MATH305-201-2021-HW5 Homework Assignment 5 (Due Date: Feb. 22, 2022)

1. Find the region where $f(z)=\log \left(1-z^{3}\right)$ is analytic.
2. Find a branch of each of the following multi-valued functions that is analytic in the given domain
(a) $\left(9+z^{2}\right)^{\frac{1}{2}}$ in $C \backslash\{x=0,-3 \leq y \leq 3\}$; (b) $\left(z^{4}-1\right)^{\frac{1}{2}}$ in $\{|z|>1\}$.
3. Find all solutions to
(a) $\sin (z)=-i$; (b) $\sin ^{-1}(i) ; \cos (z)=2 i$; (d) $\cos ^{-1}(2 i)$
4. Find a solution to the boundary value problem

$$
\begin{gathered}
\phi_{x x}+\phi_{y y}=0, y>0,-1<x<1, y>0 \\
\phi(x, y)=0, \text { on } x=-1, y>0 ; 0, \text { on } y=0,-1<x<1 ; 2, \text { on } x=1, y>0 .
\end{gathered}
$$

5. Find a solution to the boundary value problem

$$
\begin{gathered}
\phi_{x x}+\phi_{y y}=0, x>0, y>0 \\
\phi=1 \text { on } x=0, y>0 ; \phi_{y}=0 \text { on } 0<x<1, y=0 ; \phi=2 \text { on } x>1, y=0
\end{gathered}
$$

6. Find an inverse function for $\sinh (z)=\frac{e^{z}-e^{-z}}{2}$ such that its value at 0 equals 0 .
7. Show that $|\sin z|<3$ when $|z|<1$.
8. Compute the integral $\int_{C} f d z$ using the contour (always counter-clockwise) given
(a) $f=x-2 x y i$; $C=\left\{y=x^{2}, 0 \leq x \leq 1\right\} \cup\{y=1,-1 \leq x \leq 1\}$; (b) $f=\bar{z}^{2}$; C : square with vertices $z=0, z=1, z=1+i$ and $z=i$; (c) $f=\log (z) ; C=\{|z|=1, \operatorname{Re}(z) \geq 0\}$
9. Evaluate $\int_{C}\left(z^{2}+1\right) d z$, where C is the following contour from $z=-i$ to $z=1$:
(a) the simple line segment; (b) two simple line segments, the first from $z=-i$ to $z=0$ and the second from $z=0$ to $z=1$; (c) the circular arc $z=e^{i t},-\frac{\pi}{2} \leq t \leq 0$
10. Evaluate $\int_{C} \bar{z} d z$, where
(a) C is the circle $|z|=2$ traversed once counterclockwise; (b) C is the circle $|z|=2$ traversed twice counterclockwise; (c) C is the circle $|z|=2$ traversed three times clockwise.
