Lecture 22: Interpretating D'Alembert's Solution in Space-Time: characteristics, regions of influence and domains of dependence

(Compiled 4 August 2017)

Abstract

In this lecture we discuss the physical interpretation of the D'Alembert solution in terms of space-time plots. In particular we identify the left and right-moving characteristics as well as the domain of dependence of a given point (x_{0}, t_{0}) in space-time and the region of influence of a given initial value specified at the point $\left.x_{1}, 0\right)$. We discuss the evolution of a few simple pulses and track the regions in space-time that are carved out by the intersecting characteristics.

Key Concepts: The one dimensional Wave Equation; D'Alembert's Solution, Characteristics, Domain of Dependence, Region of Influence.

Reference Section: Boyce and Di Prima Section 10.7

22 Space-Time Interpretation of D'Alembert's Solution

In this lecture we discuss the interpretation of D'Alembert's solution

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left[u_{0}(x-c t)+u_{0}(x+c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} v_{0}(s) d s \tag{22.1}
\end{equation*}
$$

to the one dimensional wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{22.2}
\end{equation*}
$$

22.1 Characteristics

In the $x-t$ plane the lines

$$
\begin{equation*}
x-c t=x_{0} \text { and } x+c t=x_{0} \tag{22.3}
\end{equation*}
$$

are called the characteristics that emanate from the point $\left(x_{0}, 0\right)$ in space-time (see figure 1). Characteristics are the lines (or curves of more general hyperbolic problems) along which information is propagated by the equation. To interpret the characteristic lines in the $x-t$ plane, it is useful to rewrite the characteristic equations in the form

$$
\begin{align*}
x-c t=x_{0} & \Rightarrow t=\frac{1}{c} x-\frac{1}{c} x_{0} \tag{22.4}\\
x+c t=x_{0} \quad & \Rightarrow t=-\frac{1}{c} x+\frac{1}{c} x_{0}
\end{align*}
$$

Figure 1. The characteristics that emanate from.

22.2 Region of Influence and Domain of Dependence

Region of influence: The lines $x+c t=x_{1}$ and $x-c t=x_{1}$ bound the region of influence of the function values at the initial point $\left(x_{1}, 0\right)$. Thus all the solution values $u(x, t)$ within this region can be influenced by the value at the point $\left(x_{1}, 0\right)$.
Domain of Dependence: The lines $x=x_{0}-c t_{0}$ and $x=x_{0}+c t_{0}$ that pass through the point $\left(x_{0}, t_{0}\right)$ bound the domain of dependence. Thus the solution $u\left(x_{0}, t_{0}\right)$ depends on all the function values in the shaded region.

Figure 2. Space-time Region of Influence of the point $\left(x_{1}, 0\right)$ and Domain of Dependence of the point $(x 0, t 0)$, both of which can be determined from D'Alembert's Solution (22.1).

Example 22.1 A Rectangular pulse Pulse:

$$
\begin{align*}
& u(x, 0)=\left\{\begin{array}{ll}
1 & |x|<1 \\
0 & |x|>1
\end{array}\right\}=u_{0}(x) \tag{22.5}\\
& u(x, t)=\frac{1}{2}\left[u_{0}(x-c t)+u_{0}(x+c t)\right] \tag{22.6}
\end{align*}
$$

Let $c=1$.
$\mathrm{t}=\frac{1}{2}:$

$$
\begin{array}{llll}
x_{r}-\frac{1}{2}=1 & \Rightarrow & x_{r}=\frac{3}{2} & x_{R}+\frac{1}{2}=1
\end{array} x_{R}=\frac{1}{2}, ~=x_{\ell}=-\frac{1}{2} \quad x_{L}+\frac{1}{2}=-1 \quad x_{L}=-\frac{3}{2} .
$$

$\mathrm{t}=1:$

$$
\begin{align*}
& x_{r}-1=1 \quad \Rightarrow \quad x_{r}=2 \quad x_{R}+1=1 \quad \Rightarrow \quad x_{R}=0 \\
& x_{\ell}-1=-1 \quad \Rightarrow \quad x_{\ell}=0 \quad x_{\ell}+1=-1 \quad \Rightarrow \quad x_{L}=-2 \tag{22.8}
\end{align*}
$$

$\mathrm{t}=\mathbf{2}:$

$$
\begin{align*}
& x_{r}-2=1 \quad \Rightarrow \quad x_{r}=3 \quad x_{R}+2=1 \quad \Rightarrow \quad x_{R}=-1 \\
& x_{\ell}-2=-1 \quad \Rightarrow \quad x_{\ell}=1 \quad x_{L}+2=-1 \quad \Rightarrow \quad x_{L}=-3 \tag{22.9}
\end{align*}
$$

