Lecture 15: Convergence of Fourier Series

(Compiled 3 March 2014)

In this lecture we state the fundamental convergence theorem for Fourier Series, which assumes that the function $f(x)$ is piecewise continuous. At points of discontinuity of $f(x)$ the Fourier Approximation $S_{N}(x)$ takes on the average value $\frac{1}{2}[f(x+)+f(x-)]$ and exhibits the so-called Gibbs Phenomenon in which the convergence is pointwise but not uniform. We explore the Gibbs phenomenon for a simple step function.

Key Concepts: Convergence of Fourier Series, Piecewise continuous Functions, Gibbs Phenomenon.

15.1 Convergence of Fourier Series

- What conditions do we need to impose on f to ensure that the Fourier Series converges to f.
- We consider piecewise continuous functions:

Theorem 1 Let f and f^{\prime} be piecewise continuous functions on $[-L, L]$ and let f be periodic with period $2 L$, then f has a Fourier Series

$$
\begin{aligned}
& f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)=S(x) \\
& \text { where } \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \text { and } b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

The Fourier Series converges to $f(x)$ at all points at which f is continuous and to $\frac{1}{2}[f(x+)+f(x-)]$ at all points at which f is discontinuous.

- Thus a Fourier Series converges to the average value of the left and right limits at a point of discontinuity of the function $f(x)$.

15.1.1 Illustration of the Gibbs Phenomenon - nonuniform convergence

- Near points of discontinuity truncated Fourier Series exhibit oscillations - overshoot.

Figure 1. Fourier Series for a step function

Example 15.1 Consider the half-range sine series expansion of

$$
\begin{equation*}
f(x)=1 \quad \text { on }[0, \pi] . \tag{15.2}
\end{equation*}
$$

$$
\begin{aligned}
& f(x)=1=\sum_{n=\frac{1}{\pi}}^{\infty} b_{n} \sin (n x) \\
& \text { where } b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x \quad=\frac{2}{\pi}\left[-\frac{\cos n x}{n}\right]_{0}^{\pi}=\frac{2}{\pi n}\left[1-(-1)^{n}\right] \\
& =\left\{\begin{array}{lll}
4 / \pi n & n & \text { odd } \\
0 & n & \text { even }
\end{array}\right. \\
& \text { Therefore } f(x)=\frac{4}{\pi} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \frac{\sin (n x)}{n}=\frac{4}{\pi} \sum_{m=0}^{\infty} \frac{\sin (2 m+1) x}{(2 m+1)} \text {. }
\end{aligned}
$$

Note:
(1) $f(\pi / 2)=1=\frac{4}{\pi} \sum_{m=0}^{\infty} \frac{\sin [(2 m+1) \pi / 2]}{(2 m+1)}=\frac{4}{\pi}\left\{1-\frac{1}{3}+\frac{1}{5}-\cdots\right\}$. Therefore $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\cdots$.
(2) Recall the complex Fourier Series example for the function

$$
f(x)=\left\{\begin{array}{cc}
-1 & -\pi \leq x<0 \tag{15.4}\\
1 & 0<x<\pi
\end{array}\right.
$$

which turns out to be equivalent to the odd extension of the above function represented by the half-range sine expansion, which we can see from the following calculation

$$
\begin{align*}
f(x) & =\sum_{\substack{n=-\infty \\
n \text { odd }}}^{\infty} \frac{2}{\pi i n} \mathrm{e}^{i n x}=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\mathrm{e}^{i n x}-\mathrm{e}^{-i n x}}{2 i n} \tag{15.5}\\
& =\frac{4}{\pi} \sum_{n=1}^{\infty \text { odd }} \frac{\sin (n x)}{n} .
\end{align*}
$$

15.1.2 Now consider the explicit summation of the first N terms

$$
\begin{align*}
S_{N}(x) & =\frac{4}{\pi} \sum_{m=0}^{N} \frac{\sin (2 m+1) x}{(2 m+1)}=\frac{4}{\pi} \operatorname{Im}\left\{\sum_{m=0}^{N} \frac{\mathrm{e}^{i(2 m+1) x}}{(2 m+1)}\right\} \tag{15.6}\\
S_{N}^{\prime}(x) & =\frac{4}{\pi} \operatorname{Im}\left\{\sum_{m=0}^{N} i \mathrm{e}^{i(2 m+1) x}\right\} \tag{15.7}\\
& =\frac{4}{\pi} \operatorname{Im}\left\{i \mathrm{e}^{i x} \sum_{m=0}^{N}\left(\mathrm{e}^{i 2 x}\right)^{m}\right\} \tag{15.8}\\
& =\frac{4}{\pi} \operatorname{Im}\left\{i \mathrm{e}^{i x}\left(\frac{1+\mathrm{e}^{i 2 x}+\cdots+\left(\mathrm{e}^{i 2 x}\right)^{N}}{1-\mathrm{e}^{i 2 x}}\right)\left(1-\mathrm{e}^{i 2 x}\right)\right\} \tag{15.9}\\
& =\frac{4}{\pi} \operatorname{Im}\left\{i \mathrm{e}^{i x}\left(\frac{1-\mathrm{e}^{i 2(N+1) x}}{1-\mathrm{e}^{i 2 x}}\right)\right\} \tag{15.10}\\
& =\frac{4}{\pi} \operatorname{Im}\left\{i\left(\frac{1-\mathrm{e}^{i 2(N+1) x}}{\mathrm{e}^{i x}-\mathrm{e}^{-i x}}\right)\right\} \tag{15.11}\\
& =\frac{2}{\pi} \operatorname{Im}\left\{\frac{\mathrm{e}^{i 2(N+1) x}-1}{\sin x}\right\} \tag{15.12}\\
& =\frac{2}{\pi} \frac{\sin 2(N+1) x}{\sin x} . \tag{15.13}
\end{align*}
$$

Therefore

$$
S_{N}(x)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin 2(N+1) u}{\sin u} d u \simeq \frac{2}{\pi} \int_{0}^{2(N+1) x} \frac{\sin t}{t} d t
$$

Observe $S_{N}^{\prime}(x)=\frac{2}{\pi} \frac{\sin 2(N+1) x}{\sin x}=0$ when $2(N+1) x_{N}=\pi$ thus the maximum value of $S_{N}(x)$ occurs at

$$
\begin{equation*}
x_{N}=\frac{\pi}{2(N+1)} \tag{15.15}
\end{equation*}
$$

Figure 2. $(2 / \pi) \sin (2(N+1) x) / \sin (x)$ for $N=5$

Figure 3. Integral of $(2 / \pi) \sin (2(N+1) x) / \sin (x)$

