MATH 516-101 2021-2022 Homework THREE
Due Date: by 6 pm , October 20, 2021
10 points each, unless otherwise stated.

1. (20points) Let u solve

$$
\begin{aligned}
u_{t t} & =u_{x x}, x \in R, t>0 \\
u(x, 0) & =g(x), u_{t}(x, 0)=h(x)
\end{aligned}
$$

Suppose that g and h have compact support. Let $p(t)=\frac{1}{2} \int u_{x}^{2}(x, t)$ be the potential energy, and $k(t)=\frac{1}{2} \int u_{t}^{2}(x, t)$. Prove
(a) $p(t)+k(t)=p(0)+k(0)$
(b) $p(t)=k(t)$ for all large enough t.
2. Derive a solution formula for the three-dimensional wave equation with radial source

$$
\begin{gathered}
u_{t t}=\Delta u+f(r, t), t>0, r>0 \\
u(r, 0)=0, u_{t}(r, 0)=0
\end{gathered}
$$

3. Let $n=5$ and $U(r, t)$ satisfy

$$
U_{t t}-\left(U_{r r}+\frac{4}{r} U_{r}\right)=0
$$

Show that $\tilde{U}=\frac{1}{r} \partial_{r}\left(r^{3} U\right)$ satisfies $\tilde{U}_{t t}-\tilde{U}_{r r}=0$.
4. Find the first order and second order weak derivatives for the following function $u: R \rightarrow R$, if exists:

$$
\text { (a) } u(x)=\left\{\begin{array}{l}
1-|x|, \text { for }|x| \leq 1 \\
0, \text { for }|x|>1
\end{array} ; \text { (b) } u(x)=|\cos x|\right.
$$

5. Suppose $u:(a, b) \rightarrow R$ and the weak derivative exists and satisfies

$$
D u=0 \text { a.e. in }(a, b)
$$

Prove that u is constant a.e. in (a, b).
6. Let $1<p<+\infty$. Show that if $u, v \in W^{1, p}(\Omega)$ then $\max (u, v), \min (u, v) \in W^{1, p}(\Omega)$. Show that this is not true for $W^{2, p}(\Omega)$.
7. Consider the following function

$$
u(x)=\frac{1}{|x|^{\gamma}}
$$

in $\Omega=B_{1}(0)$. Show that if $\gamma+1<n$, the weak derivatives are given by

$$
\partial_{j} u=-\gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

i.e., you need to show rigorously that

$$
\int u \partial_{j} \phi=\int \phi \gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

For the condition on γ such that $u \in W^{1, p}$ or $u \in W^{2, p}$.
8. Let $\eta(t)=1$ for $t \leq 0$ and $\eta(t)=0$ for $t>1$. Let $f \in W^{k, p}\left(R^{n}\right)$ and $f_{k}=f \eta(|x|-k)$. Show that $\left\|f_{k}-f\right\|_{W^{k, p}} \rightarrow 0$ as $k \rightarrow+\infty$. As a consequence show that $W^{k, p}\left(R^{n}\right)=W_{0}^{k, p}\left(R^{n}\right)$.
9. Let $R^{+}=\{x \in R ; x>0\}$ and assume that $u \in W^{2, p}\left(R^{+}\right)$. Define the symmetric extension of u by setting $E u(x)=u(|x|)$. Prove that $E u \in W^{1, p}(R)$ but $E u \notin W^{2, p}(R)$, in general.

