MATH 516-101-2021 Homework Two
Due Date: by 6pm, October 6, 2021

1. Let $G(x, y)$ be Green's function in $\Omega \subset \mathbb{R}^{2}$. Show that $\forall x \neq y, x, y \in \Omega$ (a) $G(x, y)=G(y, x) ;(b) G(x, y)>0$.
2. This problem is concerned with Perron's method. (a) A function $u \in C^{0}(\Omega)$ is subharmonic if for every $B_{\rho}\left(x_{0}\right) \subset$ Ω and a harmonic function h in $B_{\rho}\left(x_{0}\right)$ with $u \leq h$ on $\partial B_{\rho}\left(x_{0}\right)$ then $u \leq h$ in $B_{\rho}\left(x_{0}\right)$. Show that u is subharmonic if and only if for every $B_{\rho}\left(x_{0}\right) \subset \Omega$ it holds that $u\left(x_{0}\right) \leq \frac{1}{\left|\partial B_{\rho}\left(x_{0}\right)\right|} \int_{\partial B_{\rho}\left(x_{0}\right)} u$.
(b) Let $\xi \in \partial \Omega$ and $w(x)$ be a barrier on $\Omega_{1} \subset \subset \Omega$: (i) w is superharmonic in Ω_{1}; (ii) $w>0$ in $\bar{\Omega}_{1} \backslash\{\xi\} ; w(\xi)=0$. Show that w can be extended to a barrier in Ω.
(c) Let $\Omega=\left\{x^{2}+y^{2}<1\right\} \backslash\{-1 \leq x \leq 0, y=0\}$. Show that the function $w:=-\operatorname{Re}\left(\frac{1}{\operatorname{Ln}(z)}\right)=-\frac{\log r}{(\log r)^{2}+\theta^{2}}$ is a local barrier at $\xi=0$.
(d) Consider the following Dirichlet problem

$$
\Delta u=0 \text { in } \Omega ; u=g \text { on } \partial \Omega
$$

where $\Omega=B_{1}(0) \backslash\{0\}, g(x)=0$ for $x \in \partial B_{1}(0)$ and $g(0)=-1$. Show that 0 is not a regular point. Hint: the function $-\frac{\epsilon}{\mid x^{n-2}}$ is a sub-harmonic function.
3. (a) Show that the problem of minimizing energy

$$
I[u]=\int_{J} x^{2}\left|u^{\prime}(x)\right|^{2} d x
$$

for $u \in C(\bar{J})$ with piecewise continuous derivatives in $J:=(-1,1)$, satisfying the boundary conditions $u(-1)=$ $0, u(1)=1$, is not attained. (b) Consider the problem of minimizing the energy

$$
I[u]=\int_{0}^{1}\left(1+\left|u^{\prime}(x)\right|^{2}\right)^{\frac{1}{4}} d x
$$

for all $u \in C^{1}((0,1)) \cap C([0,1])$ satisfying $u(0)=0, u(1)=1$. Show that the minimum is 1 and is not attained.
4. Discuss Dirichlet Principle for

$$
\left\{\begin{array}{l}
\Delta u-c(x) u+f=0 \text { in } \Omega \\
\frac{\partial u}{\partial v}+a(x) u=g \text { on } \partial \Omega
\end{array}\right.
$$

5. Let

$$
\Phi(x-y, t)=(4 \pi t)^{-n / 2} e^{-\frac{|x-y|^{2}}{4 t}}
$$

(a) Let $n=1$ and $f(x)$ be a function such that $f\left(x_{0}-\right)$ and $f\left(x_{0}+\right)$ exists. Show that

$$
\lim _{t \rightarrow 0} \int_{R} \Phi\left(x-x_{0}, t\right) f(y) d y=\frac{1}{2}\left(f\left(x_{0}-\right)+f\left(x_{0}+\right)\right)
$$

(b) Let u satisfy

$$
u_{t}=\Delta u, x \in \mathbb{R}^{n}, t>0 ; u(x, 0)=f(x)
$$

Suppose that f is continuous and has compact support. Show that $\lim _{t \rightarrow+\infty} u(x, t)=0$ for all x.
(c) Find all solutions $u(x, t)$ of the one-dimensional heat equation $u_{t}=u_{x x}$ of the form $u=\frac{1}{\sqrt{t}} f\left(\frac{x}{\sqrt{t}}\right)$.
6. Consider the following general parabolic equation

$$
L[u]=a(x, t) u_{x x}+b(x, t) u_{x}+c(x, t) u-u_{t}
$$

where $0<C_{1}<a(x, t)<C_{2},|b(x, t)| \leq C_{3}, c(x, t) \leq C_{4}$. Prove the uniqueness of the initial value problem

$$
\left\{\begin{array}{l}
L u(x, t)=f(x, t), \operatorname{in} \Omega_{T} \\
u(x, 0)=\phi(x), x \in \Omega, \quad u(x, t)=g(x, t), x \in \partial \Omega, t \in(0, T]
\end{array}\right.
$$

Hint: consider $v=e^{-C_{4} t} u$.

