MATH305-201-2021/2022 Homework Assignment 2 (Due Date: Jan. 24, 2022)
10pts each

1. Find all values of the following equation
(a) $z^{3}=i-1$;
(b) $z^{5}=\frac{2 i}{1-\sqrt{3} i}$;
(c) $(z-i)^{2}=i ;(d) z^{2}+2 i z+1=0$
2. Let m and n be positive integers that have no common factor and z_{0} be a complex number. Let $z_{0}^{\frac{1}{n}}$ denote the set of all complex numbers such that $z^{n}=z_{0}$. Prove that the set of numbers $\left(z_{0}^{1 / n}\right)^{m}$ is the same as the set of numbers $\left(z^{m}\right)^{1 / n}$. Use this result to find all values of $(1-i)^{3 / 2}$. Here $\left(z_{0}^{1 / n}\right)^{m}=\left\{z^{m} \mid z^{n}=z_{0}\right\}$.
3. Write the following functions in the form $w=u(x, y)+i v(x, y)$.
(a) $f(z)=\frac{z+i}{z+1}$; (b) $f(z)=\frac{e^{z}}{z}$; (c) $f(z)=\frac{z^{2}+3}{|z-1|^{2}}$
4. Describe the image of the following sets under the following maps
(a) $f(z)=(1-i) z+5$ for $S=\{\operatorname{Re}(z)>0\}$; (b) $f(z)=\frac{z-i}{z+i}$ for $S=\{|z|<3\}$; (c) $f(z)=-2 z^{5}$ for $S=\left\{|z|<1,0<\operatorname{Arg} z<\frac{\pi}{2}\right\}$
5. Describe the image of the following sets under the given map
(a) $S=\{\operatorname{Re}(z)=1\}, w=e^{z} ;\left(\right.$ b) $S=\left\{0 \leq \operatorname{Im}(z) \leq \frac{\pi}{4}\right\}, w=e^{z} ;($ c) $S=\{0 \leq \operatorname{Re}(z) \leq$ $1, \operatorname{Im}(z)=1\}, w=z^{2}$
6. The Joukowski map is defined by

$$
w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

Show that J maps the circle $S=\{|z|=r\}(r>0, r \neq 1)$ onto an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the unit circle $S=\{|z|=1\}$ onto the real interval $[-1,1]$.

Hint: use polar form of z.
7. Prove that $\left|e^{-z^{4}}\right| \leq 1$ for all z with $-\frac{\pi}{8} \leq \operatorname{Arg}(z) \leq \frac{\pi}{8}$.
8. Show that the function $f(z)=\bar{z}$ is continuous everywhere but not differentiable anywhere.
9. Discuss the differentiability and analyticity of the following functions
(a) $\left(x+\frac{x}{x^{2}+y^{2}}\right)+i\left(y-\frac{y}{x^{2}+y^{2}}\right)$;
(b) $|z|^{2}+2 z$
10. Let

$$
f(z)=\left\{\begin{array}{l}
\left(x^{4 / 3} y^{5 / 3}+i x^{5 / 3} y^{4 / 3}\right) /\left(x^{2}+y^{2}\right), \text { if } z \neq 0 \\
0 \text { if } z=0
\end{array}\right.
$$

Show that the Cauchy-Riemann equations hold at $z=0$ but f is not differentiable at $z=0$.

