Due Date: by 6 pm , November 3, 2021
10pts each

1. Let $\Omega=(-1,1)$ and $u(x)=x_{+}$. Show that u can not be approximated by $C^{\infty}(\Omega)$ in $W^{1, \infty}(\Omega)$ norm. (SO density theorems are not true for $p++\infty$.)
2. Let $u \in C^{\infty}\left(\bar{R}_{+}^{n}\right)$. Extend u to $E u$ on R^{n} such that

$$
E u=u, x \in R_{+}^{n} ; E u \in C^{3,1}\left(R^{n}\right) \cap W^{4, p}\left(R^{n}\right) ;\|E u\|_{W^{4, p}} \leq\|u\|_{W^{4, p}}
$$

Here $R_{+}^{n}=\left\{\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\}$ and $C^{3,1}=\left\{u \in C^{3}, D^{\alpha} u\right.$ is Lipschitz, $\left.|\alpha|=3\right\}$.
3. Let $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ and $\Omega_{0}=\Omega \backslash\{(0,0)\}$. Consider the function $f(x)=1-|x|$. Prove that $f \in$ $W_{0}^{1, p}(\Omega)$, if $1 \leq p<\infty ; f \in W_{0}^{1, p}\left(\Omega_{0}\right)$, if $1 \leq p \leq 2 ; f \notin W_{0}^{1, p}\left(\Omega_{0}\right)$, if $2<p \leq \infty$.
4. (a) If $n=1$ and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If $n>1$, find an example of $u \in W^{1, n}\left(B_{1}\right)$ and $u \notin L^{\infty}$.
5. Let $u \in H_{0}^{1}((0,1))$. Show that there is $w \in C([0,1])$ with $w(0)=w(1)=0$ such that $u=w$ almost everywhere in $[0,1]$.
6. Show that for any $u \in C_{0}^{\infty}\left(R^{n}\right)$ we have Hardy's inequality

$$
\int_{R^{n}} \frac{u^{2}}{|x|^{2}} d x \leq \frac{(n-2)^{2}}{4} \int_{R^{n}}|\nabla u|^{2}
$$

Hint: integrate $\left.|\nabla| \lambda \frac{x}{|x|} u\right|^{2}$.
7. Fix $\alpha>0,1<p<+\infty$ and let $U=B_{1}(0)$. Show that there exists a constant C, depending on n and α such that

$$
\int_{U} u^{p} d x \leq C \int_{U}|\nabla u|^{p}
$$

provided

$$
u \in W^{1, p}(U),|\{x \in U \mid u(x)=0\}| \geq \alpha
$$

8. (a) Show that $W^{1,2}\left(R^{N}\right) \subset L^{2}\left(R^{N}\right)$ is not compact. (b). Let $n>4$. Show that the embedding $W^{2,2}(U) \rightarrow L^{\frac{2 n}{n-4}}(U)$ is not compact; (b) Describe the embedding of $W^{3, p}(U)$ in different dimensions. State if the embedding is continuous or compact.
9. (a) Let $u \in W_{r}^{1,2}=H_{r}^{1}=\left\{u \in W^{1,2}\left(R^{n}\right) \mid u=u(r)\right\}$. Show that $|u(r)| \leq C\|u\|_{W^{1,2}} r^{-\frac{n-1}{2}}$. (b) Show that for $n \geq 2$, the embedding $W_{r}^{1,2} \subset L^{p}$ is compact when $2<p<\frac{2 n}{n-2}$. (c) Let $u=\mathcal{D}_{r}^{1,2}=\left\{\int|\nabla u|^{2}<+\infty ; u=u(r)\right\}$. Show that $D_{r}^{1,2} \subset L^{\frac{2 n}{n-2}}$ and $|u(r)| \leq C\|\nabla u\|_{L^{2}} r^{-\frac{n-2}{2}}$. However $D_{r}^{1,2} \subset L^{\frac{2 n}{n-2}}$ is not compact.
10. Let $U=(-1,1)$. Show that the dual space of $H^{1}(U)$ is isomorphic to $H^{-1}(U)+E^{*}$ where E^{*} is the two dimensional subspace of $H^{1}(U)$ spanned by the orthogonal vectors $\left\{e^{x}, e^{-x}\right\}$.
