MATH 516-101-2021 Homework Two Due Date: by 6pm, October 6, 2021

1. Let G(x, y) be Green's function in $\Omega \subset \mathbb{R}^2$. Show that $\forall x \neq y, x, y \in \Omega$ (a) G(x, y) = G(y, x); (b)G(x, y) > 0.

2. This problem is concerned with Perron's method. (a) A function $u \in C^0(\Omega)$ is subharmonic if for every $B_\rho(x_0) \subset \Omega$ and a harmonic function h in $B_\rho(x_0)$ with $u \leq h$ on $\partial B_\rho(x_0)$ then $u \leq h$ in $B_\rho(x_0)$. Show that u is subharmonic if and only if for every $B_\rho(x_0) \subset \Omega$ it holds that $u(x_0) \leq \frac{1}{|\partial B_\rho(x_0)|} \int_{\partial B_\rho(x_0)} u$.

(b) Let $\xi \in \partial \Omega$ and w(x) be a barrier on $\Omega_1 \subset \subset \Omega$: (i) *w* is superharmonic in Ω_1 ; (ii) w > 0 in $\overline{\Omega}_1 \setminus \{\xi\}$; $w(\xi) = 0$. Show that *w* can be extended to a barrier in Ω .

(c) Let $\Omega = \{x^2 + y^2 < 1\} \setminus \{-1 \le x \le 0, y = 0\}$. Show that the function $w := -Re(\frac{1}{\ln(z)}) = -\frac{\log r}{(\log r)^2 + \theta^2}$ is a local barrier at $\xi = 0$.

(d) Consider the following Dirichlet problem

$$\Delta u = 0$$
 in Ω ; $u = g$ on $\partial \Omega$

where $\Omega = B_1(0) \setminus \{0\}$, g(x) = 0 for $x \in \partial B_1(0)$ and g(0) = -1. Show that 0 is not a regular point. Hint: the function $-\frac{\epsilon}{|x|^{n-2}}$ is a sub-harmonic function.

3. (a) Show that the problem of minimizing energy

$$I[u] = \int_{J} x^{2} |u'(x)|^{2} dx,$$

for $u \in C(\overline{J})$ with piecewise continuous derivatives in J := (-1, 1), satisfying the boundary conditions u(-1) = 0, u(1) = 1, is not attained. (b) Consider the problem of minimizing the energy

$$I[u] = \int_0^1 (1 + |u'(x)|^2)^{\frac{1}{4}} dx$$

for all $u \in C^1((0, 1)) \cap C([0, 1])$ satisfying u(0) = 0, u(1) = 1. Show that the minimum is 1 and is not attained.

4. Discuss Dirichlet Principle for

$$\begin{aligned} \Delta u - c(x)u + f &= 0 \text{ in } \Omega \\ \frac{\partial u}{\partial v} + a(x)u &= g \text{ on } \partial \Omega \end{aligned}$$

5. Let

$$\Phi(x - y, t) = (4\pi t)^{-n/2} e^{-\frac{|x-y|^2}{4t}}$$

(a) Let n = 1 and f(x) be a function such that $f(x_0)$ and $f(x_0)$ exists. Show that

$$\lim_{t \to 0} \int_R \Phi(x - x_0, t) f(y) dy = \frac{1}{2} (f(x_0 -) + f(x_0 +))$$

(b) Let *u* satisfy

$$u_t = \Delta u, x \in \mathbb{R}^n, t > 0; u(x, 0) = f(x)$$

Suppose that *f* is continuous and has compact support. Show that $\lim_{t\to+\infty} u(x, t) = 0$ for all *x*.

(c) Find all solutions u(x, t) of the one-dimensional heat equation $u_t = u_{xx}$ of the form $u = \frac{1}{\sqrt{t}} f(\frac{x}{\sqrt{t}})$.

6. Consider the following general parabolic equation

$$L[u] = a(x, t)u_{xx} + b(x, t)u_x + c(x, t)u - u_t$$

where $0 < C_1 < a(x,t) < C_2, |b(x,t)| \le C_3, c(x,t) \le C_4$. Prove the uniqueness of the initial value problem

$$\begin{cases} Lu(x,t) = f(x,t), \text{ in}\Omega_T; \\ u(x,0) = \phi(x), x \in \Omega, \quad u(x,t) = g(x,t), \ x \in \partial\Omega, t \in (0,T] \end{cases}$$

Hint: consider $v = e^{-C_4 t} u$.