MATH305-201-2021/2022 Homework Assignment 2 (Due Date: Jan. 24, 2022)

10pts each

- 1. Find all values of the following equation
- (a) $z^3 = i 1$; (b) $z^5 = \frac{2i}{1 \sqrt{3}i}$; (c) $(z i)^2 = i$; (d) $z^2 + 2iz + 1 = 0$

2. Let m and n be positive integers that have no common factor and z_0 be a complex number. Let $z_0^{\frac{1}{n}}$ denote the set of all complex numbers such that $z^n = z_0$. Prove that the set of numbers $(z_0^{1/n})^m$ is the same as the set of numbers $(z^m)^{1/n}$. Use this result to find all values of $(1-i)^{3/2}$. Here $(z_0^{1/n})^m = \{z^m \mid z^n = z_0\}$.

- 3. Write the following functions in the form w = u(x, y) + iv(x, y). (a) $f(z) = \frac{z+i}{z+1}$; (b) $f(z) = \frac{e^z}{z}$; (c) $f(z) = \frac{z^2+3}{|z-1|^2}$
- 4. Describe the image of the following sets under the following maps (a) f(z) = (1-i)z+5 for $S = \{Re(z) > 0\}$; (b) $f(z) = \frac{z-i}{z+i}$ for $S = \{|z| < 3\}$; (c) $f(z) = -2z^5$ for $S = \{|z| < 1, 0 < Argz < \frac{\pi}{2}\}$
- 5. Describe the image of the following sets under the given map

(a) $S = \{Re(z) = 1\}, w = e^z$; (b) $S = \{0 \le Im(z) \le \frac{\pi}{4}\}, w = e^z$; (c) $S = \{0 \le Re(z) \le 1, Im(z) = 1\}, w = z^2$

6. The Joukowski map is defined by

$$w = f(z) = \frac{1}{2}(z + \frac{1}{z})$$

Show that J maps the circle $S = \{|z| = r\}$ $(r > 0, r \neq 1)$ onto an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the unit circle $S = \{|z| = 1\}$ onto the real interval [-1, 1].

Hint: use polar form of z.

- 7. Prove that $|e^{-z^4}| \le 1$ for all z with $-\frac{\pi}{8} \le Arg(z) \le \frac{\pi}{8}$.
- 8. Show that the function $f(z) = \overline{z}$ is continuous everywhere but not differentiable anywhere.
- 9. Discuss the differentiability and analyticity of the following functions

 (a) (x + x/(x^2+y^2)) + i(y y/(x^2+y^2));
 (b) |z|² + 2z

 10. Let

 (x^{4/3}y^{5/3} + ix^{5/3}y^{4/3})/(x² + y²) if z ≠ 0;

$$f(z) = \begin{cases} (x^{4/3}y^{5/3} + ix^{5/3}y^{4/3})/(x^2 + y^2), & \text{if } z \neq 0; \\ 0 & \text{if } z = 0 \end{cases}$$

Show that the Cauchy-Riemann equations hold at z = 0 but f is not differentiable at z = 0.