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Lecture 3: Regular Singular points

(Compiled 3 March 2014)

In this lecture we will define a Regular Singular Point about which a Taylor series will not work. We will also introduce

the concept of the radius of convergence of the series and how it relates to the coefficient of the highest derivative of the

ODE.

Key Concepts: Ordinary Points and Regular Singular Points, radius of convergence of power series.

3 Radius of Convergence and Nearest Singular Points

Example 1: (1 + x2)y′′ + 2xy′ + 4x2y = 0.

(1) If we were given y(0) = 0 and y′(0) = 1 then we would want a power series expansion of the form

y =
∞∑

n=0

cnxn about x0 = 0. (3.1)

Roots of 1 + x2 = 0 are x = ±i, so we expect the radius of convergence of the TS for 1
1+x2 to be 1 since

1
1 + x2

= 1− x2 + x4 − · · · lim
∣∣∣∣
an+2

an

∣∣∣∣ = 1 ρ = 1 (3.2)

(2) If we were given y(1) = 1, y′(1) = 0 then a power series expansion of the form
∑

cn(x− 1)n is required. In this

case ρ =
√

2.

Example 2: (x− 1)(2x− 1)y′′ + 2xy′ − 2y = 0.

x = 0 is an ordinary point. x = 1 and x = 1
2 are singular points. One solution of this equation is

y(x) =
1

x− 1
= −(1 + x + x2 + · · · ) ρ = 1. (3.3)

This Taylor Series solution about the ordinary point x = 0 converges beyond the singular point x = 1
2 .

Example 3: (x2 − 2x)y′′ + 5(x− 1)y′ + 3y = 0 y(1) = 7 y′(1) = 3.

x = 1 is an ordinary point. x = 0 is a singular point
[
(x− 1)2 − 1

]
y′′ + 5(x− 1)y′ + 3y = 0.
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Let t = x− 1 so that d
dt = d

dx and the equation is transformed to

(t2 − 1) ˙̇y + 5tẏ + 3y = 0

y =
∞∑

n=0
cntn, ẏ =

∞∑
n=1

cnntn−1, ˙̇y =
∞∑

n=2
cnn(n− 1)tn−2

∞∑
n=2

n(n− 1)cntn −
∞∑

n=2
n(n− 1)cntn−2 + 5

∞∑
n=1

ncntn + 3
∞∑

n=0
cntn = 0

m = n− 2 n = m + 2 n = 2 = m = 0
∞∑

m=2
[−cm+2(m + 2)(m + 1) + {m(m− 1) + 5m + 3} cm] tm

−2c2 + 3c0 + [−c33.2 + 5c1 + 3c1] t = 0

t0 > c2 = 3
2c0

t1 > c3 = 8
6c1 = 4

3c1

tm > cm+2 = cm(m+1)(m+3)
(m+1)(m+2) m ≥ 2.

(3.4)

c0:

c4 = 5c2
4 = 5

4

(
3
2

)
c0, c6 = 7

6c4 = 7
6

5
4

3
2c0

y0(x) =
∞∑

n=0

357...(2n+1)
246...(2n) (x− 1)2n (3.5)

c1:

c5 = 6
5c3 = 6

5
4
3c1 c2n+1 = 46...2n+2

35...2n+1c1

y1(x) =
∞∑

n=0

46...2n+2
35...2n+1 (x− 1)2n+1

lim
n→∞

cm+2

cm
=

m + 3
m + 1

= 1 ρ = 1 (3.6)

y(x) = c0y0(x) + c1y1(x)
y(1) = c0 = 7 y′(1) = c1 = 3.

(3.7)

3.1 Singular Points:

Consider

P (x)y′′ + Q(x)y′ + R(x)y = 0. (3.8)

If P , Q and R are polynomials without common factors then singular points are points x0 at which P (x0) = 0.

Note: At singular points the solution is not necessarily analytic.

Examples:

(1)
x2y′′ + xy′ = 0
y = xr → r(r − 1) + r = 0 → y = c1 + c2 ln x

The x2y′′ admits wild behaviour.

(2)
x2y′′ − 2y = 0
y = xr → r(r − 1)− 2 = 0 r = 2,−1 y = c1x

2 + c2x
−1

Again the x2y′′ admits wild behaviour.

(3)
x2y′′ − 2xy′ + 2y = 0
y = xr → r(r − 1)− 2r + 2 = 0 r = 1, 2 y = c1x + c2x

2



Series solutions to ODE with variable coefficients 3

In this case both solutions are analytic.

3.2 Regular Singular Points - polynomial coefficients:

Notice that all these cases are equidimensional equations for which we can identify solutions of the form xr or xr log x.

There is a special class of singular points called regular singular points in which the singularities are no worse than

those in the equidimensional equations.

x2y′′ + αxy′ + βy = 0. (3.9)

If P , Q and R are polynomials and suppose P (x0) = 0 then x0 is a regular singular point if

lim
x→x0

(x− x0)
Q(x)
P (x)

and lim
x→x0

(x− x0)2
R(x)
P (x)

are finite. (3.10)

I.E. (x− x0)
Q(x)
P (x)

= p0 + p1(x− x0) + p2(x− x0)2 + · · ·

→ singularity no worse than 1
x−x0

(3.11)

(x− x0)2
R(x)
P (x)

= q0 + q1(x− x0) + q2(x− x0)2 + · · ·

→ singularity no worse than 1
(x−x0)2

Examples:

(1)

(1− x2)y′′ − 2xy′ + 4y = 0
P = 1− x2 P (±1) = 0 Q = −2x R = 4

lim
x→1

(x− 1) (−2x)
(1−x)(1+x) = 1 lim

x→1
(x− 1)2 4

(1+x)(1−x) = 0
(3.12)

x = 1 is a R.S.P. (similarly for x = −1).

(2)

x3y′′ − y = 0
P (x) = x3 Q = 0 R = −1

lim
x→0

x2
(−1

x3

)
= ∞

(3.13)

Thus x = 0 is an irregular singular point. Actually y ∼ x3/4e±2/x1/2
as x → 0+ which is much wilder than

the simple power law xr or xr log x.

Note: Any singular point that is not a regular singular point is called an irregular singular point.

(3) 2(x− 2)2xy′′ + 3xy′ + (x− 2)y = 0. Singular points at x = 0, 2. x = 0 is a regular singular point. x = 2 is an

irregular singular point.



4

3.3 More General Definition of a Regular Singular Point:

If P , Q, and R are not limited to polynomials then consider

P (x)y′′ + Q(x)y′ + R(x)y = 0
or

x2y′′ + x
(

xQ
P

)
y′ +

(
x2R
P

)
y = 0

(3.14)

x = 0 is a regular singular point if
(

xQ

P

)
and

(
x2R

P

)
are analytic at x = 0, i.e.,

xQ

P
= p(x) = p0 + p1x + · · · and

x2R

P
= q(x) = q0 + q1x + · · · . (3.15)

In this case

Ly = x2y′′ + xp0y
′ + q0y +

small as x→0︷ ︸︸ ︷
x {p1xy′ + q1y + · · · } = 0. (3.16)

Then as x → 0 x2y′′ + xp0y
′ + q0y ≈ 0 which is an Euler Equation which has solutions of the form y = xr.

Thus about a regular singular point we look for solutions of the form y = xr
∞∑

n=0

anxn =
∞∑

n=0

anxn+r.

Our task is to determine:

(i) r

(ii) the coefficients an

(iii) the radius of convergence.

Example: x2y′′ + 2(ex − 1)y′ + e−x cos xy = 0, P = x2, Q = 2(ex − 1), R = e−x cosx.

x = 0 is a singular point.

lim
x→0

xQ

P
= lim

k→0
x

2(ex − 1)
x2

= lim
x→0

2(ex − 1)
x

0
0= lim

x→0

2ex

1
= 2 L’Hopital

lim
x→0

x2R

P
= lim

x→0
x2 e−x cosx

x2
= 1 < ∞. (3.17)

Since the quotient functions p = xQ/P and q = x2R/P have Taylor Expansions about x = 0, x = 0 is a regular

singular point.


