $\Omega$ be a bounded domain in $R^{2}$ and $f \in L^{2}$. Consider the following minimization problem

$$
c=\inf _{u \in H_{0}^{1}(\Omega)}\left(\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{4} \int_{\Omega} u^{4}+\int_{\Omega} f(x) u\right)
$$

Show that $c$ can be attained and its minimizer is a weak solution

$$
\Delta u=u^{3}+f(x), \text { in } \Omega ; u=0 \text { on } \partial \Omega
$$

Show that the weak solution is also unique.
6. Let $u \in H^{1}\left(R^{n}\right)$ have compact support and be a weak solution of the semilinear PDE

$$
\Delta u=u^{5}-f \text { in } R^{n}
$$

where $f \in L^{2}$. Prove that $\left\|D^{2} u\right\|_{L^{2}\left(R^{n}\right)} \leq C\|f\|_{L^{2}\left(R^{n}\right)}$.
Hint: mimic the proof of $H^{2}$-estimates but without the cut-off function.
7. (20pts) Let $u$ be a weak sub-solution of

$$
-\sum_{i, j} \partial_{x_{j}}\left(a^{i j} \partial_{x_{i}} u\right)+c(x) u=f
$$

where $\theta \leq\left(a^{i j}\right) \leq C_{2}<+\infty$. Suppose that $c(x) \in L^{\frac{n}{2}}\left(B_{1}\right), f \in L^{q}\left(B_{1}\right)$ where $q>\frac{n}{2}$. Show that there exists a generic constant $\epsilon_{0}>0$ such that if $\int_{B_{1}}|c|^{\frac{n}{2}} d x \leq \epsilon_{0}$, then

$$
\sup _{B_{1 / 2}} u^{+} \leq C\left(\left\|u^{+}\right\|_{L^{2}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

Hint: following the Moser's iteration procedure.
8. Show that $u=\log |x|$ is in $H^{1}\left(B_{1}\right)$, where $B_{1}=B_{1}(0) \subset R^{3}$ and that it is a weak solution of

$$
-\Delta u+c(x) u=0
$$

for some $c(x) \in L^{\frac{3}{2}}\left(B_{1}\right)$ but $u$ is not bounded.

