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Lecture 10: Fourier Sine Series

(Compiled 25 September 2018)

In the last lecture we reduced the problem of solving the initial-boundary value problem for the heat distribution along a

conducting rod to solving two ODEs, one in space and one in time. The spatial ODE and boundary conditions lead to an

eigenvalue problem, which identifies a discrete set of wavenumbers {λn} and corresponding eigenfunctions {Xn(x)} that

satisfy both homogeneous boundary conditions and the spatial ODE. Because the heat equation is linear, the general

solution of the heat equation is obtained by superimposing the product of the eigensolutions and the corresponding

solution of the time ODE to obtain an infinite series. All that remains is that we determine the expansion coefficients bn
for the terms of this series. These are obtained by letting t = 0 in the general solution and equating the resulting series to

the initial value function f(x). This is known as a Fourier Series. This lecture deals with the procedure to determine the

Fourier coefficients bn. Our approach is motivated by the process introduced in Linear Algebra for projecting a vector

onto a set of basis vectors.

Key Concepts: Fourier Sine Series; Vector Projection; functions as infinite dimensional vectors; orthogonality;
Fourier Coefficients.

10.1 Fourier Sine Series

Observe that we have a new type of eigenvalue problem in which we seek a nontrivial solution to the following

boundary value problem

LX = −X ′′ = λ2X or X ′′ + λ2X = 0

X(0) = 0 = X(L). (10.1)

Just as in the case with matrices we obtain a sequence of eigenvalues {λn}. However, because of the infinite dimen-

sional nature of this eigenvalue the problem there are an infinite number of eigenvalues:

λn =
(nπ
L

)
n = 1, 2, . . . (10.2)

and corresponding eigenfunctions {Xn(x)}

Xn(x) = sinλnx = sin
(nπx

L

)
or Xn(x) ∈

{
sin

(πx
L

)
, sin

(
2πx

L

)
, sin

(
3πx

L

)
, . . .

}
. (10.3)

In order complete the solution of the heat equation we need to determine the coefficients bn such that

u(x, 0) = f(x) =
∞∑

n=1

bn sin
(nπx

L

)
. (10.4)

Observations

• For symmetric matrices the eigenvalues are real - for the BVP the eigenvalues {λn(x)} are also real.

• For symmetric matrices the eigenvectors form a basis - the eigenfunctions {Xn(x)} are linearly independent.
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10.1.1 Euler’s Column: The Buckling Load for a Beam - perhaps the oldest eigenvalue problem

Eigenvalue problems also arise independently without necessarily coming from a PDE problem. Consider a beam

that is subjected to an axial load P applied to its endpoints. Our experience tells us that as we increase P a critical

load Pc is reached at which the beam starts to buckle.

Figure 1. Buckling of Euler’s column

The Bernoulli-Euler Law: A beam constructed from a material that is known to deform in such a way that the

curvature κ is proportional to the bending moment καM .

In particular,

κ =
y′′(x)

[1 + (y′)2]
= cM =

M

EI

where E = Young’s modulus and I = the moment of inertia of the beam. If the deflection of the beam is small

(y′)2 << |y′| << 1 then we can make the approximation

y′′ =
M

EI
The Bernoulli-Euler Law

When subject to an axial load P as shown in figure 10.1.1, the bending moment on the buckling beam is given by

M(x) = −Py(x)

y′′ = −M

EI
= − P

EI
y = −k2y k2 =

P

EI

Thus determining the magnitude of P = EIk2 for which the beam will first buckle is reduced to solving the following

eigenvalue problem:

y′′ + k2y = 0

y(0) = 0 = y(L)

}
Eigenvalue Problem

y(x) = A cos kx+B sin kx

y(0) = A = 0 y(L) = B sin kL = 0 ⇒ kn =
nπ

L
n = 1, 2, . . . .

We have eigenvalues kn =
nπ

L
and eigenfunctions yn(x) = sin

(nπx
L

)
. But

k2n =
Pn

EI
=

(nπ
L

)2

n = 1, 2, . . . .

Therefore the smallest buckling force Pc = P1 =
EIπ2

L2
is known as the critical Euler load and the Euler Buckling

Mode is sin
(πx
L

)
.
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10.1.2 Finding the Fourier Coefficients

How do we find the bn in the sine series expansion (10.4) of f(x)?

-
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f(x) ≈ f = (f(x1), . . . , f(xN))

Figure 2. Left side: Expand f in terms of the basis vectors
{
v1,v2,v3

}
; Right side: Approximation of a function f(x) by a

vector f of sample points with values {f(xk}

Decomposition of vectors into components - projection: How do we expand a vector f in terms of linearly independent

vectors vk?

Assume f = α1v1 + α2v2 + α3v3

f · vk = α1v1 · vk + α2v2 · vk + α3v3 · vk v1 · v1 v1 · v2 v1 · v3

v1 · v2 v2 · v2 v2 · v3

v1 · v3 v2 · v3 v3 · v3

  α1

α2

α3

 =

 f · v1

f · v2

f · v3

 (10.5)

If vk ⊥ vℓ, k ̸= ℓ i.e. the vk are orthogonal

αk =
f · vk

vk · vk
(10.6)

Functions as infinite dimensional vectors and projection: But functions are just infinite dimensional vectors:

f ≃ [f1, f2, . . . , fN ]

g ≃ [g1, g2, . . . , gN ]

f · g = f1g1 + f2g2 + · · ·+ fNgN ∆x =
L

N
(10.7)

=

N∑
k=1

f(xk)g(xk).

The analogue of the dot product for functions is given by the so-called inner product:

⟨f, g⟩ :=
L∫

0

f(x)g(x) dx ≃
N∑

k=1

f(xk)g(xk)∆x. (10.8)
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Back to finding bn:

f(x) =
∞∑

n=1

bn sin
(nπx

L

)
(10.9)

⟨f, sin
(
kπx

L

)
⟩ =

L∫
0

f(x) sin

(
kπx

L

)
dx =

∞∑
n=1

bn

L∫
0

sin
(nπx

L

)
sin

(
kπx

L

)
dx.

Recall sin(A) sinB =
1

2
{cos(A−B)− cos(A+B)}. Therefore

Ink =

L∫
0

sin
(nπx

L

)
sin

(
kπx

L

)
dx

=
1

2

L∫
0

cos(n− k)
πx

L
− cos(n+ k)

πx

L
dx n ̸= k

=
1

2

[
sin(n− k)πx/L

(n− k)π/L
− sin(n+ k)πx/L

(n+ k)π/L

]L
0

= 0 (10.10)

Inn =

L∫
0

sin2
(nπx

L

)
dx =

1

2

L∫
0

1− cos

(
2nπx

L

)
dx

= L/2

Therefore the Fourier Coefficients {bn} are given by:

bk =
2

L

L∫
0

f(x) sin

(
kπx

L

)
dx. (10.11)

Example 10.1

f(x) =

{
2x 0 < x < 1

2 L = 1

2(1− x) 1
2 < x < 1

bn = 2


1
2∫

0

2x sin(nπx) dx+

1∫
1
2

2(1− x) sin(nπx) dx


= 8

sin(nπ/2)

n2π2

n = 1 2 3 4 5

sin
(
nπ
2

)
1 0 −1 0 1

Therefore u(x, t) =
8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

[
(2k + 1)πx

]
e−(2k+1)2π2t. (10.12)

• Observe as t → ∞ u(x, t) → 0 (all the heat leaks out).

• u(x, 0) =
8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

[
(2k + 1)πx

]
.

• π2

8
=

∞∑
k=0

1

(2k + 1)2
by letting x =

1

2
⇒ f(x) = 1.
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Example 10.2

f(x) = x 0 < x < 1 L = 1

bn = 2

1∫
0

x sin(nπx) dx = −2
cos(nπ)

nπ
= 2

(−1)n+1

nπ

Therefore u(x, t) =
2

π

∞∑
n=1

(−1)n+1

n
sin(nπx)e−(nπ)2t. (10.13)

• As t → ∞ u(x, t) → 0.

• u(x, 0) =
2

π

∞∑
n=1

(−1)n+1

n
sin(nπx).

•

u

(
1

2
, 0

)
=

1

2
= 2

π

∞∑
n=1

(−1)n+1

n sin(nπ/2)

=
2

π

∞∑
k=0

(−1)k

(2k + 1)

π

4
= 1− 1

3
+

1

5
− . . . .

k n sin
(
nπ
2

)
0 1 1

2 0

1 3 −1

4 0

2 5 1

(10.14)
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MATLAB Code:

%fourier sine example
clear;clf;dx=0.001;dt=0.001;
x=-2:dx:2;xr=0:dx:1;nterms=10;ntime=100;
for nt=1:ntime
    t = (nt-1)*dt;
    for n=1:nterms
        K=1:1:n;
        u(:,n+1)=2*(sin(pi*K'*x)'*((-1).^(K+1).*exp (-pi^2*K.^2*t)./K)')/pi;
        plot(x',u(:,n+1),'r-',xr',xr','k-','linewid th',2);ax=axis;ax=[0 1 0 1.2];axis(ax);
        tit=[num2str(n+1),' terms of the Fourier Se ries '];title(tit);xlabel('x');ylabel('u(x,t), f(x) =x');pause(.01)
    end
    if mod(nt,5)==0,pause(.02);end
end
 


