## MATH305-201-2021/2022 Homework Assignment 3 (Due Date: Jan.31, 2022)

1. For the following statements, state if it is true or false. If it is false give a counterexample
(1) If $f$ is differentiable at $z=z_{0}$, then $f$ is analytic at $z=z_{0}$.
(2) If $f$ is differentiable at $z=z_{0}$, then $f$ is continuous at $z=z_{0}$.
(3) If $f$ is analytic in an open and connected domain $D$ and $\operatorname{Re}(f(z))=$ Constant, then $f$ is constant.
(4) If $f$ is analytic in an open and connected domain $D$ and $|f(z)|=$ Constant, then $f$ is constant.
2. Use Cauchy-Riemann equation to find out the harmonic conjugate of the following functions
(a) $x y-x+y$; (b) $u=\log \left(x^{2}+y^{2}\right)$ for $\operatorname{Re}(z)>0$; (c) $u=\sin x \cosh (y)$
3. Let $f(z)$ be an analytic function in $D$ and $\operatorname{Im}(f(z)) \neq 0$. Show that $\log |f(z)|$ and $\operatorname{Arg}(f(z))$ is harmonic.
4. (a) Show that if $v$ is a harmonic conjugate of $u$ in a domain $D$, then both $u^{2}-v^{2}$ and $u^{3}-3 u v^{2}$ are harmonic in $D$.
(b)Suppose that functions $u$ and $v$ are harmonic in $D$. Are the following functions harmonic?
(1) $u^{2}-v^{2}$; (2) $u v$; (3) $u-100 v$; (4) $u_{x y}+\Delta v$
(Assume that harmonic functions are smooth functions with all derivatives.)
5. Find a harmonic function $\phi(x)$ in the infinite strip

$$
\{z:-2 \leq 2 \operatorname{Re}(z)-3 \operatorname{Im}(z) \leq 3\}
$$

such that $\phi=0$ on the left edge $\{2 \operatorname{Re}(z)-3 \operatorname{Im}(z)=-2\}$ and $\phi=4$ on the right edge $\{2 \operatorname{Re}(z)-3 \operatorname{Im}(z)=3\}$. Hint: consider linear functions.

6 . Find a harmonic function $\phi(x, y)$ satisfying

$$
\begin{gathered}
\Delta \phi=0, y>0,-\infty<x<+\infty \\
\phi(x, 0)=-1, x<-5 ; \phi(x, 0)=0,-5<x<-1 ; \phi(x, 0)=2,-1<x<2 ; \phi(x, 0)=0, x>2
\end{gathered}
$$

Write your solution in terms of $\tan ^{-1}$ or $\operatorname{Arg}$.
7. Find a harmonic function $\phi(x, y)$ in the annulus $\{z: 1 \leq|z| \leq 2\}$ such that $\phi=1$ on $\{|z|=1\}$ and $\phi=2$ on $\{|z|=2\}$.
8. Find a harmonic function $\phi(x, y)$ such that

$$
\begin{gathered}
\Delta \phi=0, \text { in } D=\left\{(x, y) \mid y>0, x^{2}+y^{2}>9\right\} \\
\phi(x, 0)=-1, x<-3 ; \phi(x, y)=0 \text { for, } x^{2}+y^{2}=9,-3<x<3 ; \phi(x, 0)=2, x>3
\end{gathered}
$$

9. Find the image of the $S=\left\{z:-1 \leq \operatorname{Re}(z) \leq 1,-\frac{\pi}{2} \leq \operatorname{Im}(z) \leq \pi\right\}$ under the map $f(z)=e^{z}$
10. Find all numbers $z$ such that
(a) $(z+1)^{3}=(1+i) z^{3}$; (b) $e^{z}=-1-\sqrt{3} i$;
(c) $\sin (z)=4 i$;
(d) $\sin \left(z^{6}\right)=0$
