MATH 516-101 Homework Four 2021-2022 Due Date: by 6pm, November 3, 2021 10pts each

1. Let $\Omega = (-1, 1)$ and $u(x) = x_+$. Show that u can not be approximated by $C^{\infty}(\Omega)$ in $W^{1,\infty}(\Omega)$ norm. (SO density theorems are not true for $p + +\infty$.)

2. Let $u \in C^{\infty}(\bar{R}^n_+)$. Extend u to Eu on \mathbb{R}^n such that

$$Eu = u, x \in \mathbb{R}^n_+; Eu \in \mathbb{C}^{3,1}(\mathbb{R}^n) \cap W^{4,p}(\mathbb{R}^n); ||Eu||_{W^{4,p}} \le ||u||_{W^{4,p}}$$

Here $R_{+}^{n} = \{(x', x_{n}); x_{n} > 0\}$ and $C^{3,1} = \{u \in C^{3}, D^{\alpha}u \text{ is Lipschitz}, |\alpha| = 3\}.$

3. Let $\Omega = \{(x,y) \mid x^2 + y^2 < 1\}$ and $\Omega_0 = \Omega \setminus \{(0,0)\}$. Consider the function f(x) = 1 - |x|. Prove that $f \in W_0^{1,p}(\Omega)$, if $1 \le p < \infty$; $f \in W_0^{1,p}(\Omega_0)$, if $1 \le p \le 2$; $f \notin W_0^{1,p}(\Omega_0)$, if 2 .4. (a) If <math>n = 1 and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If n > 1, find an example of $u \in W^{1,n}(B_1)$ and $u \notin L^{\infty}$.

5. Let $u \in H_0^1((0,1))$. Show that there is $w \in C([0,1])$ with w(0) = w(1) = 0 such that u = w almost everywhere in [0,1].

6. Show that for any $u \in C_0^{\infty}(\mathbb{R}^n)$ we have Hardy's inequality

$$\int_{R^n} \frac{u^2}{|x|^2} dx \le \frac{(n-2)^2}{4} \int_{R^n} |\nabla u|^2$$

Hint: integrate $|\nabla|\lambda \frac{x}{|x|}u|^2$.

7. Fix $\alpha > 0, 1 and let <math>U = B_1(0)$. Show that there exists a constant C, depending on n and α such that

$$\int_U u^p dx \le C \int_U |\nabla u|^p$$

provided

$$u \in W^{1,p}(U), |\{x \in U | u(x) = 0\}| \ge \alpha$$

8. (a) Show that $W^{1,2}(\mathbb{R}^N) \subset L^2(\mathbb{R}^N)$ is not compact. (b). Let n > 4. Show that the embedding $W^{2,2}(U) \to L^{\frac{2n}{n-4}}(U)$ is not compact; (b) Describe the embedding of $W^{3,p}(U)$ in different dimensions. State if the embedding is continuous or compact.

9. (a) Let $u \in W_r^{1,2} = H_r^1 = \{u \in W^{1,2}(\mathbb{R}^n) \mid u = u(r)\}$. Show that $|u(r)| \leq C ||u||_{W^{1,2}} r^{-\frac{n-1}{2}}$. (b) Show that for $n \geq 2$, the embedding $W_r^{1,2} \subset L^p$ is compact when $2 . (c) Let <math>u = \mathcal{D}_r^{1,2} = \{\int |\nabla u|^2 < +\infty; u = u(r)\}$. Show that $D_r^{1,2} \subset L^{\frac{2n}{n-2}}$ and $|u(r)| \leq C ||\nabla u||_{L^2} r^{-\frac{n-2}{2}}$. However $D_r^{1,2} \subset L^{\frac{2n}{n-2}}$ is not compact.

10. Let U = (-1, 1). Show that the dual space of $H^1(U)$ is isomorphic to $H^{-1}(U) + E^*$ where E^* is the two dimensional subspace of $H^1(U)$ spanned by the orthogonal vectors $\{e^x, e^{-x}\}$.

1