MATH305-201-2021/2022 Homework Assignment 4 (Due Date: Feb. 7, 2022)
10pts each

1. Find a conformal mapping from the following set onto the upper half plane $S^{\prime}=\{(u, v) \mid v>$ $0\}$:
(a) $S=\left\{x>0,-\frac{\pi}{2}<y<\frac{\pi}{2}\right\} ;$ (b) $S=\{-1<x<3, y>0\}$

Hint: use the linear map $a z+b$ and $\sin (z)$.
2. Evaluate the following
(a) $\log (i)$; (b) $\log (\sqrt{3}-i)$; (c) $\log \left(e^{1+i}\right)$; (d) $e^{\log (1+i)}$
3. Find all values of
(a) $e^{z}=-1-i$; (b) Principal Values of $(1+i)^{i}$; (d) $i^{\frac{1}{3}}$
4. Solve the following equations
(a) $\log \left(z^{2}-1\right)=\frac{i \pi}{2}$; (b) $e^{2 z}+e^{z}+1=0$; (c) $z^{\frac{1}{2}}+1-i=0$ (here $z^{\frac{1}{2}}$ denotes the principal branch)
5. Determine the domain of analyticity (branch cut) of
(a) $\log \left(1+z^{2}\right) ;(b) \log \left(\frac{1-z}{1+z}\right)$
6. Which of the followings are true statements? For the ones that are false find a counterexample (a) $e^{\log (z)}=z$; (b) $e^{\log (z)}=z$; (c) $\log \left(e^{z}\right)=z$; (d) $\log \left(e^{z}\right)=z$; (e) $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$; (f) $\log (z)=-\log \left(\frac{1}{z}\right) ;$ (g) $\log \left(z^{\frac{1}{2}}\right)=\frac{1}{2} \log (z)$
7. Find a branch cut of $\log (z-1)$ that is analytic at all points in the plane except those on the following rays.
(a) $\{x \leq 1, y=0\}$; (b) $\{x \geq 1, y=0\}$; (c) $\{x=1, y \geq 0\}$
8. Find a branch cut for $\sqrt{z(z-1)}$ that is analytic in $C \backslash[0,1]$ and takes value $\sqrt{2}$ at $z=2$.
9. Determine a branch of $\log \left(z^{2}+2 z+2\right)$ that is analytic at $z=-1$ and takes value 0 at $z=-1$, and find its derivative there.
10. Determine a branch of $\log \left(1+z^{2}\right)$ that is analytic at $z=0$ and takes the value $2 \pi i$ there.

