Lecture 28: Sturm-Liouville Boundary Value Problems

(Compiled 22 November 2018)

In this lecture we abstract the eigenvalue problems that we have found so useful thus far for solving the PDEs to a general class of boundary value problems that share a common set of properties. The so-called Sturm-Liouville Problems define a class of eigenvalue problems, which include many of the previous problems as special cases. The $S-L$ Problem helps to identify those assumptions that are needed to define an eigenvalue problems with the properties that we require.

Key Concepts: Eigenvalue Problems, Sturm-Liouville Boundary Value Problems; Robin Boundary conditions.

Reference Section: Boyce and Di Prima Section 11.1 and 11.2

28 Boundary value problems and Sturm-Liouville theory:

28.1 Eigenvalue problem summary

- We have seen how useful eigenfunctions are in the solution of various PDEs.
- The eigenvalue problems we have encountered thus far have been relatively simple

I: The Dirichlet Problem:

$$
\left.\begin{array}{c}
X^{\prime \prime}+\lambda^{2} X=0 \\
X(0)=0=X(L)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
\lambda_{n}=\frac{n \pi}{L}, n=1,2, \ldots \\
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
\end{array}\right.
$$

II: The Neumann Problem:

$$
\left.\begin{array}{c}
X^{\prime \prime}+\lambda^{2} X=0 \\
X^{\prime}(0)=0=X^{\prime}(L)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
\lambda_{n}=\frac{n \pi}{L}, n=0,1,2, \ldots \\
X_{n}(x)=\cos \left(\frac{n \pi x}{L}\right)
\end{array}\right.
$$

III: The Periodic Boundary Value Problem:

$$
\left.\begin{array}{c}
X^{\prime \prime}+\lambda^{2} X=0 \\
X(-L)=0=X(L) \\
X^{\prime}(-L)=0=X^{\prime}(L)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
\lambda_{n}=\frac{n \pi}{L}, n=0,1,2, \ldots \\
X_{n}(x) \in\left\{1, \cos \left(\frac{n \pi x}{L}\right), \sin \left(\frac{n \pi x}{L}\right)\right\}
\end{array}\right.
$$

IV: Mixed Boundary Value Problem A:

$$
\left.\begin{array}{c}
X^{\prime \prime}+\lambda^{2} X=0 \\
X(0)=0=X^{\prime}(L)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
\lambda_{k}=\frac{(2 k+1) \pi}{2 L}, k=0,1,2, \ldots \\
X_{n}(x)=\sin \left(\frac{(2 k+1) \pi}{2 L} x\right)
\end{array}\right.
$$

V: Mixed Boundary Value Problem B:

$$
\left.\begin{array}{c}
X^{\prime \prime}+\lambda^{2} X=0 \\
X^{\prime}(0)=0=X(L)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
\lambda_{k}=\frac{(2 k+1) \pi}{2 L}, k=0,1,2, \ldots \\
X_{n}(x)=\cos \left(\frac{(2 k+1) \pi}{2 L} x\right)
\end{array}\right.
$$

28.2 The regular Sturm-Liouville problem:

Consider the the following two-point boundary value problem

$$
\begin{align*}
& \left(p(x) y^{\prime}\right)^{\prime}-q(x) y+\lambda r(x) y=0 \quad 0<x<\ell \\
& \alpha_{1} y(0)+\alpha_{2} y^{\prime}(0)=0 \quad \beta_{1} y(\ell)+\beta_{2} y^{\prime}(\ell)=0 \tag{28.1}
\end{align*}
$$

where p, p^{\prime}, q and r are continuous on $0 \leq x \leq \ell$ and $p(x) \geq 0$ and $r(x)>0$ on $0 \leq x \leq \ell$.
We define the Sturm-Liouville eigenvalue problem as:

$$
\left.\begin{array}{l}
\mathcal{L} y=\lambda r y \quad \text { where } \quad \mathcal{L} y=-\left(p y^{\prime}\right)^{\prime}+q y \tag{28.2}\\
\alpha_{1} y(0)+\alpha_{2} y^{\prime}(0)=0 \quad \text { and } \quad \beta_{1} y(\ell)+\beta_{2} y^{\prime}(\ell)=0 \\
p(x)>0 \text { and } r(x)>0 .
\end{array}\right\} \quad \text { SL }
$$

Remark 1 Note:

(1) If $p=1, q=0, r=1, \alpha_{1}=1, \alpha_{2}=0, \beta_{1}=1, \beta_{2}=0$ we obtain Problem (I) above whereas if $p=1$, $q=0, r=1, \alpha_{1}=0, \alpha_{2}=1, \beta_{1}=0, \beta_{2}=1$, we obtain Problem (II) above. Notice that the boundary conditions for these two problems are specified at separate points and are called separated $B C$. The periodic BC $X(0)=X(2 \pi)$ are not separated so that Problem (III) is not technically a SL Problem.
(2) If $p>0$ and $r>0$ and $\ell<\infty$ then the SL Problem is said to be regular. If $p(x)$ or $r(x)$ is zero for some x or the domain is $[0, \infty)$ then the problem is singular.
(3) There is no loss of generality in the so-called self-adjoint form $\mathcal{L} y=-\left(p y^{\prime}\right)^{\prime}+q y$ since it is possible to convert a general 2nd order eigenvalue problem

$$
\begin{equation*}
-P(x) y^{\prime \prime}-Q(x) y^{\prime}+R(x) y=\lambda y \tag{28.3}
\end{equation*}
$$

to self-adjoint form by multiplying by a suitable integrating factor $\mu(x)$

$$
\begin{equation*}
-\mu(x) P(x) y^{\prime \prime}-\mu Q(x) y^{\prime}+\mu(x) R(x) y=\lambda \mu(x) y \tag{28.4}
\end{equation*}
$$

but expanding the differential operator we obtain

$$
\begin{equation*}
\mathcal{L} y=-p y^{\prime \prime}-p^{\prime} y^{\prime}+q y=\lambda r y . \tag{28.5}
\end{equation*}
$$

Thus comparing (28.5) and (28.4) we can make the following identifications: $p=\mu P$ and $p^{\prime}=\mu Q \Rightarrow p^{\prime}=$ $\mu^{\prime} P+\mu P^{\prime}=\mu Q$ which is a linear 1st order ODE for μ with integrating factor $\exp \left(\int \frac{P^{\prime}}{P}-\frac{Q}{P} d x\right)$

$$
\begin{equation*}
\mu^{\prime}+\left(\frac{P^{\prime}}{P}-\frac{Q}{P}\right) \mu=0 \Rightarrow\left[P e^{-\int \frac{Q}{P} d x} \mu\right]^{\prime}=0 \quad \Rightarrow \mu=\frac{e^{\int \frac{Q}{P} d x}}{P} . \tag{28.6}
\end{equation*}
$$

Example 28.1 Reducing a boundary value problem to SL form:

$$
\begin{array}{r}
\phi^{\prime \prime}+x \phi^{\prime}+\lambda \phi=0 \\
\phi(0)=0=\phi(1) \tag{28.8}
\end{array}
$$

We bring (28.7) into SL form by multiplying by the integrating factor

$$
\begin{align*}
& \mu=\frac{1}{P} e^{\int \frac{Q}{P} d x}=e^{\int x d x}=e^{x^{2} / 2}, \quad P(x)=1, \quad Q(x)=x, \quad R(x)=1 . \\
& e^{x^{2} / 2} \phi^{\prime \prime}+e^{x^{2} / 2} x \phi^{\prime}+\lambda e^{x^{2} / 2} \phi=0 \\
& \quad \quad-\left(e^{x^{2} / 2} \phi^{\prime}\right)^{\prime}=\lambda e^{x^{2} / 2} \phi \tag{28.9}\\
& p(x)=e^{x^{2} / 2} \quad r(x)=e^{x^{2} / 2}
\end{align*}
$$

Example 28.2 Convert the equation $-y^{\prime \prime}+x^{4} y^{\prime}=\lambda y$ to $S L$ form

$$
\begin{align*}
P=1, \quad Q=-x^{4}, \quad \mu=e^{-\int x^{4} d x} & =e^{-x^{5} / 5} \tag{28.10}\\
\text { Therefore }-e^{-x^{5} / 5} y^{\prime \prime}+e^{-x^{5} / 5} x^{4} y^{\prime} & =\lambda e^{-x^{5} / 5} \tag{28.11}\\
-\left(e^{-x^{5} / 5} y^{\prime}\right)^{\prime} & =\lambda e^{-x^{5} / 5} y . \tag{28.12}
\end{align*}
$$

28.3 Properties of SL Problems

(1) Eigenvalues:

(a) The eigenvalues λ are all real.
(b) There are an $\infty \#$ of eigenvalues λ_{j} with $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{j} \rightarrow \infty$ as $j \rightarrow \infty$.
(c) $\lambda_{j}>0$ provided $\frac{\alpha_{1}}{\alpha_{2}}<0, \frac{\beta_{1}}{\beta_{2}}>0 q(x)>0$.
(2) Eigenfunctions: For each λ_{j} there is an eigenfunction $\phi_{j}(x)$ that is unique up to a multiplicative const. and which satisfy:
(a) $\phi_{j}(x)$ are real and can be normalized so that $\int_{0}^{\ell} r(x) \phi_{j}^{2}(x) d x=1$.
(b) The eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the weight function $r(x)$:

$$
\begin{equation*}
\int_{0}^{\ell} r(x) \phi_{j}(x) \phi_{k}(x) d x=0 \quad j \neq k . \tag{28.13}
\end{equation*}
$$

(c) $\phi_{j}(x)$ has exactly $j-1$ zeros on $(0, \ell)$.
(3) Expansion Property: $\left\{\phi_{j}(x)\right\}$ are complete if $f(x)$ is piecewise smooth then

$$
\begin{align*}
f(x) & =\sum_{\substack{n=1} \infty}^{\infty} c_{n} \phi_{n}(x) \\
\text { where } \quad c_{n} & =\frac{\int_{0}^{\ell} r(x) f(x) \phi_{n}(x) d x}{\int_{0}^{\ell} r(x) \phi_{n}^{2}(x) d x} \tag{28.14}
\end{align*}
$$

Example 28.3 Robin Boundary Conditions:

$$
\begin{array}{ll}
X^{\prime \prime}+\lambda X=0, & \lambda=\mu^{2} \tag{28.15}\\
X^{\prime}(0)=h_{1} X(0), & X^{\prime}(\ell)=-h_{2} X(\ell)
\end{array}
$$

where $h_{1} \geq 0$ and $h_{2} \geq 0$.

$$
\begin{align*}
X(x) & =A \cos \mu x+B \sin \mu x \tag{28.16}\\
X^{\prime}(x) & =-A \mu \sin \mu x+B \mu \cos \mu x \tag{28.17}
\end{align*}
$$

BC 1: $X^{\prime}(0)=B \mu=h_{1} X(0)=h_{1} A \quad \Rightarrow A=B \mu / h_{1}$.
BC 2: $X^{\prime}(\ell)=-A \mu \sin (\mu \ell)+B \mu \cos (\mu \ell)=-h_{2} X(\ell)=-h_{2}[A \cos \mu \ell+B \sin \mu \ell]$

$$
\begin{gather*}
\Rightarrow B\left[-\frac{\mu^{2}}{h_{1}} \sin (\mu \ell)+\mu \cos (\mu \ell)\right]=-B h_{2}\left[\frac{\mu}{h_{1}} \cos \mu \ell+\sin \mu \ell\right] \tag{28.18}\\
B\left\{\left(-\frac{\mu^{2}}{h_{1}}+h_{2}\right) \sin \mu \ell+\left(\mu+\frac{h_{2}}{h_{1}} \mu\right) \cos \mu \ell\right\}=0 . \tag{28.19}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
\tan (\mu \ell)=\left[\frac{\mu\left(h_{1}+h_{2}\right)}{\mu^{2}-h_{1} h_{2}}\right] . \tag{28.20}
\end{equation*}
$$

Case I: h_{1} and $h_{2} \neq 0$

$$
X_{n}=\frac{\mu_{n}}{h_{1}} \cos \mu_{n} x+\sin \mu_{n} x, \text { and } \mu_{n} \sim n \pi / \ell \text { as } n \rightarrow \infty
$$

Case II: $h_{1} \neq 0$ and $h_{2}=0$

$$
\begin{align*}
X_{n} & =\frac{\mu_{n}}{h_{1}} \cos \mu_{n} x+\sin \mu_{n} x \tag{28.21}\\
& =\frac{\cos \mu_{n}(\ell-x)}{\sin \mu_{n} \ell} \tag{28.22}
\end{align*}
$$

Case III: $\mathrm{h}_{1} \rightarrow \infty \quad \mathrm{~h}_{2} \neq 0$

$$
\begin{align*}
X_{n} & =\sin \left(\mu_{n} x\right) \tag{28.23}\\
\mu_{n} & \sim\left[\left(\frac{2 n+1}{2}\right) \frac{\pi}{\ell}\right] \quad n=0,1,2, \ldots \text { as } n \rightarrow \infty \tag{28.24}
\end{align*}
$$

28.4 Appendix: Some proofs for Sturm-Liouville Theory

28.4.1 Lagrange's Identity:
$\int_{0}^{\ell}(v \mathcal{L} u-u \mathcal{L} v) d x=-\left.p(x) u^{\prime} v\right|_{0} ^{\ell}+\left.p(x) u v^{\prime}\right|_{0} ^{\ell}$.
Proof: Let u and v be any sufficiently differentiable functions, then

$$
\begin{align*}
\int_{0}^{\ell} v \mathcal{L} u d x & =\int_{0}^{\ell} v\left\{-\left(p u^{\prime}\right)^{\prime}+q u\right\} d x \tag{28.25}\\
& =-\left.v p u^{\prime}\right|_{0} ^{\ell}+\int_{0}^{\ell} u^{\prime} p v^{\prime} d x+\int_{0}^{\ell} u q v d x \tag{28.26}\\
& =-\left.v p u^{\prime}\right|_{0} ^{\ell}+\left.u p v^{\prime}\right|_{0} ^{\ell}+\int_{0}^{\ell} u\left\{-\left(p v^{\prime}\right)^{\prime}+q v\right\} d x \tag{28.27}
\end{align*}
$$

$$
\begin{equation*}
\text { Therefore } \int_{0}^{\ell} v \mathcal{L} u d x=-\left.p v u^{\prime}\right|_{0} ^{\ell}+\left.p u v^{\prime}\right|_{0} ^{\ell}+\int_{0}^{\ell} u \mathcal{L} v d x \tag{28.28}
\end{equation*}
$$

Now suppose that u and v both satisfy the SL boundary conditions. I.E.

$$
\begin{align*}
& \alpha_{1} u(0)+\alpha_{2} u^{\prime}(0)=0 \tag{28.29}\\
& \beta_{1} u(\ell)+\beta_{2} u^{\prime}(\ell)=0 \\
& \alpha_{1} v(0)+\alpha_{2} v^{\prime}(0)=0
\end{align*} \beta_{1} v(\ell)+\beta_{2} v^{\prime}(\ell)=0
$$

then

$$
\begin{align*}
\int_{0}^{\ell} v \mathcal{L} u d x-\int_{0}^{\ell} u \mathcal{L} v d x= & -p(\ell) u^{\prime}(\ell) v(\ell)+p(\ell) u(\ell) v^{\prime}(\ell) \tag{28.30}\\
& \quad+p(0) u^{\prime}(0) v(0)-p(0) u(0) v^{\prime}(0) \tag{28.31}\\
= & p(\ell)\left\{+\frac{\beta_{1}}{\beta_{2}} u(\ell) v(\ell)+u(\ell)\left(-\frac{\beta_{1}}{\beta_{2}} v(\ell)\right)\right\} \tag{28.32}\\
& \quad+p(0)\left\{-\frac{\alpha_{1}}{\alpha_{2}} u(0) v(0)-u(0)\left(-\frac{\alpha_{1}}{\alpha_{2}} v(0)\right)\right\} \tag{28.33}\\
= & 0 \tag{28.34}
\end{align*}
$$

Thus $\int_{0}^{\ell} v \mathcal{L} u d x=\int_{0}^{\ell} u \mathcal{L} v d x$ whenever u and v satisfy the SL boundary condition.

Observations:

- If \mathcal{L} and BC are such that $\int_{0}^{\ell} v \mathcal{L} u d x=\int_{0}^{\ell} u \mathcal{L} v d x$ then \mathcal{L} is said to be self-adjoint.
- Notation: if we define $(f, g)=\int_{0}^{\ell} f(x) g(x) d x$ then we may write $(v, \mathcal{L} v)=(u, \mathcal{L} v)$.

28.4.2 Proofs using Lagrange's Identity:

(1a) The λ_{j} are real: Let $\mathcal{L} y=\lambda r y(1) \alpha_{1} y(0)+\alpha_{2} y^{\prime}(0)=0 \beta_{1} y(\ell)+\beta_{2} y^{\prime}(\ell)=0$. Take the conjugate of (1) $\mathcal{L} \bar{y}=\bar{\lambda} r \bar{y}$. By Lagrange's Identity:

$$
\begin{align*}
0 & =(\bar{y}, \mathcal{L} y)-(y, \mathcal{L} \bar{y}) \tag{28.35}\\
& =(\bar{y}, r \lambda y)-(y, r \bar{\lambda} \bar{y}) \tag{28.36}\\
& =\int_{0}^{\ell} \bar{y}(x) r \lambda y(x) d x-\int_{0}^{\ell} y(x) r(x) \bar{\lambda} \bar{y}(x) d x \tag{28.37}\\
& =(\lambda-\bar{\lambda}) \int_{0}^{\ell} r(x)|y(x)|^{2} d x \tag{28.38}
\end{align*}
$$

Since $r(x)|y(x)|^{2} \geq 0$ it follows that $\lambda=\bar{\lambda} \Rightarrow \lambda$ is real.
(1c) $\lambda_{j}>0$ provided $\alpha_{1} / \alpha_{2}<0 \beta_{1} / \beta_{2}>0$ and $q(x)>0$. Consider $\mathcal{L} y=-\left(p y^{\prime}\right)^{\prime}+q y=\lambda r y$ (SL) and multiply (SL) by y and integrate from 0 to ℓ :

$$
\begin{align*}
& \qquad(y, \mathcal{L} y)= \tag{28.39}\\
& \text { Therefore } \lambda=\frac{\int_{0}^{\ell}-\left(p y^{\prime}\right)^{\prime} y+q y^{2} d x=\lambda \int_{0}^{\ell} r(x)[y(x)]^{2} d x}{\int_{0}^{\ell} r y^{2} d x} y+q y^{2} d x \\
& = \tag{28.40}\\
& =\frac{\left[-p y^{\prime} y\right]_{0}^{\ell}+\int_{0}^{\ell} p\left(y^{\prime}\right)^{2}+q y^{2} d x}{\int_{0}^{\ell} r y^{2} d x} \tag{28.41}\\
& =
\end{align*}
$$

Therefore $\lambda>0$ since the RHS is all positive.
Note: If $q(x) \equiv 0$ and $\alpha_{1}=0=\beta_{1}$ then with $y^{\prime}(0)=0=y^{\prime}(\ell)$ we have nontrivial eigenfunction $y(x)=1$ and eigenvalue $\lambda=0$.
(2b) Eigenfunctions corresponding to different eigenvalues are orthogonal. Consider two distinct eigenvalues $\lambda_{j} \neq \lambda_{k} \lambda_{j}: \mathcal{L} \phi_{j}=r \lambda_{j} \phi_{j}$ and $\lambda_{k}: \mathcal{L} \phi_{k}=r \lambda_{k} \phi_{k}$. Then

$$
\begin{align*}
0 & =\left(\phi_{k}, \mathcal{L} \phi_{j}\right)-\left(\phi_{j}, \mathcal{L} \phi_{k}\right) \quad \text { by Lagrange's Identity } \tag{28.42}\\
& =\left(\phi_{k}, r \lambda_{j} \phi_{j}\right)-\left(\phi_{j}, r \lambda_{k} \phi_{k}\right) \tag{28.43}\\
& =\left(\lambda_{j}-\lambda_{k}\right) \int_{0}^{\ell} r(x) \phi_{k}(x) \phi_{j}(x) d x \tag{28.44}
\end{align*}
$$

now $\lambda_{j} \neq \lambda_{k}$ implies that

$$
\begin{equation*}
\int_{0}^{\ell} r(x) \phi_{k}(x) \phi_{j}(x) d x=0 \tag{28.45}
\end{equation*}
$$

(3) The eigenfunctions form a complete set: It is difficult to prove the convergence of the eigenfunction series expansion for $f(x)$ that is piecewise smooth. However, if we assume the expansion converges then it is a simple matter to use orthogonality to determine the coefficients in the expansion: Let $f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)$.

$$
\begin{equation*}
\int_{0}^{\ell} f(x) \phi_{m}(x) r(x) d x=\sum_{n=1}^{\infty} c_{n} \int_{0}^{\ell} r(x) \phi_{m}(x) \phi_{n}(x) d x \tag{28.46}
\end{equation*}
$$

orthogonality implies

$$
\begin{equation*}
c_{m}=\frac{\int_{0}^{\ell} r(x) f(x) \phi_{m}(x) d x}{\int_{0}^{\ell} r(x)\left[\phi_{m}(x)\right]^{2} d x} \tag{28.47}
\end{equation*}
$$

