MATH 516-101-2021 Homework One

Due Date: By 6pm on September 22nd, 2021

1. (10pts) Find the explicit solution to

$$
\begin{gathered}
u_{t}+b \cdot \nabla u+c u=f(x, t) \\
u(x, 0)=g(x)
\end{gathered}
$$

Here $c, b=\left(b_{1}, \ldots, b_{n}\right)$ are constants.
2. (10pts) Let $f \in C_{c}^{1}\left(R^{2}\right)$. Show that the following function

$$
v(x)=\frac{1}{2 \pi} \int_{R^{2}}(\log |x-y|) f(y) d y
$$

satisfies $-\Delta v(x)=f(x), x \in R^{2}$. (Extra 5points) Show that $v(x)=\frac{1}{2 \pi}\left(\int_{R^{2}} f(x) d x\right) \log |x|+C+O\left(\frac{1}{|x|}\right)$ as $|x| \rightarrow+\infty$.
3. (40pts) This problem concerns the Newtonian potential

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}^{n}} \frac{1}{|x-y|^{n-2}} \frac{1}{\left(1+|y|^{2}\right)^{\frac{1}{2}}} d y \tag{1}
\end{equation*}
$$

where $n \geq 3$.
a) Show that for $l \in(2, n),|u(x)| \leq \frac{C}{|x|^{-2}}$ for $|x|>1$
b) Show that for $l=n$, then $|u(x)| \leq \frac{C}{|x|^{n-2}} \log (|x|+2)$ for $|x|>1$
c) Show that for $l>n$, then $|u(x)| \leq \frac{C}{|x|^{n-2}}$ for $|x|>1$
d) If $f \in C_{c}^{\infty}\left(R^{n}\right), n \geq 3$ and $v=\int_{R^{n}} \frac{1}{|x-y|^{n-2}} f(y) d y$, show that $\lim _{|x| \rightarrow+\infty}|x|^{n-2} v(x)=C$ for some constant C.

Hint: For $|x|=R \gg 1$, divide the integral into three parts

$$
\int_{R^{n}}(\ldots) d y=\int_{|y-x|<\frac{|x|}{2}}(\ldots)+\int_{\frac{|x|}{2}<|y-x|<2|x|}(\ldots)+\int_{|y-x|>2|x|}(\ldots)
$$

and estimate each parts. For example in the region $|y-x|<\frac{|x|}{2}$ we have $|y|>|x|-|x-y|>\frac{|x|}{2}$ and

$$
\int_{|y-x|<\frac{x \mid}{2}} \frac{1}{|x-y|^{n-2}}|f(y)| d y \leq \int_{0}^{\frac{|x|}{2}} \frac{r^{n-1}}{r^{n-2}} d r \frac{C}{|x|^{\mid}} \leq \frac{C}{|x|^{\mid-2}}
$$

4. (10pts) For $n>2$, the Kelvin transform is defined by

$$
v(x)=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)
$$

Suppose u satisfies $-\Delta u(x)=u^{p}$. Find out the new equation satisfied by v. Find out for which exponent p the equation is invariant. Extra points (10pts): Let u satisfy $\Delta^{2} u=f(x)$ and we define

$$
v(x)=|x|^{4-n} u\left(\frac{x}{|x|^{2}}\right)
$$

find out the equation satisfied by v. Here $\Delta^{2} u=\Delta(\Delta u)$.
5. (10pts) Let $u \in C^{2}(\Omega)$ satisfy

$$
\Delta u \geq 0 \text { in } \Omega
$$

where Ω is a bounded smooth domain in R^{n}.
Show that

$$
u(x) \leq \frac{1}{\left|\partial B_{r}(x)\right|} \int_{\partial B_{r}(x)} u(y) d \sigma, \forall B_{r}(x) \subset \Omega
$$

As a consequence, show that the maximum of u can not be attained in Ω unless u is a constant.
6. (10pts) Let u be a harmonic function in $B_{1}(0) \backslash\{0\}=\{0<|x|<1\}$ be such that $\lim _{x \rightarrow 0}|x|^{n-2} u(x)=0$. Show that $u \in C^{2}\left(B_{1}(0)\right)$. Here $n \geq 3$.
7. (20pts) Determine the Green's function for the annulus $\{1<|x|<2\}$ in R^{2}.

