MATH305-201-2021-HW5 Homework Assignment 5 (Due Date: Feb. 22, 2022)

1. Find the region where $f(z) = Log(1 - z^3)$ is analytic.

2. Find a branch of each of the following multi-valued functions that is analytic in the given domain

(a) $(9+z^2)^{\frac{1}{2}}$ in $C \setminus \{x=0, -3 \le y \le 3\}$; (b) $(z^4-1)^{\frac{1}{2}}$ in $\{|z|>1\}$.

3. Find all solutions to

(a) $\sin(z) = -i$; (b) $\sin^{-1}(i)$; $\cos(z) = 2i$; (d) $\cos^{-1}(2i)$

4. Find a solution to the boundary value problem

$$\phi_{xx} + \phi_{yy} = 0, y > 0, -1 < x < 1, y > 0$$

$$\phi(x, y) = 0$$
, on $x = -1, y > 0$; 0, on $y = 0, -1 < x < 1$; 2, on $x = 1, y > 0$.

5. Find a solution to the boundary value problem

$$\phi_{xx} + \phi_{yy} = 0, \quad x > 0, y > 0$$

$$\phi = 1 \text{ on } x = 0, y > 0; \phi_y = 0 \text{ on } 0 < x < 1, y = 0; \phi = 2 \text{ on } x > 1, y = 0$$

- 6. Find an inverse function for $sinh(z) = \frac{e^z e^{-z}}{2}$ such that its value at 0 equals 0.
- 7. Show that $|\sin z| < 3$ when |z| < 1.

8. Compute the integral $\int_C f dz$ using the contour (always counter-clockwise) given

(a) f = x - 2xyi; $C = \{y = x^2, 0 \le x \le 1\} \cup \{y = 1, -1 \le x \le 1\}$; (b) $f = \overline{z}^2$; C: square with vertices z = 0, z = 1, z = 1 + i and z = i; (c) f = Log(z); $C = \{|z| = 1, Re(z) \ge 0\}$ 9. Evaluate $\int_C (z^2 + 1)dz$, where C is the following contour from z = -i to z = 1:

(a) the simple line segment; (b) two simple line segments, the first from z = -i to z = 0 and the second from z = 0 to z = 1; (c) the circular arc $z = e^{it}, -\frac{\pi}{2} \le t \le 0$

10. Evaluate $\int_C \bar{z} dz$, where

(a) C is the circle |z| = 2 traversed once counterclockwise; (b) C is the circle |z| = 2 traversed twice counterclockwise; (c) C is the circle |z| = 2 traversed three times clockwise.