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Abstract. Singularity formation for evolution equations has attracted much attention in recent years. In

this lecture note, we will introduce some recent progress on the parabolic gluing method and its applications

in investigating the mechanism of singularity formation for parabolic flows. Several model problems will be
revisited to illustrate the ideas.
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1. Introduction

Singularity formation for evolution equations has attracted much attention in recent years, probably because
of the connection to the possible singularity or global regularity for the incompressible Navier-Stokes equation
in R3, a Clay Millennium Problem, as well as the motivations from geometric flows (Ricci flow and mean
curvature flow). As a matter of fact, the resolution of Poincare’s conjecture (another Clay Millennium problem)
by G. Perelman [78, 79] is a manifesto of the importance of the analysis of singularity formulation in evolution
equations. Many equations, such as Fujita equations and harmonic map heat flows, which certainly have their
own interest and significance, might be regarded as testing fields for the analysis of singularity formation in
evolution equations. In this survey, we shall report some recent development on the parabolic gluing method
and its applications in constructing finite- and infinite-time blow-up solutions to various evolution equations.
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In the elliptic context, the inner–outer gluing method was developed by del Pino, Kowalczyk, and Wei [23, 24]
to investigate concentration on higher dimensional sets such as curves and surfaces. The climax of this method
is the resolution of De Giorgi’s Conjecture in dimensions greater than 8 [24]. Since then, many new phenomena
and features have been found in the Allen-Cahn equations, critical or supercritical elliptic problems, and other
settings. Its parabolic analogue, motivated by a recent surge of interests in the singularity formation in evolution
settings, was developed by Dávila, del Pino, Musso, and Wei to investigate finite- and infinite-time blow-up
solutions for energy critical heat equations and heat flow of harmonic maps [17, 22]. Later, the gluing method
was generalized and applied to a wider class of evolution equations. Without being exhaustive, these include
Euler equations and related fluid equations, geometric flows, parabolic equations, and systems arising from
mathematical biology and physics such as Keller-Segel systems, nematic liquid crystal flow, the LLG equation,
and others. We refer the reader to [19, 20, 21, 26, 27, 63, 88, 99] and the references therein.

Let us first explain some of the ideas and recent progress in the development of the gluing method in
an abstract fashion and then give two specific examples to better illustrate the ideas. Roughly speaking, the
parabolic gluing method is a refined type of perturbative argument. Our aim is to construct solutions exhibiting
singular asymptotic behavior near some concentration points as t → T or t → +∞. The construction starts
with a well-chosen blow-up profile, usually driven by energy concentration. Then one looks for a perturbation
that consists of inner and outer parts, where the inner part captures the heart of the singularity formation and
the outer part handles all the external noises. This leads to a coupled inner–outer gluing system involving the
inner and outer solutions and the (typically scaling and translation) parameter functions. The full system is
then solved by a fixed point argument provided that one can obtain suitable linear theories for inner and outer
problems as well as the reduced problems that determine the dynamics of parameters. The linear theories are
designed such that the full system is decoupled or less coupled, namely the gluing procedure can be implemented,
and it usually involves careful and rather precise choices of weighted topologies in a pointwise sense for solution
spaces. On the other hand, the linearization for the inner problem is surely not invertible in the presence
of an infinitesimal generator of rigid motions, and thus for an inner solution with sufficient decay to exist,
orthogonality conditions are required ensuring the development of the linear theory. These orthogonalities in
turn determine the dynamics of parameters, yielding the desired blow-up speed and location.

A typical first approximate solution is the steady state invariant under rescaling and translation. These
invariances naturally imply kernels in the linearized operator. We call the case where all the kernels decay
sufficiently fast the L2 case, while the case with slowly decaying kernels (6∈ L2(Rn)) is called the non-L2 case.
Usually the non-L2 case happens in lower dimensions, and under such circumstances, well chosen nonlocal
corrections are needed in order to improve the spatial decay. The new error terms introduced by nonlocal
corrections enter the orthogonality condition (at the corresponding mode) as leading order, leading to a certain
integro-differential operator in the reduced equation. This global feature has been observed, for instance, in
[18, 22, 26, 100]. Techniques such as the Laplace transform and Riemann-Liouville type can be applied for
certain cases, but for the other threshold cases, one has to take advantage of the Hölder regularity inherited
from the outer problem to control the nonlocal operator.

In general, the development of the linear theory for the outer problem is more straightforward compared to
the one for the inner problem. In parabolic settings, the maximum principle, or the direct and careful use of
Duhamel’s formula, can be employed. However, the design of the weighted space can be more delicate in the
absence of the maximum principle. The gluing method in such set-ups has been developed and applied equally
well. See [19, 20, 21, 99] for recent progress on the incompressible Euler equations and LLG equation.

For the inner problem, solutions with sufficient decay in space-time can only be expected with orthogonality
conditions imposed, and careful choice of initial data might be needed if instability is present for the correspond-
ing linearized operator, resulting in codimension stability. There are various techniques and tools available, and
the spectral information plays a key role. A refined version, that gets less deteriorated in the innermost region,
can be achieved by the re-gluing process, namely another inner–outer gluing procedure. The distorted Fourier
transform also turns out to be a powerful tool in the gluing method and is present in [99]. This is motivated
by [42] on the spectral analysis of the Schrödinger operator and [59, 60, 61, 62] on the singularity formation for
wave equations and wave maps.

In the rest of this lecture note, to illustrate the ideas and techniques in the parabolic gluing method, we plan
to revisit several models
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• finite time blow-up for the Fujita equation with critical exponent in R5 (L2 case) and in R4 (non-L2

case);
• finite time blow-up for the harmonic map heat flow and the Landau-Lifshitz-Gilbert equation in R2;
• long-term dynamics for the 1-equivariant harmonic map heat flow, Fujita equation in R4, and the

Keller-Segel system in R2.

In the appendices, different methods for linear theories will be presented.

2. Fujita equation: a brief introduction

Let us start with a brief introduction to singularity formation for the Fujita equation,

ut = ∆u+ |u|p−1u in Ω× (0, T ), (2.1)

where Ω is the entire space Rn or a smooth domain in Rn and 0 < T ≤ +∞. This semilinear heat equation
with p > 1 has been widely studied since Fujita’s celebrated work [39]. The Fujita equation might be the one
of the most simple-looking semilinear parabolic equations. However, rich and sophisticated phenomena arise,
and those are intimately related to the power nonlinearity in a rather precise manner. Much literature has
been devoted to studying this problem concerning the singularity formation. For a comprehensive survey in the
literature, we refer the readers to the book of Quittner and Souplet [82].

For the finite time blow-up, the solution u is said to be type I if

lim supt→T (T − t)
1
p−1 ‖u(·, t)‖∞ < +∞,

and type II if

lim supt→T (T − t)
1
p−1 ‖u(·, t)‖∞ = +∞.

Type I blow-up is more generic and similar to that of the ODE ut = up, while type II blow-up, where the
Laplacian dominates, is much more difficult to detect. In particular, two different types of blow-up phenomena
in problem (4.6) depend sensitively on the power nonlinearity. For instance, it is known after a series of works,
including [43, 44], that type I is the only way possible if p < ps in the case that Ω is Rn or a convex domain,
where ps is the critical Sobolev exponent

ps :=

{
n+2
n−2 if n ≥ 3,

+∞ if n = 1, 2.

The critical exponent ps is special in various ways. For the energy critical case p = ps, in the positive radial and
monotonically decreasing class, Filippas, Herrero and Velázquez [36] excluded the possibility of type II blow-up
for n ≥ 3, and Matano and Merle [70, Theorem 1.7] removed the monotone assumption and obtained the same
result. Wang and Wei [98] generalized the result to the non-radial positive class in higher dimensions n ≥ 7.
For p < ps, finite time type I blow-up solution was found and its stability was studied in [74]. For the critical
case p = ps in Rn with n ≥ 7, classification results were proved near the ground state of the energy critical
heat equation in [14]. In the aspect of type II blow-ups, the first example was discovered by Herrero-Velázquez
[54, 55], for p > pJL where pJL is the Joseph-Lundgren exponent [57]

pJL =

{
1 + 4

n−4−2
√
n−1

if n ≥ 11,

+∞, if n ≤ 10.

See, for instance, [12, 15, 28, 75, 87] and references therein for more results on existence and construction of type
II blow-ups. For the critical case p = ps in dimensions n = 3, 4, 5, 6, sign-changing type II blow-up solutions
were conjectured to exist, via formal matched asymptotic analysis, by Filippas, Herrero and Velazquez [36] and
have been rigorously constructed recently in [25, 29, 31, 51, 52, 65, 86].

In view of the results mentioned above, regarding finite-time blow-up for positive solutions to the Fujita
equation (4.6), we mention three interesting open questions/Conjectures.

Conjecture 1. For 3 ≤ n ≤ 6 and p = n+2
n−2 , all positive finite time blow-ups to (4.6) are Type I.

Conjecture 2. For n ≥ 7 and p = n+2
n−2 , all (sign-changing) finite time blow-ups to (4.6) are Type I.

Conjecture 3. For n+2
n−2 < p < pJL(n) and p 6= n−m+2

n−m−2 , all finite time blow-ups to (4.6) are Type I.
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On the other hand, infinite time blow-ups for p = ps have also received some attention recently. In dimensions
n ≥ 3, Galaktionov and King [40] investigated positive, radially symmetric, infinite time blow-up solutions for
problem (4.6) in the case of the unit ball with Dirichlet boundary condition. See also [92, Theorem 1.4] for
the case that the domain is convex and symmetric. In the non-radial setting, the positive infinite time blow-up
solutions for problem (4.6) with zero Dirichlet boundary condition and n ≥ 5 was constructed in [17], where the
role of the Green’s function in the bubbling phenomenon was studied, in parallel to the seminal works [3] and [4]
in elliptic settings. See also [30] for the construction based on non-degenerate sign-changing profile and [27, 91]
for the bubble towers in higher dimensions at forward and backward time infinity. Infinite time blow-ups for
the lower dimensions n = 3, 4 have been constructed in [26, 100] confirming a conjecture by Fila and King [35].

2.1. L2 case: critical Fujita equation in R5. The first example is the type II singularity for Fujita equation
with critical exponent in R5.

The first step is to find a suitable blow-up profile whose natural choice is the steady state. We recall that all
positive entire solutions of the equation

∆u+ |u|
4

n−2u = 0 in Rn

are given by the family of Aubin-Talenti bubbles

Uµ,ξ(x) = µ−
n−2
2 U

(
x− ξ
µ

)
(2.2)

where

U(y) = αn

(
1

1 + |y|2

)n−2
2

, αn = (n(n− 2))
n−2
4 .

The solutions we construct do change sign, and look at main order near the blow-up points as one of the bubbles
(2.2) with time dependent parameters and µ(t)→ 0 as t→ T . Thus we consider the equation{

ut = ∆u+ |u|
4

n−2u in Ω× (0, T ),

u(·, 0) = u0 in Ω
(2.3)

in the case n = 5, p = 7/3. Let us fix arbitrary points q1, q2, . . . qk ∈ Ω. We consider a smooth function
Z∗0 ∈ L∞(Ω) with the property that

Z∗0 (qj) < 0 for all j = 1, . . . , k.

The sign condition is required to ensure the existence of desired blow-up dynamics.

Theorem 1 ([25]). Let n = 5. For each T > 0 sufficiently small there exists an initial condition u0 such that
the solution of problem (2.3) blows up at time T exactly at the k points q1, . . . , qk. It looks at main order as

u(x, t) =

k∑
j=1

Uµj(t),ξj(t)(x) + Z∗0 (x) + θ(x, t)

where
µj(t)→ 0, ξj(t)→ qj as t→ T,

and ‖θ‖L∞ ≤ T a for some a > 0. More precisely, for numbers βj > 0 we have

µj(t) = βj(T − t)2 (1 + o(1)),

We observe that in particular, the solution constructed in Theorem 7 is type II since

‖u(·, t)‖L∞(R5) ∼ (T − t)−3 � (T − t)−3/4.

For notational simplicity we shall only sketch the proof in the single-bubble case k = 1. The general case
requires relatively minor changes.

• Ansatzes and error estimates.

We fix a point q ∈ Ω. Let us consider a function Z∗0 smooth in Ω̄ with Z∗0 = 0 on ∂Ω. We assume in addition
that

Z∗0 (q) < 0. (2.4)
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We let Z∗(x, t) be the unique solution of the initial-boundary value problem{
∂tZ

∗ = ∆Z∗ in Ω× (0,∞),

Z∗ = 0 on ∂Ω× (0,∞), Z∗(·, 0) = Z∗0 in Ω.
(2.5)

We consider functions ξ(t)→ q, and parameters µ(t)→ 0 as t→ T . We look for a solution of the form

u(x, t) = Uµ(t),ξ(t)(x) + Z∗(x, t) + ϕ(x, t) (2.6)

with a remainder ϕ consisting of inner and outer parts

ϕ(x, t) = µ−
n−2
2 φ (y, t) ηR(y) + ψ(x, t), y =

x− ξ(t)
µ(t)

(2.7)

where

ηR(y) = η0

(
|y|
R

)
and η0(s) is a smooth cut-off function with η0(s) = 1 for s < 1 and = 0 for s > 1.

Let us define the error of u as
S(u) = −ut + ∆u+ up.

Then
S(Uλ,ξ + Z∗ + ϕ) = − ϕt + ∆ϕ+ pUp−1

µ,ξ (ϕ+ Z∗) + µ−
n+2
2 E +N(Z∗ + ϕ)

= ηRµ
−n+2

2

[
− µ2φt + ∆yφ+ pU(y)p−1[φ+ µ

n−2
2 (Z∗ + ψ)] + E

]
− ψt + ∆xψ + pµ−2(1− ηR)U(y)p−1(Z∗ + ψ) +A[φ]

+B[φ] + µ−
n+2
2 E(1− ηR) +N(Z∗ + ϕ)

where

E(y, t) := µµ̇[y · ∇U(y) +
n− 2

2
U(y)] + µξ̇ · ∇U(y), (2.8)

Nµ,ξ(Z) := |Uµ,ξ + Z|p−1(Uµ,ξ + Z)− Upµ,ξ − pU
p−1
µ,ξ Z,

A[φ] := µ−
n+2
2 {∆yηRφ+ 2∇yηR∇yφ} ,

B[φ] := µ−
n
2

{
µ̇
[
y · ∇yφ+

n− 2

2
φ
]
ηR + ξ̇ · ∇yφ ηR +

[
µ̇y · ∇yηR + ξ̇ · ∇yηR

]
φ

}
and we have used Up−1

µ,ξ ϕ = µ−2U(y)p−1ϕ. Thus, we will have a solution if the pair (φ(y, t), ψ(x, t)) solves the
following inner–outer gluing system

µ2φt = ∆yφ+ pU(y)p−1φ+H(ψ, µ, ξ) in B2R(0)× (0, T ) (2.9)


ψt = ∆xψ +G(φ, ψ, µ, ξ) in Ω× (0, T )

ψ =− Uµ,ξ on ∂Ω× (0, T ),

ψ(·, 0) = 0 in Ω

(2.10)

where
H(ψ, µ, ξ)(y, t) := µ

n−2
2 pU(y)p−1(Z∗(ξ + µy, t) + ψ(ξ + µy, t)) + E(y, t),

G(φ, ψ, µ, ξ)(x, t) := pµ−2(1− ηR)U(y)p−1(Z∗ + ψ) +A[φ] +B[φ]

+ µ−
n+2
2 E(1− ηR) +N(Z∗ + ϕ), y =

x− ξ
µ

.

(2.11)

• Formal derivation of µ and ξ.

Next we do a formal consideration that allows us to identify the parameters µ(t) and ξ(t) at main order.
Leaving aside smaller order terms, the inner problem (2.9) is approximately an equation of the form

µ2φt = ∆yφ+ pU(y)p−1φ+ h(y, t) in Rn × (0, T )

φ(y, t)→ 0 as |y| → ∞
(2.12)
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with
h(y, t) = µµ̇ (U(y) + y · ∇U(y)) + pµ

n−2
2 U(y)p−1Z∗0 (q)

+ µξ̇ · ∇U(y) + pµ
n
2 U(y)p−1∇Z∗0 (q) · y.

(2.13)

The condition of spatial decay in y for the inner problem solution φ mitigates the effect of φ in the outer problem
(2.10), making at main order (2.9) and (2.10) decoupled.

Roughly speaking, for n ≥ 5, the elliptic equation

L[φ] := ∆yφ+ pU(y)p−1φ = g(y) in Rn

φ(y)→ 0 as |y| → ∞,

with g(y) = O((1 + |y|)−2−a) and 0 < a < 1, is solved by φ = O((1 + |y|)−a) provided thatˆ
Rn
g(y)Zi(y) dy = 0 for all i = 1, . . . , n+ 1,

where

Zi(y) = ∂iU(y), i = 1, . . . , n, Zn+1(y) =
n− 2

2
U(y) + y · ∇U(y).

These are in fact all bounded solutions of the linearized equation L[Z] = 0.
It seems reasonable to get an approximation to a solution of equation (2.12) (valid up to large |y|) by solving

the elliptic equation
∆yφ+ pU(y)p−1φ+ h(y, t) = 0 in Rn × (0, T )

φ(y, t)→ 0 as |y| → ∞,
which we can indeed do under the orthogonality conditionsˆ

Rn
h(y, t)Zi(y) dy = 0 for all i = 1, . . . , n+ 1, t ∈ [0, T ). (2.14)

These orthogonalities imply the dynamics of the parameters. Indeed, integrating against Zn+1(y) we getˆ
Rn
h(y, t)Zn+1(y) dy = µµ̇(t)

ˆ
Rn
Z2
n+1dy −

n− 2

2
µ(t)

n−2
2 Z∗0 (q)

ˆ
Rn
Updy.

Clearly, one sees from above that integrability issues arise for lower dimensional cases, yielding nonlocal/global
features, which we shall discuss in next Section for the case n = 4. This quantity is zero if and only if for a
certain explicit constant βn > 0

µ̇(t) = −βn|Z∗0 (q)|µ(t)
n−4
2 , µ(T ) = 0,

and thus for n = 5

µ∗(t) = α(T − t)2, α =
1

4
β2
n|Z∗0 (q)|2. (2.15)

In a similar way, the remaining n relations in (2.14) lead us to ξ̇(t) = µ(t)
n−2
2 b for a certain vector b. Hence

ξ̇(t) = O(T − t)3 and
ξ(t) = q +O(T − t)2.

To solve the actual inner problem (2.12), even assuming orthogonalities (2.14) is not sufficient, and further
constraints are needed. Indeed, let us recall that the operator L has a positive radially symmetric bounded
eigenfunction Z0 associated to the only positive eigenvalue λ0 to the problem

L[φ] = λ0φ, φ ∈ L∞(Rn).

It is known that λ0 is a simple eigenvalue and

Z0(y) ∼ |y|−
n−1
2 e−

√
λ0 |y| as |y| → ∞.

Let us write

p(t) =

ˆ
Rn
φ(y, t)Z0(y) dy, q(t) =

ˆ
Rn
h(y, t)Z0(y) dy.

One expects instability produced by Z0 along the flow without restriction on the initial data. Then we compute

µ(t)2ṗ(t)− λ0p(t) = q(t).
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Since µ(t) ∼ (T − t)−2, then p(t) will have exponential growth in time p(t) ∼ e
c

T−t unless

p(t) = e
´ t
0

dτ
µ2(τ)

ˆ T

t

e
−
´ s
0

dτ
µ2(τ) µ(s)−2 q(s) ds

This relation imposes a linear constraint on the initial data φ(y, 0) to the desired solution φ(y, t) to (2.9)ˆ
Rn
φ(y, 0)Z0(y) dy =

ˆ T

0

e
−
´ s
0

dτ
µ2(τ) µ(s)−2

ˆ
Rn
h(y, s)Z0(y) dy ds. (2.16)

For this reason, we impose an initial data for the inner problem along Z0-direction to get rid of such instability.

• The linear theories.

The outer problem (2.10) in linear version is actually simpler than its counterpart (2.19), corresponding just
to the standard heat equation with nearly singular right hand sides and zero initial and boundary conditions.
Thus we consider the problem 

ψt = ∆xψ + g(x, t) in Ω× (0, T )

ψ = 0 on ∂Ω× (0, T ),

ψ(·, 0) = 0 in Ω.

(2.17)

The class of right hand sides g that we want to take are naturally controlled by the following norms. Let
0 < a < 1, q ∈ Ω and µ0(t) = (T − t)2. We define the norms ‖g‖o∗ and ‖ψ‖o to be respectively the least
numbers K1 and K2 such that for all (x, t) ∈ Ω× [0, T ),

|g(x, t)| ≤ K1

[
1

µ0(t)2

1

1 + |y|2+a
+ 1

]
|ψ(x, t)| ≤ K2

[
1

1 + |y|a
+ T

3
2a

] , y =
x− q
µ0(t)

.

Then the following estimate holds.

Lemma 2.1. ([25, Lemma 4.2]) There exists a constant C such that for all sufficiently small T > 0 and any g
with ‖g‖o < +∞, the unique solution ψ = T out[g] of problem (3.34) satisfies the estimate

‖ψ‖o∗ ≤ C‖g‖o. (2.18)

The proof can be carried out either by barriers or Duhamel’s representation.

The inner problem (2.19) in linear version is actually harder and more delicate than its counterpart (2.10). In
order to deal with the inner problem (2.9), we need to solve a linear problem like (2.12) restricted to a large ball
B2R where orthogonality conditions like (2.14) are assumed and the initial condition of the solution depends
on a scalar parameter which is part of the unknown, connected with constraint (2.16). We construct a solution
(φ, `) which defines a linear operator of functions h(y, t) defined on

D2R = B2R × (0, T )

to the initial value problem

µ2φt = ∆yφ+ pU(y)p−1φ+ h(y, t) in D2R

φ(y, 0) = `Z0(y) in B2R,
(2.19)

for some constant `, under the orthogonality conditionsˆ
B2R

h(y, t)Zi(y) dy = 0 for all i = 1, . . . , Zn+1, t ∈ [0, T ). (2.20)

We impose on the parameter function µ the following constraints, which are motivated on the discussion earlier:
let us write

µ0(t) = (T − t)2.

For some positive constants α and β (to be fixed later), we impose

αµ0(t) ≤ µ(t) ≤ βµ0(t) for all t ∈ [0, T ].
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Let us fix numbers 0 < a < 1 and ν > 0. We will consider functions h satisfying

|h(y, t)| . µ0(t)ν

1 + |y|2+a
in D2R.

The formal analysis of the previous section would make us hope to find a solution to (2.19) such that

|φ(y, t)| . µ0(t)ν

1 + |y|a
in D2R.

We will find a solution so that a somewhat worse bound for φ(y, t) in space variable is found but coinciding
with the expected behavior in the gluing regime |y| ∼ R. Let us define the following norms. We let ‖h‖2+a,ν

be the least number K such that

|h(y, t)| ≤ K
µ0(t)ν

1 + |y|2+a
in D2R (2.21)

and let ‖φ‖∗a,ν be the least number K with

|φ(y, t)| ≤ Kµ0(t)ν
Rn+1−a

1 + |y|n+1
in D2R. (2.22)

We observe that ‖φ‖∗a,ν ≤ ‖φ‖a,ν .

The following is the key linear result associated to the inner problem.

Lemma 2.2. ([17, Proposition 7.1],[25, Lemma 4.1]) There is a C > 0 such For all sufficiently large R > 0
and any h with ‖h‖2+a,ν < +∞ that satisfies relations (2.20) there exist linear operators

φ = T inµ [h], ` = `[h]

which solve Problem (2.19) and define linear operators of h with

|`[h]|+ ‖(1 + |y|)∇yφ‖∗a,ν + ‖φ‖∗a,ν ≤ C ‖h‖ν,2+a.

The proof is by using the self-similar variables (y, τ) with

τ = τ0 +

ˆ t

0

µ(s)−2ds.

Expressing φ = φ(y, τ), problem (2.19) becomes

φτ = ∆yφ+ pU(y)p−1φ+ h(y, τ) in B2R × (τ0,∞),

φ(y, 0) = `Z0(y) in B2R.

Then finding solution with sufficient decay in space-time consisting of three steps:

Step 1: solving an elliptic equation by orthogonality;
Step 2: solving a parabolic equation with slower decay by a spectrum gap estimate (see Lemma 2.3) and energy

estimates, then improving the pointwise estimate;
Step 3: acting the linearized operator on both sides of the parabolic equation in Step 2 yields a desired solution.

In fact, for the higher dimensional case n ≥ 5, blow-up argument can be employed to show a more refined
version of the linear theory for the inner problem. The result obtained via blow-up argument turns out to be
exactly what we have discussed formally before, and there is no loss of R’s in the innermost region. We give a
detailed proof in Appendix B. Since we do not use maximum principle in the blow-up argument, this argument
is rather general and flexible and can be applied to a larger class of equations.

• Proof of Theorem 7: fixed point argument.

With the above preliminaries we are now ready to carry out the proof of Theorem 7 for the case k = 1. We
want to find a tuple ~p = (φ, ψ, µ, ξ) solving the inner–outer gluing system (2.9)-(2.10) so that a desired blow-up
solution u is constructed. This is achieved by formulating the problem as a fixed point problem for ~p in a small
region of a suitable Banach space.

We first set up inner problem. For a function h(y, t) defined in D2R, we write

cj [h](t) =

´
B2R

h(y, t)Zj(y) dy´
B2R
|Zj(y)|2dy
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so that the function

h̄(y, t) = h(y, t)−
n+1∑
j=1

cj [h](t)Zj(y)

satisfies ˆ
B2R

h̄(y, t)Zj(y) dy = 0 for all j = 1, . . . , n+ 1, t ∈ [0, T )

which makes the result of Lemma 2.2 applicable to the equation{
µ2φt = ∆yφ+ pU(y)p−1φ+ H̄(ψ, µ, ξ) in D2R

φ(·, 0) = ` Z0 in B2R

(2.23)

where

H̄(ψ, µ, ξ) = H(ψ, µ, ξ)−
n+1∑
j=1

cj [H(ψ, µ, ξ)]Zj

and H(ψ, µ, ξ) is defined in (2.11). Using Lemma 2.2, we find a solution to (2.23) if the following equation is
satisfied

φ = T inµ [ H̄(ψ, µ, ξ) ] =: F1(φ, ψ, µ, ξ). (2.24)

Then the inner equation (2.9) is satisfied if in addition we have

cj [H(ψ, µ, ξ)] = 0 for all j = 1, . . . , n+ 1. (2.25)

In addition, the outer equation (2.10) is satisfied provided

ψ = T out[G(φ, ψ, µ, ξ) ] =: F2(φ, ψ, µ, ξ). (2.26)

where the operator G(φ, ψ, µ, ξ) is defined in (2.11). We will solve system (2.23)-(2.25)-(2.26) using a degree-
theoretical argument.

For λ ∈ [0, 1], we define the homotopy

Hλ(ψ, µ, ξ)(y, t) = µ
n−2
2 pU(y)p−1Z∗0 (q) + µµ̇Zn+1(y) + µ

n∑
j=1

ξ̇jZj(y)

+ λµ
n−2
2 pU(y)p−1(Z∗(ξ + µy, t)− Z∗0 (q) + ψ(ξ + µy, t) ),

and consider the system of equations
φ = T inµ [Hλ(ψ, µ, ξ)−

n+1∑
j=1

cj [Hλ(ψ, µ, ξ)]Zj ]

cj [Hλ(ψ, µ, ξ)] = 0 for all j = 1, . . . , n+ 1,

ψ = T out[λG(φ, ψ, µ, ξ) ].

(2.27)

We observe that for λ = 1 this problem precisely corresponds to the system (2.23)-(2.25)-(2.26) that we want
to solve.

It is convenient to write

µ(t) = µ∗(t) + µ(1)(t), ξ(t) = q + ξ(1)(t), t ∈ [0, T ]

where µ∗(t) is defined in (2.15), and µ(1)(T ) = 0, ξ(1)(t) = 0.

We assume that we have a solution (φ, ψ, µ(1), ξ(1)) to system (2.27) with{
|µ̇(1)(t)|+ |ξ̇(1)(t)| ≤ δ0

‖φ‖∗a,ν + ‖ψ‖∞ ≤ δ1
(2.28)

where δ0, δ1 are small positive constants to be adjusted later. We will also assume that Z∗ is sufficiently small
but fixed independently of T , i.e., ‖Z∗‖∞ � 1.

The function µ∗(t) solves the equation

µ̇∗(t)

ˆ
RN

Z2
n+1dy + µ∗(t)

n−4
2 Z∗0 (q)

ˆ
Rn
pUp−1Zn+1dy = 0. (2.29)
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The equation
cn+1(Hλ(ψ, µ∗ + µ1, ξ))(t) = 0, t ∈ [0, T ) (2.30)

which corresponds to

0 = µ̇(t)
(ˆ

B2R

Z2
n+1dy

)
+ µ(t)

n−4
2 Z∗0 (q)

ˆ
B2R

pUp−1Zn+1dy

+ λµ(t)
n−4
2

ˆ
Rn
pU(y)p−1(Z∗(ξ(t) + µ(t)y, t)− Z∗0 (q) + ψ(ξ(t) + µ(t)y, t) )Zn+1(y) dy

can be written as
µ̇(t) + βµ(t)

n−4
2 = µ(t)

n−4
2 (δR + λθ(ψ, ξ, µ1))

for a suitable number β > 0, δR = O(R−2) and the operator θ satisfies

|θ(ψ, ξ, µ1)| ≤ C (T + ‖ψ‖∞)

for some constant C. From (2.29), the equation for µ1 can then be written, in the “linearized” form, as

µ̇1 +
γ

T − t
µ1 = (T − t)g0(ψ, µ, ξ)

for a suitable γ > 0, where
|g0(ψ, ξ, µ(1), λ)(t)| ≤ C (‖ψ‖∞ + T +R−2).

The linear problem

µ̇+
γ

T − t
µ = (T − t)g(t), µ1(T ) = 0

can be uniquely solved by the following operator in g

µ(t) = T 0[g](t) := −(T − t)−γ
ˆ T

t

(T − s)γ+1g0(s) ds.

It defines a linear operator on g with estimates

‖(T − t)−1µ̇‖∞ + ‖(T − t)−2µ‖∞ ≤ C‖g0‖∞.
Equation (2.30) then becomes

µ(1)(t) = T (0)[ g0(ψ, ξ, µ(1), λ) ](t) for all t ∈ [0, T )

and we get
‖(T − t)−1µ̇(1)‖∞ + ‖(T − t)−2µ(1)‖∞ ≤ C (‖ψ‖∞ + T +R−2). (2.31)

Similarly, equations
cj [Hλ(ψ, µ, ξ)] = 0 for all j = 1, . . . , n,

can be written in vector form as

ξ(1)(t) = T (1)[g1(ψ, µ1, ξ1)](t) for all t ∈ [0, T ), (2.32)

where

T (1)[g] :=

ˆ T

t

(T − s)g(s) ds

and
|g1(ψ, ξ, µ(1), λ)(t)| ≤ C (‖ψ‖∞ + T ).

From equation (2.32), we thus find

‖(T − t)−1ξ̇(1)‖∞ + ‖(T − t)−2ξ(1)‖∞ ≤ C (‖ψ‖∞ + T ). (2.33)

On the other hand, we have

|H(ψ, µ, ξ)(y, t)| ≤ C
µ(t)

n−2
2

1 + |y|4
(‖ψ‖∞ + ‖Z∗‖∞) +

µµ̇

1 + |y|n−2
+

µ|ξ̇|
1 + |y|n−1

and thus

|H(ψ, µ, ξ)(y, t)| ≤ C
µ0(t)

n−2
2

1 + |y|2+a

(
‖ψ‖∞ + ‖Z∗‖∞

)
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for 0 < a < 1. From the first equation in (2.27) and Lemma 2.2, we obtain

‖φ‖∗a,ν ≤ C
(
‖ψ‖∞ + ‖Z∗‖∞

)
, ν =

n− 2

2
. (2.34)

with the ‖ · ‖∗a,ν-norm defined in (2.22). Next we consider the last equation in (2.27). We recall that

G(φ, ψ, µ, ξ)(x, t) = pµ−2(1− ηR)U(y)p−1(Z∗ + ψ) +A[φ] +B[φ]

+ µ−
n+2
2 E(1− ηR) +N(Z∗ + µ−

n−2
2 ηRφ+ Z∗ + ψ),

E(y, t) = µµ̇[y · ∇U(y) +
n− 2

2
U(y)] + µξ̇ · ∇U(y),

A[φ] = µ−
n+2
2 {∆yηRφ+ 2∇yηR∇yφ} ,

B[φ] = µ−
n
2

{
µ̇
[
y · ∇yφ+

n− 2

2
φ
]
ηR + ξ̇ · ∇yφ ηR +

[
µ̇y · ∇yηR + ξ̇ · ∇yηR

]
φ

}
.

Let us consider for example the error terms

g1(x, t) = µ−2(1− ηR)Up−1(Z∗ + ψ), g2(x, t) = µ−
n+2
2 E(1− ηR).

We see that

|g1(x, t)| ≤ 1

R2−σ µ
−2 C

1 + |y|2+σ
(‖Z∗‖∞ + ‖ψ‖∞)

and

|g2(x, t)| ≤ 1

µ2

[ 1

|y|n−2
µ−

n−2
2 (|µµ̇|+ |µξ̇|) ≤ 1

R3−σ µ
−2 C

1 + |y|2+σ
.

Let us now estimate the term A[φ]. Let us choose σ = a
2 , where a is the number in the definition of ‖φ‖∗a,ν .

We have ∣∣A[φ](x, t)
∣∣ ≤ µ−2 1

R2

1

1 +R−2−σ|y|2+σ
µ−

n−2
2 sup

R<|y|<2R

(|φ|+ |y||∇φ|)

≤ µ−2 R−
a
2

1 + |y|2+σ
‖φ‖∗a,n−2

2

and similarly,∣∣B[φ](x, t)
∣∣ ≤ Cµ−2[µµ̇+ µ|ξ̇|] Rn+1−a

1 + |y|n+1
‖φ‖∗a,n−2

2
≤ Cµ−2µ

3
2Rn+1−a

1 + |y|2+σ
‖φ‖∗a,n−2

2
.

Now for some σ > 0 we have∣∣N(Z∗ + µ−
n−2
2 ηRφ+ Z∗ + ψ)

∣∣ ≤ Cµ−2 µσ

1 + |y|2+σ
(‖φ‖∗a,n−2

2
Rn+1−a + ‖Z∗‖∞ + ‖ψ‖∞)2

+ C(‖Z∗‖∞ + ‖ψ‖∞)p.

According to the above estimates, it follows by Lemma 2.1 that

‖ψ‖∞ ≤ CTσ
′
‖Z∗‖∞ +R−σ

′
‖φ‖∗a,n−2

2
. (2.35)

Combining (2.34) and (2.35) and then using (2.31)-(2.33), we finally get

‖ψ‖∞ ≤ CTσ
′
‖Z∗‖∞

‖φ‖∗a,n−2
2
≤ C‖Z∗‖∞

‖(T − t)−1ξ̇(1)‖∞ + ‖(T − t)−2ξ(1)‖∞ ≤ C (Tσ
′
(‖Z∗‖∞ + 1) +R−2)

‖(T − t)−1µ̇(1)‖∞ + ‖(T − t)−2µ(1)‖∞ ≤ C T σ
′
(‖Z∗‖∞ + 1).

(2.36)

We write System (2.27) in the form
φ = T inµ [ H̄λ(T out[λG(φ, ψ, µ, ξ), µ, ξ)]

ψ = T out[λG(φ, ψ, µ, ξ) ]

µ(1) = T (0)[ g̃0(ψ, ξ(1), µ(1), λ) ]

ξ(1) = T (1)[g̃1(ψ, µ(1), ξ(1), λ)].

(2.37)
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Here, we can write

g̃0(ψ, ξ(1), µ(1), λ) =c1R

ˆ
B2R

Hλ(T out[λG(φ, ψ, µ, ξ)], µ, ξ)Zn+1(y)dy

g̃1(ψ, ξ(1), µ(1), λ) =c2R

ˆ
B2R

Hλ(T out[λG(φ, ψ, µ, ξ)], µ, ξ)∇U(y)dy

for suitable positive constants c`R, ` = 0, 1. We fix an arbitrarily small ε > 0 and consider the problem defined
only up to time t = T − ε.

φ = T inµ [ H̄λ(T out[λG(φ, ψ, µ, ξ), µ, ξ)], (y, t) ∈ B̄2R × [0, T − ε]
ψ = T out[λG(φ, ψ, µ, ξ) ], (x, t) ∈ Ω̄× [0, T − ε]

µ(1) = T (0)
ε [ g̃0(ψ, ξ(1), µ(1), λ) ], t ∈ [0, T − ε]

ξ(1) = T (1)
ε [g̃1(ψ, µ(1), ξ(1), λ)], t ∈ [0, T − ε]

(2.38)

where

T 0
ε [g](t) := −(T − t)−γ

ˆ T−ε

t

(T − s)γ+1g0(s) ds, T (1)
ε [g] :=

ˆ T−ε

t

(T − s)g(s) ds.

The key is that the operators in the right hand side of (2.38) are compact when we regard them as defined in
the space of functions

(φ, ψ, µ(1), ξ(1)) ∈ X1 ×X2 ×X3 ×X4

with their respective norms defined as

X1 ={φ / φ ∈ C(B2R × [0, T − ε]), ∇yφ ∈ C(B2R × [0, T − ε])}, ‖φ‖X1 = ‖φ‖∞ + ‖∇yφ‖∞
X2 ={ψ / φ ∈ C(Ω̄× [0, T − ve])}, ‖ψ‖X2

= ‖ψ‖∞
X3 ={µ(1) / µ(1) ∈ C1[0, T − ε]}, ‖µ(1)‖X3

= ‖µ(1)‖∞ + ‖µ̇(1)‖∞
X4 ={ξ(1) / ξ(1) ∈ C1[0, T − ε]}, ‖ξ(1)‖X4 = ‖ξ(1)‖∞ + ‖ξ̇(1)‖∞.

Compactness on bounded sets of all the operators involved in the above expression is a direct consequence of the
Hölder estimate for the operator T out and Arzela-Ascoli’s theorem. On the other hand, the a priori estimate
we obtained for ε = 0 holds equally well, uniformly on arbitrary small ε > 0.

Leray Schauder degree applies in a suitable ball B that contains the origin in this space: essentially one
slightly bigger than that defined by relations (2.36), which amounts to a choice of the parameters δ0 and δ1 in
(2.28). In fact, the homotopy connects with the identity at λ = 0, and hence the total degree in the region
defined by relations (2.36) is equal to 1. The existence of a solution to the approximate problem satisfying
bounds (2.36) then follows. Finally, a standard diagonal argument yields a solution to the original problem
with the desired asymptotics. The proof of Theorem 7 for the case k = 1 is concluded.

The general case of k distinct points q1, . . . , qk is actually identical: in that case we have k inner problems
and one outer problem with analogous properties. We look for a solution of the form

u(x, t) =

k∑
j=1

Uµj ,ξj (x) + Z∗(x, t) + µ
−n−2

2
j φ(yj , t)ηR(yj) + ψ(x, t), yj =

x− ξj
µj

, (2.39)

where Z∗ solves heat equation with initial condition Z∗0 which is chosen so that (2.4) holds at all concentration
points, namely Z∗0 (qj) < 0, and ξj(T ) = qj , µj(T ) = 0.

A string of fixed point problems (with essentially decoupled equations associated at each point) then appears
and can be solved in the same way. We omit the details. �
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2.2. Non-L2 case: critical Fujita equation in R4. In this section, we consider the finite time blow-up for
case n = 4 and p = 3. In what follows we let Ω be a smooth bounded domain in R4 or Ω = R4 and consider
the equation 

ut = ∆u+ u3 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(2.40)

Let us fix arbitrary points q1, q2, . . . qk ∈ Ω. We consider a smooth function Z∗0 ∈ L∞(Ω) with the property that

Z∗0 (qj) < 0 for all j = 1, . . . , k.

Theorem 2 ([31]). For each T > 0 sufficiently small, there exists an initial condition u0 such that the solution
to problem (4.3) blows up at time T exactly at the k points q1, . . . , qk. The solution is of the sharply scaled form

u(x, t) =

k∑
j=1

Uλj(t),ξj(t)(x) + Z∗0 (x) + θ(x, t)

where
λj(t)→ 0, ξj(t)→ qj as t→ T,

and ‖θ‖L∞ ≤ T a for some a > 0. More precisely,

λj(t) ∼
T − t

| log(T − t)|2
as t→ T.

We observe that the solution constructed in Theorem 2 is type II. The result in Theorem 2 is the exact analog
of Theorem 7 in dimension 5. We follow the same general approach of the parabolic gluing method. However,
substantial differences and difficulties arise, due to the fact that the equation that determines λ(t) involves a
delicate nonlocal integro-differential operator. In dimension 5, the dynamics of λ(t) is found in a much more
direct way by just solving an ODE. This nonlocal effect is related to the slower decay of the linear generator
of dilations of the Aubin-Talenti bubbles in lower dimensions, i.e., Z5 6∈ L2(R4) (see (2.43)). A very similar
difficulty was already encountered in the work [22] on blow-up in the harmonic map flow, where such nonlocal
operator appeared in the reduced complex system at mode 0. The similarity between these problems in the
presence of symmetries had already been noticed in [83, 86].

• Approximation and correction.

We first choose a proper approximate solution to (4.3) and compute its error. We consider the case k = 1 for
simplicity and mention the minor changes for the general multi-bubble case when needed. We define the error
operator

S(u) := −ut + ∆u+ u3.

Recall that the Aubin-Talenti bubble
U(y) =

α0

1 + |y|2
(2.41)

solves the Yamabe problem
∆yU + U3 = 0 in R4,

where α0 = 2
√

2. It is well-known that the linearized operator around the bubble

L0(φ) := ∆φ+ 3U2φ (2.42)

is non-degenerate in the sense that all bounded solutions to L0(φ) = 0 are the linear combination of

Zi(y) := ∂yiU(y), i = 1, 2, 3, 4, Z5(y) := U(y) +∇U(y) · y. (2.43)

Our first approximation is chosen as

Uλ(t),ξ(t) = λ−1(t)U

(
x− ξ(t)
λ(t)

)
,

where λ(t) and ξ(t) are scaling and translation parameter functions to be adjusted later. Direct computations
yield

S(Uλ(t),ξ(t)) = −∂tUλ(t),ξ(t) = λ−2(t)λ̇(t)

(
− α0

1 + |y|2
+

2α0

(1 + |y|2)2

)
+ λ−2(t)∇yU(y) · ξ̇(t),

(2.44)
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where y = x−ξ(t)
λ(t) . Observe that the slow decaying error in (4.9) is

E0 = − α0λ̇(t)

λ2(t) + ρ2
≈ −α0λ̇(t)

ρ2
6∈ L2(R4),

where ρ := |x− ξ(t)|. In order to improve the approximation, we consider

∂tu1 = ∆u1 + E0 in R4 × (0, T ). (2.45)

By similar computations as in [22]1, a solution to (2.45) is given explicitly by

u1 = −α0

ˆ t

−T
λ̇(s)k(ρ, t− s)ds,

where

k(ρ, t) :=
1− e−

ρ2

4t

ρ2
. (2.46)

We regularize the above u1 and choose a correction Ψ0 to be

Ψ0(x, t) = −α0

ˆ t

−T
λ̇(s)k(ζ(ρ, t), t− s)ds, (2.47)

where
ζ(ρ, t) =

√
ρ2 + λ2(t).

Then the new error produced by Ψ0 is given by

∂tΨ0 −∆Ψ0 − E0

= α0

[
y · ξ̇ − λ̇(t)

(1 + |y|2)1/2

] ˆ t

−T
λ̇(s)kζ(ζ, t− s)ds

+
α0

λ(t)(1 + |y|2)3/2

ˆ t

−T
λ̇(s) [−ζkζζ(ζ, t− s) + kζ(ζ, t− s)] ds

:= R[λ].

(2.48)

It is thus reasonable to choose the corrected approximation as

u∗ = Uλ(t),ξ(t) + Ψ0

and its error is
S(u∗) = S(Uλ(t),ξ(t))− E0 + (Uλ(t),ξ(t) + Ψ0)3 − U3

λ(t),ξ(t)

= K[λ, ξ] + (Uλ(t),ξ(t) + Ψ0)3 − U3
λ(t),ξ(t),

where K[λ, ξ] is defined as

K[λ, ξ] :=
2α0λ

−2(t)λ̇(t)

(1 + |y|2)2
+ λ−2(t)∇U(y) · ξ̇(t)−R[λ] (2.49)

with R[λ] given in (2.48).

• Formulating the inner–outer gluing system.

We look for solution of the following form
u = u∗ + w,

where w is a small perturbation consisting of inner and outer parts

w = ϕin + ϕout, ϕin = λ−1(t)ηRφ(y, t), ϕout = ψ(x, t) + Z∗(x, t).

Here the cut-off function is defined by

ηR = ηR(t)(x, t) = η

(
|x− ξ(t)|
λ(t)R(t)

)
1See Section 17 in the full version available at https://personal.math.ubc.ca/~jcwei/hmf-2018-08-16.pdf

https://personal.math.ubc.ca/~jcwei/hmf-2018-08-16.pdf
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where the smooth cut-off function η(s) = 1 for s < 1 and η(s) = 0 for s > 2, and Z∗ satisfies
Z∗t = ∆xZ

∗ in Ω× (0, T ),

Z∗(·, t) = 0 on ∂Ω× (0, T ),

Z∗(·, 0) = Z∗0 in Ω.

Denote
B2R = {x ∈ Ω : |x− ξ(t)| ≤ 2λR} , D2R = B2R × (0, T ),

and Ψ∗ = ψ + Z∗. Then u is a solution to the original problem (4.3) if

• φ solves the inner problem

λ2φt = ∆yφ+ 3U2(y)φ+H(φ, ψ, λ, ξ) in D2R (2.50)

where
H(φ, ψ, λ, ξ)(y, t) := 3λU2(y)[Ψ0 + ψ + Z∗](λy + ξ, t)

+ λ
[
λ̇(∇yφ · y + φ) +∇yφ · ξ̇

]
+ λ3N (w) + λ3K[λ, ξ]

(2.51)

with K[λ, ξ] defined in (2.49), and

N (w) := (Uλ,ξ + Ψ0 + w)3 − U3
λ,ξ − 3U2

λ,ξ(Ψ0 + w). (2.52)

• ψ solves the outer problem

ψt = ∆ψ + G(φ, ψ, λ, ξ) in Ω× (0, T ) (2.53)

with
G(φ, ψ, λ, ξ) := 3λ−2(1− ηR)U2(y)(Ψ0 + ψ + Z∗)

+ λ−3
[
(∆yηR)φ+ 2∇yηR · ∇yφ− λ2φ∂tηR

]
+ (1− ηR)K[λ, ξ] + (1− ηR)N (w).

(2.54)

• The choices of parameters.

We choose the leading orders λ∗(t), ξ∗(t) of the parameter functions λ(t) and ξ(t). As mentioned earlier, a
good inner solution can be found provided approximately the following orthogonality conditionsˆ

R4

H(φ, ψ, λ, ξ)Zj(y)dy = 0 for all j = 1, · · · , 5, t ∈ (0, T ) (2.55)

are satisfied. Here Zj are the kernel functions (c.f. (2.43)) of the linearized operator L0 defined in (2.42). Basi-
cally, the scaling and translation parameters λ(t) and ξ(t) at main order will be derived from the orthogonality
conditions (2.55).

Singling out the leading term H∗ of H and computingˆ
R4

H∗[λ, ξ,Ψ∗]Z`(y)dy = 0 for ` = 1, · · · , 4

with
H∗[λ, ξ,Ψ∗] := 3λU2(y)[Ψ0 + Ψ∗](λy + ξ, t) + λ3K[λ, ξ]

= 3λU2(y)[Ψ0 + Ψ∗](λy + ξ, t) +
2α0λ(t)λ̇(t)

(1 + |y|2)2
+ λ(t)∇U(y) · ξ̇(t)

− α0λ
2(t)

(1 + |y|2)3/2

ˆ t

−T
λ̇(s) [−ζkζζ(ζ, t− s) + kζ(ζ, t− s)] ds

− α0λ
3(t)

[
y · ξ̇ − λ̇(t)

(1 + |y|2)1/2

] ˆ t

−T
λ̇(s)kζ(ζ, t− s)ds

imply that
ξ̇` = o(1),

where Ψ∗ = ψ + Z∗ and o(1)→ 0 as t↗ T. So the choice of ξ(t) at main order is

ξ(t) = q,

where q is a prescribed point in Ω.
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The dynamics for λ(t) from ˆ
R4

H∗[λ, ξ,Ψ∗]Z5(y)dy = 0

turns out to be more involved due to the non-local/global correction, and the reduced problem involves the
following integro-differential operator

c∗

ˆ t−λ2(t)

−T

λ̇(s)

t− s
ds = −3c0[Z∗0 (q) + ψ(q, 0)] + o(1), (2.56)

where

c0 :=

ˆ
R4

U2(y)Z5(y)dy < 0.

Here careful calculations are needed for nonlocal terms, and detailed derivation can be found in [31, Section 4].
Since λ(t) decreases to 0 as t↗ T, we impose

a∗ := Z∗0 (q) + ψ(q, 0) < 0.

Now we claim that a good choice of λ(t) at main order is

λ̇(t) = − c

| log(T − t)|2
, (2.57)

where c > 0 is a constant to be determined later. Indeed, we get by substitutingˆ t−λ2(t)

−T

λ̇(s)

t− s
ds =

ˆ t−(T−t)

−T

λ̇(s)

t− s
ds+

ˆ t−λ2(t)

t−(T−t)

λ̇(t)

t− s
ds−

ˆ t−λ2(t)

t−(T−t)

λ̇(t)− λ̇(s)

t− s
ds

=

ˆ t−(T−t)

−T

λ̇(s)

t− s
ds+ λ̇(t)(log(T − t)− 2 log λ(t))

−
ˆ t−λ2(t)

t−(T−t)

λ̇(t)− λ̇(s)

t− s
ds

≈
ˆ t

−T

λ̇(s)

T − s
ds− λ̇(t) log(T − t) := β(t).

By (2.57), we then get

log(T − t)dβ
dt

(t) =
d

dt

(
− log2(T − t)λ̇(t)

)
= 0,

which means β(t) is a constant. Thus, equation (2.56) can be approximately solved for

λ̇(t) = − c

| log(T − t)|2

with the constant c chosen as

−c
ˆ T

−T

ds

(T − s)| log(T − s)|2
= κ∗,

where κ∗ := − 3c0a∗
c∗

. At main order, we obtain

λ̇(t) = κ∗λ̇∗(t)

with

λ̇∗(t) = − | log T |
| log(T − t)|2

.

By imposing λ∗(T ) = 0, we obtain

λ∗(t) =
| log T |(T − t)
| log(T − t)|2

(1 + o(1)) as t↗ T.

• Linear theories.

We start from the the outer problem (2.53) and consider
ψt = ∆ψ + f, in Ω× (0, T ),

ψ = 0, on ∂Ω× (0, T ),

ψ(x, 0) = 0, in Ω,

(2.58)
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where the non-homogeneous term f in (2.58) is assumed to be bounded with respect to the weights appearing
in the outer problem (2.53). Define the weights

%1 := λν−3
∗ (t)R−2−α(t)χ{|x−ξ(t)|≤2λ∗R}

%2 := λ
ν2
∗

|x−ξ(t)|2χ{|x−ξ(t)|≥λ∗R}

%3 := 1

(2.59)

where we choose R(t) = λ−β∗ (t) for β ∈ (0, 1/2). We define the norms

‖f‖∗∗ := sup
(x,t)∈Ω×(0,T )

(
3∑
i=1

%i(x, t)

)−1

|f(x, t)|, (2.60)

‖ψ‖∗ :=
λ1−ν
∗ (0)Rα(0)

| log T |
‖ψ‖L∞(Ω×(0,T )) +

λ2−ν
∗ (0)R1+α(0)

| log T |
‖∇ψ‖L∞(Ω×(0,T ))

+ sup
(x,t)∈Ω×(0,T )

[
λ1−ν
∗ (t)Rα(t)

| log(T − t)|
|ψ(x, t)− ψ(x, T )|

]
+ sup

(x,t)∈Ω×(0,T )

[
λ2−ν
∗ (t)R1+α(t)|
| log(T − t)|

|∇ψ(x, t)−∇ψ(x, T )|
]

+ sup
Ω×IT

λ2γ+1−ν
∗ (t2)R2γ+α(t2)

(t2 − t1)γ
|ψ(x, t2)− ψ(x, t1)|,

(2.61)

where ν, α, γ ∈ (0, 1), and the last supremum is taken over

Ω× IT =

{
(x, t1, t2) : x ∈ Ω, 0 ≤ t1 ≤ t2 ≤ T, t2 − t1 ≤

1

10
(T − t2)

}
.

For problem (2.58), we have the following estimates.

Proposition 2.1. ([22, Appendix A],[31, Proposition 1]) Let ψ be the solution to problem (2.58) with ‖f‖∗∗ <
+∞. Then it holds that

‖ψ‖∗ . ‖f‖∗∗.

Proposition 2.1 is established by estimating carefully Duhamel’s formula with different right hand sides.

To solve the inner problem (2.50), we consider the associated linear problem

λ2φt = ∆yφ+ 3U2(y)φ+ h(y, t) in D2R. (2.62)

Recall that the linearized operator L0 = ∆ + 3U2 has only one positive eigenvalue µ0 such that

L0(Z0) = µ0Z0, Z0 ∈ L∞(R4),

where the corresponding eigenfunction Z0 is radially symmetric with the asymptotic behavior

Z0(y) ∼ |y|−3/2e−
√
µ0|y| as |y| → +∞.

Similar to the discussion in previous section, such instability reflects in a careful choice of the initial data
to ensure a well-behaved solution. Therefore, we consider the associated linear Cauchy problem of the inner
problem (2.50) {

λ2φt = ∆yφ+ 3U2(y)φ+ h(y, t), in D2R,

φ(y, 0) = e0Z0(y), in B2R(0),
(2.63)

where R = R(t) = λ−β∗ (t) for β ∈ (0, 1/2). On the other hand, the parabolic operator −λ2∂t+L0 is certainly not
invertible since all the time independent elements in the 5 dimensional kernel of L0 (see (2.43)) also belong to
the kernel of −λ2∂t+L0. In order to construct solution to (2.63) with suitable space-time decay, we expect some
orthogonality conditions to hold. We shall construct a solution (φ, e0) to problem (2.63) under the orthogonality
conditions ˆ

B2R

h(y, t)Z`(y)dy = 0 for ` = 1, · · · , 5, t ∈ (0, T ). (2.64)

Define
‖h‖ν,2+a := sup

(y,t)∈D2R

λ−ν∗ (t)(1 + |y|2+a) [|h(y, t)|+ (1 + |y|)|∇h(y, t)|] . (2.65)
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The construction of such solution is achieved by decomposing the equation into different spherical harmonic
modes. Consider an orthonormal basis {Θi}∞i=0 made up of spherical harmonics in L2(S3), i.e.

∆S3Θi + λiΘi = 0 in S3

with 0 = λ0 < λ1 = · · · = λ4 = 3 < λ5 ≤ · · · . More precisely, Θ0(y) = a0, Θi(y) = a1yi, i = 1, · · · , 4 for two
constants a0, a1 and

λi = i(2 + i) with multiplicity
(3 + i)!

6i!
for i ≥ 0.

For h ∈ L2(D2R), we decompose

h(y, t) =

∞∑
j=0

hj(r, t)Θj(y/r), r = |y|, hj(r, t) =

ˆ
S3
h(rθ, t)Θj(θ)dθ

and write h = h0 + h1 + h⊥ with

h0 = h0(r, t), h1 =

4∑
j=1

hj(r, t)Θj , h
⊥ =

∞∑
j=5

hj(r, t)Θj .

Also, we decompose φ = φ0 + φ1 + φ⊥ in a similar form. Then looking for a solution to problem (2.63) is
equivalent to finding the pairs (φ0, h0), (φ1, h1), (φ⊥, h⊥) in each mode.

The key linear result for the inner problem is stated as follows.

Proposition 2.2. Let the constants a, ν, ν1 ∈ (0, 1), a1 ∈ (1, 2). For T > 0 sufficiently small and any h(y, t)
satisfying ‖h‖ν,2+a < +∞, ‖h1‖ν1,2+a1 < +∞ and the orthogonality conditions (2.64), there exists a pair (φ, e0)
solving (2.63), and (φ, e0) = (φ[h], e0[h]) defines a linear operator of h(y, t) that satisfies the estimates

|φ(y, t)|+ (1 + |y|)|∇φ(y, t)|

.
λν∗(t)R

δ

1 + |y|a
‖h0‖ν,2+a +

λν1∗ (t)

1 + |y|a1
‖h1‖ν1,2+a1 +

λν∗(t)

1 + |y|a
‖h⊥‖ν,2+a

and
|e0[h]| . ‖h‖ν,2+a

where 0 ≤ δ < 1 is small.

In the proof of Proposition 2.2, mode 0 and higher modes can be carried out in a similar manner as in [100,
Proposition 7.1] via a careful re-gluing process. The rougher version can be found in [17, Proposition 7.1]. Mode
1 is obainted by blow-up argument. The restriction a1 ∈ (1, 2) is required to guarantee the integrability in the
blow up argument at translation mode 1.

If we define the norm

‖φ0‖∗,ν,a,δ := sup
(y,t)∈D2R

λ−ν∗ (t)R−δ(1 + |y|a)
[
|φ0(y, t)|+ (1 + |y|)|∇φ0(y, t)|

]
, (2.66)

then Proposition 2.2 implies that
‖φ0‖∗,ν,a,δ . ‖h0‖ν,2+a.

We shall use the norm (2.66) when we solve the inner–outer gluing system.
The following spectrum gap plays a crucial role in the proof of the above Proposition, In fact, we have

Lemma 2.3. For all sufficiently large R and all radially symmetric ϕ ∈ H1
0 (BR) with

´
B2R

ϕZ0 = 0, there

exists a positive constant γ independent of R such that

ˆ
B2R

(
|∇ϕ|2 − pUp−1ϕ2

)
≥ γ



1

R2

ˆ
B2R

ϕ2, for n = 3,

1

R2 logR

ˆ
B2R

ϕ2, for n = 4,

1

Rn−2

ˆ
B2R

ϕ2, for n ≥ 5.
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Similar estimates for the linearization of harmonic map equation around degree 1 bubble are derived in [99,
Lemma 9.2].

• Solving the inner–outer gluing system.

Our aim now is to find a solution (φ, ψ, λ, ξ) to the inner–outer gluing system such that the desired blow-up
solution is constructed. We shall solve the inner–outer gluing system in the function space X defined in (2.97).
We first make some assumptions about the parameter functions. Write

λ∗(t) =
| log T |(T − t)
| log(T − t)|2

and assume that for some numbers c1, c2 > 0,

c1|λ̇∗(t)| ≤ |λ̇(t)| ≤ c2|λ̇∗(t)| for all t ∈ (0, T ).

For given ‖φ0‖∗,ν,a,δ, ‖φ1‖ν1,a1 , ‖φ⊥‖ν,a, ‖ψ‖∗, ‖Z∗‖∞, ‖λ‖F , ‖ξ‖G bounded, we first estimate right hand
sides G(φ, ψ, λ, ξ) and H(φ, ψ, λ, ξ) in the inner and outer problems. Here the above norms are defined in (2.66),
(2.65), (2.61), (2.95) and (2.96).

The outer problem: estimates of G.

Consider the outer problem
ψt = ∆ψ + G(φ, ψ, λ, ξ) in Ω× (0, T )

where
G(φ, ψ, λ, ξ) := 3λ−2(1− ηR)U2(y)(Ψ0 + ψ + Z∗)

+ λ−3
[
(∆yηR)φ+ 2∇yηR · ∇yφ− λ2φ∂tηR

]
+ (1− ηR)K[λ, ξ] + (1− ηR)N (w)

with K[λ, ξ] and N (w) defined in (2.49) and (2.52) respectively.
In order to apply the linear theory Proposition 2.1, we estimate all the terms in G(φ, ψ, λ, ξ) in the ‖·‖∗∗-norm,

defined in (2.60). Direct computations imply that for a fixed number ε0 > 0

‖G‖∗∗ . T ε0
(
‖ψ‖∗ + ‖Z∗‖∞ + ‖φ0‖∗,ν,a,δ + ‖φ1‖ν1,a1 + ‖φ⊥‖ν,a
+ ‖λ‖∞ + ‖ξ‖G + 1

) (2.67)

if the parameters are chosen in the following range

ν − 1 + β(2 + α)− ν2 > 0, 2β − ν2 > 0, 0 < α+ δ < a < 1,

β + υ − ν2 > 0, 2ν1 − ν + β(2a1 − α) > 0, ν2 < 1,

2ν − ν2 − 1 + 2αβ > 0, ν − β(α+ 2δ − 2a) > 0.

(2.68)

The inner problem: Estimate of H.

Consider the inner problem

λ2φt = ∆yφ+ 3U2(y)φ+H(φ, ψ, λ, ξ) in D2R

where
H(φ, ψ, λ, ξ)(y, t) := 3λU2(y)[Ψ0 + ψ + Z∗](λy + ξ, t)

+ λ
[
λ̇(∇yφ · y + φ) +∇yφ · ξ̇

]
+ λ3N (w) + λ3K[λ, ξ]

with N (w) and K[λ, ξ] defined in (2.52) and (2.49).
From the linear theory, we know that for H = H0 +H1 +H⊥ satisfying

‖H0‖ν,2+a, ‖H1‖ν1,2+a1 , ‖H⊥‖ν,2+a < +∞,
there exists a solution (φ0, φ1, φ⊥, c0, c`) (` = 1, · · · , 4) solving the projected inner problems{

λ2φ0
t = ∆yφ

0 + 3U2(y)φ0 +H0(φ, ψ, λ, ξ) + c0Z5 in D2R,

φ0(·, 0) = 0 in B2R,
(2.69)
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t = ∆yφ

1 + 3U2(y)φ1 +H1(φ, ψ, λ, ξ) +
4∑̀
=1

c`Z` in D2R,

φ1(·, 0) = 0 in B2R,

(2.70)

{
λ2φ⊥t = ∆yφ

⊥ + 3U2(y)φ⊥ +H⊥(φ, ψ, λ, ξ) in D2R,

φ⊥(·, 0) = 0 in B2R,
(2.71)

and the inner solution φ[H] = φ0[H0] + φ1[H1] + φ⊥[H⊥] with proper space-time decay can be obtained for the
inner–outer gluing to be carried out. We have the following estimate for some fixed ε0 > 0

‖H‖ν,2+a . T
ε0

(
‖φ0‖∗,ν,a,δ + ‖φ1‖ν1,a1 + ‖φ⊥‖ν,a + ‖ψ‖∗ + ‖Z∗‖∞

+ ‖λ‖∞ + ‖ξ‖G + 1

) (2.72)

provided

0 < ν < 1, 1− β(2 +
a

2
) > 0, 1 + ν1 − ν − β(2 + a− a1) > 0,

1− 2β > 0, ν − β(4− a) > 0, 2ν1 − ν > 0,

2− ν − aβ > 0, ν − β(a− 2α) > 0, 2− ν − β(1 + a) > 0,

1− β(δ + 2) > 0, ν − 2δβ > 0.

(2.73)

Similar computations give that for some fixed ε0 > 0

‖H1‖ν1,2+a1 . T
ε0
(
‖φ1‖ν1,a1 + ‖ψ‖∗ + ‖Z∗‖∞ + ‖λ‖∞ + ‖ξ‖G + 1

)
(2.74)

provided
0 < ν1 < 1, ν − ν1 + αβ > 0, 2− ν1 − a1β > 0,

2ν − ν1 + 2αβ − a1β > 0, 1− ν1 − β(a1 − 1) > 0.

• The parameter problems.

From (2.69)–(2.71), it remains to adjust the parameter functions λ(t), ξ(t) such that

c0[λ, ξ,Ψ∗] = 0, c`[λ, ξ,Ψ∗] = 0, ` = 1, · · · , 4, ∀ t ∈ (0, T ),

where

c0[λ, ξ,Ψ∗] = −
´
B2R
HZ5dy´

B2R
|Z5|2dy

, (2.75)

c`[λ, ξ,Ψ∗] = −
´
B2R
HZ`dy´

B2R
|Z`|2dy

for ` = 1, · · · , 4. (2.76)

It turns out that we can easily achieve at the translation mode (2.76), but the scaling mode (2.75) is more
delicate.

We first consider the reduced equation for ξ(t). Observe that (2.76) is equivalent toˆ
B2R

H(φ, ψ, λ, ξ)(y, t)Z`(y)dy = 0, for all t ∈ (0, T ), ` = 1, · · · , 4.

Write Ψ∗ = ψ + Z∗ and ξ(t) = (ξ1(t), · · · , ξ4(t)). Then for ` = 1, · · · , 4,ˆ
B2R

H(φ, ψ, λ, ξ)(y, t)Z`(y)dy = 0

give that
ξ̇` = b`[λ, ξ, φ,Ψ

∗], (2.77)

where

b`[λ, ξ, φ,Ψ
∗] =

ˆ
B2R

(
H[λ, ξ, φ,Ψ∗](y, t)− λUy`(y)ξ̇`

)
Z`(y)dy.

Furthermore, the size of b`[λ, ξ, φ,Ψ
∗] can be controlled by similarly estimating H. Next, we analyze the reduced

problem (2.77), which defines operators Ξ` (` = 1, · · · , 4) that return the solutions ξ` (` = 1, · · · , 4) respectively.
Here we write

Ξ = (Ξ1,Ξ2,Ξ3,Ξ4) (2.78)
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and ξ(t) = q + ξ1(t) where q = (q1, · · · , q4) is a prescribed point in Ω. We shall solve ξ1(t) under the norm

‖ξ‖G = ‖ξ‖L∞(0,T ) + sup
t∈(0,T )

λ−υ∗ (t)|ξ̇(t)|

for some fixed υ ∈ (0, 1). From (2.77), we have

|ξ`(t)| ≤ |q`|+ ‖b`[λ, ξ, φ,Ψ∗]‖L∞(0,T ) (T − t).
Therefore, we obtain

‖Ξ`‖G ≤ |q`|+ (T − t)−υ ‖b`[λ, ξ, φ,Ψ∗]‖L∞(0,T ) . (2.79)

Since the reduced problem of λ(t) is essentially the same as the real part of the reduced problem at mode 0
in [22], we shall follow the strategy and logic in [22, Section 8].

Direct computations show that (2.75) gives a non-local integro-differential equationˆ t

−T

λ̇(s)

t− s
Γ

(
λ2(t)

t− s

)
ds+ c0λ̇ = a[λ, ξ,Ψ∗](t) + ar[λ, ξ, φ,Ψ

∗](t), (2.80)

where c0 = 2α0

´
R4

Z5(y)
(1+|y|2)2 dy,

a[λ, ξ,Ψ∗] = −
ˆ
B2R

3U2(y) (Ψ0 + Ψ∗)Z5(y)dy, (2.81)

and the remainder term ar[λ, ξ, φ,Ψ
∗](t) turns out to be of smaller order and is controlled by

|ar[λ, ξ, φ,Ψ∗](t)|

. λν∗R
δ
(
|λ̇∗|| log(T − t)|+ |ξ̇|

)
‖φ0‖∗,ν,a,δ

+ λν∗

(
|λ̇∗|R2−a1 + |ξ̇|

)
‖φ1‖ν1,a1 + λν∗

(
|λ̇∗|R2−a + |ξ̇|R1−a

)
‖φ⊥‖ν,a

+ λ2ν−1
∗ R2δ‖φ0‖2∗,ν,a,δ + λ2ν1−1

∗ ‖φ1‖2ν1,a1
+ λ2ν−1
∗ R2−2a‖φ⊥‖2ν,a + λ∗|λ̇∗|2| log(T − t)|3 + λ∗| log(T − t)|‖Z∗‖2∞

+ λ∗(t)| log(T − t)|λ2ν−2
∗ (0)R−2α(0)| log T |2‖ψ‖2∗.

To solve λ(t), we introduce the following norms

• ‖ · ‖Θ,l-norm

‖f‖Θ,l := sup
t∈[0,T ]

| log(T − t)|l

(T − t)Θ
|f(t)|,

where f ∈ C([−T, T ];R) with f(T ) = 0, and Θ ∈ (0, 1), l ∈ R.
• [ · ]γ,m,l-seminorm

[g]γ,m,l := sup
IT

| log(T − t)|l

(T − t)m(t− s)γ
|g(t)− g(s)|,

where IT =
{
−T ≤ s ≤ t ≤ T : t− s ≤ 1

10 (T − t)
}
, g ∈ C([−T, T ];R) with g(T ) = 0 and 0 < γ < 1,

m > 0, l ∈ R.

Also, we define

B0[λ](t) :=

ˆ t

−T

λ̇(s)

t− s
Γ

(
λ2(t)

t− s

)
ds+ c0λ̇ (2.82)

and write

c0[H] =
B0[λ]− (a[λ, ξ,Ψ∗] + ar[λ, ξ, φ,Ψ

∗])´
B2R
|Z5(y)|2dy

. (2.83)

We invoke a key proposition proved in [22, Proposition 6.5] concerning the solvability of λ(t).

Proposition 2.3. Let ω,Θ ∈ (0, 1
2 ), γ ∈ (0, 1), m ≤ Θ − γ and l ∈ R. If a(t) satisfies a(T ) < 0 with

1/C ≤ |a(T )| ≤ C for some constant C > 1, and

TΘ| log T |1+c−l‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1 ≤ C1 (2.84)

for some c > 0, then there exist two operators P and R0 such that λ = P[a] : [−T, T ]→ R satisfies

B0[λ](t) = a(t) +R0[a](t) (2.85)
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with

|R0[a](t)| .
(
T

1
2

+c + TΘ log | log T |
| log T | ‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1

)
(T − t)m+(1+ω)γ

| log(T − t)|l .

When applying Proposition 2.3, the Hölder property is essentially inherited from regularity of the outer
solution, and this is one of the reasons that we work in the weighted space (2.61).

• The fixed point formulation.

We first transform the inner–outer problems (2.50), (2.53) into the problems of finding solutions (ψ, φ0, φ1, φ⊥, λ, ξ)
solving the following inner–outer gluing system

ψt = ∆ψ + G(φ0 + φ1 + φ⊥, ψ + Z∗, λ, ξ), in Ω× (0, T ),

ψ = 0, on ∂Ω× (0, T ),

ψ(x, 0) = 0, in Ω,

(2.86)

{
λ2φ0

t = ∆yφ
0 + 3U2(y)φ0 +H0(φ, ψ, λ, ξ) + c̃0[H0]Z5 in D2R,

φ0(·, 0) = 0 in B2R,
(2.87)λ2φ1

t = ∆yφ
1 + 3U2(y)φ1 +H1(φ, ψ, λ, ξ) +

4∑̀
=1

c`[H1]Z` in D2R,

φ1(·, 0) = 0 in B2R,

(2.88)

{
λ2φ⊥t = ∆yφ

⊥ + 3U2(y)φ⊥ +H⊥(φ, ψ, λ, ξ) + c0∗[λ, ξ,Ψ
∗]Z5 in D2R,

φ⊥(·, 0) = 0 in B2R,
(2.89)

c0[H](t)− c̃0[λ, ξ,Ψ∗](t) = 0 for all t ∈ (0, T ), (2.90)

c1[H](t) = 0 for all t ∈ (0, T ), (2.91)

where G is defined in (2.54), H0, H1, H⊥ are the projections of H (see (2.51)) on different modes. It is direct
to see that if (ψ, φ0, φ1, φ⊥, λ, ξ) satisfies the system (2.86)–(2.91), then

Ψ∗ = ψ + Z∗, φ = φ0 + φ1 + φ⊥

solve the inner–outer problems (2.50), (2.53) and thus the desired blow-up solution is obtained.
The inner–outer gluing system (2.86)–(2.91) can be then formulated as a fixed point problem for operators

we will describe below.
We first define the following function spaces

Xφ0 :=
{
φ0 ∈ L∞(D2R) : ∇yφ0 ∈ L∞(D2R), ‖φ0‖∗,ν,a,δ < +∞

}
,

Xφ1 :=
{
φ1 ∈ L∞(D2R) : ∇yφ1 ∈ L∞(D2R), ‖φ1‖ν1,a1 < +∞

}
,

Xφ⊥ :=
{
φ⊥ ∈ L∞(D2R) : ∇yφ⊥ ∈ L∞(D2R), ‖φ⊥‖ν,a < +∞

}
,

Xψ :=
{
ψ ∈ L∞(Ω× (0, T )) : ‖ψ‖∗ < +∞

}
.

(2.92)

In order to introduce the space for the parameter function λ(t), we recall from (2.82) that the integral
operator B0 takes the following approximate form

B0[λ] =

ˆ t−λ2
∗(t)

−T

λ̇(s)

t− s
ds+O(‖λ̇‖∞).

Proposition 2.3 defines an approximate inverse operator P of the integral operator B0 such that for a satisfying
(2.84), λ := P[a] satisfies

B0[λ] = a+R0[a] in [−T, T ],

where R0[a] is a small remainder. Also, the proof as in [22, Proposition 6.6] implies a refined decomposition

P[a] = λ0,κ + P1[a] (2.93)

with

λ0,κ := κ| log T |
ˆ T

t

1

| log(T − s)|2
ds, t ≤ T,

κ = κ[a] ∈ R, and the function λ1 = P1[a] satisfies

‖λ1‖∗,3−ι . | log T |1−ι log2(| log T |) (2.94)
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for 0 < ι < 1, where the ‖ · ‖∗,3−ι-norm is defined by

‖f‖∗,k := sup
t∈[−T,T ]

| log(T − t)|k|ḟ(t)|.

Therefore, we define
Xλ := {λ1 ∈ C1([−T, T ]) : λ1(T ) = 0, ‖λ1‖∗,3−ι <∞}.

Here by (κ, λ1) we represent λ in the form
λ = λ0,κ + λ1,

and from [22, Proposition 6.6], one can write the norm

‖λ‖F = |κ|+ ‖λ1‖∗,3−ι. (2.95)

For the translation parameter function ξ(t), we write ξ(t) = q+ ξ1(t) and define the following space for ξ1(t)

Xξ =
{
ξ ∈ C1((0, T );R4), ξ̇(T ) = 0, ‖ξ‖G < +∞

}
with

‖ξ‖G = ‖ξ‖L∞(0,T ) + sup
t∈(0,T )

λ−υ∗ (t)|ξ̇(t)| (2.96)

for some fixed υ ∈ (0, 1).
Define

X = Xφ0 ×Xφ1 ×Xφ⊥ ×Xψ × R×Xλ ×Xξ. (2.97)

We will solve the inner–outer gluing system in a closed ball B in which

(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1) ∈ X

satisfies 

‖φ0‖∗,ν,a,δ + ‖φ1‖ν1,a1 + ‖φ⊥‖ν,a ≤ 1

‖ψ‖∗ ≤ 1

|κ− κ0| ≤ | log T |−1/2

‖λ1‖∗,3−ι ≤ C| log T |1−ι log2(| log T |)
‖ξ‖G ≤ 1

(2.98)

for some large and fixed constant C, where κ0 = Z∗0 (0). The inner–outer gluing system (2.86)–(2.91) can be
formulated as the following fixed point problem. We define an operator F which returns the solution from B to
X

F : B ⊂ X → X
v 7→ F(v) = (Fφ0(v),Fφ1(v),Fφ⊥(v),Fψ(v),Fκ(v),Fλ1

(v),Fξ(v))

with
Fφ0(φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1) = T0(H0[λ, ξ,Ψ∗])

Fφ1(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1) = T1(H1[λ, ξ,Ψ∗])

Fφ⊥(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1) = T⊥

(
H⊥[λ, ξ,Ψ∗] + c0∗[λ, ξ,Ψ

∗]Z5

)
Fψ(φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1) = Tψ
(
G(φ0 + φ1 + φ⊥,Ψ∗, λ, ξ)

)
Fκ(φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1) = κ
[
a0[λ, ξ,Ψ∗]

]
Fλ1

(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1) = P1

[
a0[λ, ξ,Ψ∗]

]
Fξ(φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1) = Ξ(φ0, φ1, φ⊥, ψ, λ, ξ).

(2.99)

Here T0, T1 and T⊥ are the operators given in Proposition 2.2 which solve different modes of the inner problems
(2.87)–(2.89). The operator Tψ defined by Proposition 2.1 deals with the outer problem (2.86). Operators κ[a],
P1 and Ξ handle the equations for λ and ξ which are defined in Proposition 2.3, (2.93) and (2.78), respectively.

• Choices of constants.

We list all the constraints of the constants β, α, a, a1, ν, ν1, ν2, δ which are sufficient for the inner–outer
gluing scheme to work.

First, we indicate all the parameters used in different norms.

• R(t) = λ−β∗ (t) with β ∈ (0, 1/2).
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• The norm for φ0 solving mode 0 of the inner problem (2.87) is ‖ · ‖∗,ν,a,δ which is defined in (2.66),
where we require that ν, a ∈ (0, 1) and δ ≥ 0 small enough.

• The norm for φ1 solving modes 1 to 4 of the inner problem (2.88) is ‖ · ‖ν1,a1 which is defined in (2.65),
where we require that ν1 ∈ (0, 1) and a1 ∈ (1, 2).

• The norm for φ⊥ solving higher modes (j ≥ 5) of the inner problem (2.89) is ‖ · ‖ν,a which is defined in
(2.65), where ν, a ∈ (0, 1).

• The norm for ψ solving the outer problem (2.86) is ‖ · ‖∗ which is defined in (2.61), while the ‖ · ‖∗∗-
norm for the right hand side of the outer problem (2.86) is defined in (2.60). Here we require that
ν, α, ν2, γ ∈ (0, 1) .

• In Proposition 2.3, we have the parameters ω,Θ,m, l, γ. Here ω is the parameter used to describe the
remainder Rω and ω ∈ (0, 1/2). To apply Proposition 2.3 in our setting, we let

Θ = ν − 1 + αβ, m = ν − 2− γ + β(2 + α), l < 1 + 2m,

and require that β > 1−ω
2 such that m+ (1 + ω)γ > Θ is guaranteed.

In order to get the desired estimates for the outer problem (2.86), we need

ν − 1 + β(2 + α)− ν2 > 0, 2β − ν2 > 0, 0 < α < a < 1,

β + υ − ν2 > 0, 2ν1 − ν + β(2a1 − α) > 0, ν2 < 1,

2ν − ν2 − 1 + 2αβ > 0, ν − β(α+ 2δ − 2a) > 0.

In order to get the desired estimates for the inner problems at different modes (2.87)–(2.89), we require

0 < ν < 1, 1− β(2 +
a

2
) > 0, 1 + ν1 − ν − β(2 + a− a1) > 0,

1− 2β > 0, ν − β(4− a) > 0, 2ν1 − ν > 0,

2− ν − aβ > 0, ν − β(a− 2α) > 0, 2− ν − β(1 + a) > 0,

1− β(δ + 2) > 0, ν − 2δβ > 0,

0 < ν1 < 1, ν − ν1 + αβ > 0, 2− ν1 − a1β > 0,

2ν − ν1 + 2αβ − a1β > 0, 1− ν1 − β(a1 − 1) > 0.

It turns out that suitable choices of the parameters satisfying all the restrictions in this section can be found.
Here we give a specific example:

β ≈ 1

4
(β >

1

4
), α ≈ a ≈ a1 ≈ 1, ν ≈ ν1 ≈ 1, ν2 ≈ 0, δ ≈ 0.

• Proof of Theorem 2.
Consider the operator

F = (Fφ0 ,Fφ1 ,Fφ⊥ ,Fψ,Fκ,Fλ1 ,Fξ) (2.100)

given in (2.99). To prove Theorem 2, our strategy is to show the existence of a fixed point for the operator F in
B by the Schauder fixed point theorem, where the closed ball B is defined in (2.98). By collecting the estimates
(2.67), (2.72), (2.74), (2.79), (2.94), and using Proposition 2.1, Proposition 2.2, Proposition 2.3, we conclude
that for (φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1) ∈ B

‖Fφ0(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1)‖∗,ν,a,δ ≤ CT ε

‖Fφ1(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1)‖ν1,a1 ≤ CT ε

‖Fφ⊥(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1)‖ν,a ≤ CT ε

‖Fψ(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1)‖∗ ≤ CT ε∣∣Fκ(φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1)− κ0

∣∣ ≤ C| log T |−1

‖Fλ1
(φ0, φ1, φ⊥, ψ, κ, λ1, ξ

1)‖∗,3−ι ≤ C| log T |1−ι log2(| log T |)

‖Fξ(φ0, φ1, φ⊥, ψ, κ, λ1, ξ
1)‖G ≤ CT ε

(2.101)
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where C > 0 is a constant independent of T , and ε > 0 is a small fixed number. On the other hand, compactness
of the operator F defined in (2.100) can be proved by proper variants of (2.101). Therefore, the existence of
the desired blow-up solution for k = 1 is concluded from the Schauder fixed point theorem.

The proof of multi-bubble case follows similarly by taking the ansatz (2.39) with nonlocal corrections sup-
ported around each concentration zone added. �

3. Harmonic map heat flow and Landau-Lifshitz-Gilbert equation

In this section, we are going to revisit the finite-time singularity formation for the harmonic map heat flow
(HMF) and the Landau-Lifshitz-Gilbert equation (LLG). We now briefly introduce the models and background.

Let M be a m-dimensional Riemannian manifold of the metric g and S2 be the 2-sphere embedded in R3.
The Landau-Lifshitz-Gilbert equation (LLG) on M is given by{

ut = −au ∧ (u ∧∆Mu)− bu ∧∆Mu in M× (0, T )

u(·, 0) = u0 ∈ S2 in M,
(3.1)

where a2 + b2 = 1, a ≥ 0, b ∈ R, ∆Mu = 1√
g∂xβ (gαβ

√
g∂xαu) is the Laplace-Beltrami operator and u =

[u1, u2, u3]tr is a 3-vector with normalized length which is a mapping u(x, t) :M×(0, T )→ S2. First formulated
by Landau and Lifshitz [64] in 1935, LLG (3.1) is an important system modeling the effects of a magnetic
field on ferromagnetic materials in micromagnetics, and it describes the evolution of spin fields in continuum
ferromagnetism. See also Gilbert [45]. LLG (3.1) can be viewed as a bridge between the harmonic map flow
(HMF) when a = 1, b = 0 and the Schrödinger map flow (SMF) when a = 0, b = −1.

In the context of HMF, Struwe [89] proved the existence and uniqueness of weak solution with at most finitely
many singular points when M is a Riemann surface. See [37] for further generalizations and [11, 90] for higher
dimensional cases. Chang, Ding and Ye [9] first proved the existence of finite time blow-up solutions for HMF
from disk into S2. See also [10, 16, 33, 66, 80, 81, 93, 96] and the references therein. In [94], van den Berg,
Hulshof and King used formal analysis to predict the existence of blow-up solutions with quantized rates

λk(t) ∼ |T − t|k

| ln(T − t)|
2k

2k−1

, k ∈ N+ (3.2)

for the two-dimensional HMF into S2. For the case M = R2 and the target manifold is a revolution surface,
using degree 1 harmonic map Q1 as the building block, Raphaël and Schweyer [83, 84] constructed finite time
blow-up solutions with rates (3.2) for all k ≥ 1 in the equivariant class, where the initial data can be taken
arbitrarily close to Q1 in the energy-critical topology. For the case that M⊂ R2 is a general bounded domain,
Dávila, del Pino and Wei [22] constructed solutions which blow up at finite many points with the type II rate
(3.2) for k = 1, and they further investigated the stability and reverse bubbling phenomena. The construction
in [22] can be generalized to the case M = R2.

On the other hand, for SMF with M = R2, Merle, Raphaël and Rodnianski [73] constructed the finite time
blow-up solution with the rate (3.2) for k = 1 in the 1-equivariant class. Analogous to the results in Krieger-
Schlag-Tataru [59] for wave maps, Perelman [77] constructed finite time blow-up solutions with continuous rates.
See also [5, 6, 7, 8, 56] and the references therein for the global well-posedness results and the dynamics of SMF
near ground state.

For LLG, in the case M = R3, a > 0, Alouges and Soyeur [1] proved the existence of weak solutions for
(3.1) and constructed infinitely many weak solutions. The existence for the weak solution to LLG has been
established by Guo and Hong [46, Theorem 4.2] whenM is a closed Riemannian manifold with m ≥ 3, while for
the case that M is a closed Riemannian surface, the weak solution was shown to be unique and regular except
for at most finitely many points [46, Theorem 3.13]. WhenM = R2 and the target manifold is a smooth closed
surface embedded in R3, approximation by discretization was used in [58] to construct a solution of LLG which
is smooth away from a two-dimensional locally finite Hausdorff measure. In general, one cannot expect good
partial regularity results for weak solutions in the higher dimensional case m ≥ 3 without further regularity or
energy minimizing assumptions. See the famous example by Rivière [85], where weakly harmonic maps from

the ball B3 ⊂ R3 into S2 were constructed for which the singular set Sing u is the closed ball B3, and this
result can be generalized to higher dimensions. In a similar spirit to the existence results for partially regular
solution for HMF in higher dimensions of Chen and Struwe [11], Melcher [71] proved that forM = Rm (m = 3)
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there exists a global weak solution whose singular set has finite 3-dimensional parabolic Hausdorff measure.
Later, this result was generalized to m ≤ 4 by Wang [97]. With the additional stability assumption for the weak
solution, for m ≤ 4, Moser [76] proved better estimate for the singular set. The partial regularity of LLG (3.1)
for m ≥ 5 still remains open.

ForM = Rm, the global existence, uniqueness and decay properties for the solution of (3.1) were established
by Melcher [72] for m ≥ 3 with initial data u0 close to a fixed point in S2 in the Lm norm. Lin, Lai and
Wang [67] generalized the result to Morrey space and m ≥ 2. For u0 away from a fixed point in S2 with BMO
semi-norm sufficiently small, Gutiérrez and de Laire [50] proved the global existence, uniqueness and regularity
results for LLG.

The study of the dynamics for LLG with initial data close to harmonic maps is of special significance and can
provide hints on the mechanism of singularity formation. A series of works by Gustafson, Kang, Nakanishi and
Tsai [47, 48, 49] are devoted to the behavior of the solutions to LLG with M = R2 with initial data u0 close
to the harmonic map in the n-equivariant class. They found, among other things, that there is no finite time
blow-up for LLG and HMF with u0 close to n-equivariant harmonic maps for n ≥ 3 and n = 2, respectively.
See [49, Theorem 1.1], [49, Theorem 1.2].

The singularity formation for LLG is an important and challenging topic. For the case thatM is a compact
manifold with or without boundary in dimensions m = 3, 4, Ding and Wang [32] obtained the existence of a
smooth finite time blow-up solution for LLG. For M ⊂ R2, as an analogue of Qing [80] for HMF, Harpes [53]
gave descriptions of solutions to LLG (3.1) near the singular points. For the energy critical case that M is
a disk in R2, in an interesting paper [95], van den Berg and Williams predicted the existence of finite time
blow-up by formal asymptotic analysis supported with numerical simulations. ForM = R2, Xu and Zhao [101]
rigorously constructed a finite time blow-up solution to (3.1) in the 1-equivariant class.

One of the versatilities of the systematic gluing method is that it does not rely on any symmetry assumptions,
and thus the construction can be done in a general non-radially symmetric setting. Our main theorems for
multi-bubble blow-ups for HMF and LLG are given as below.

Theorem 3. Given points q = (q1, . . . , qk) ∈ Ωk and any sufficiently small T > 0, there exist u0 such the
solution uq(x, t) of problem

ut = ∆u+ |∇u|2u in Ω× (0, T ) (3.3)

u = [0, 0, 1]tr on ∂Ω× (0, T ) (3.4)

u(·, 0) = u0 in Ω (3.5)

blows-up at exactly those k points as t ↑ T . More precisely, there exist numbers κ∗i > 0, α∗i and a function
u∗ ∈ H1(Ω) ∩ C(Ω̄) such that

uq(x, t)− u∗(x)−
k∑
j=1

eJα
∗
i
[
W

(
x− qi
λi

)
−W (∞)

]
→ 0 as t→ T, (3.6)

in the H1 and uniform senses in Ω where

λi(t) = κ∗i
T − t

| log(T − t)|2
(
1 + o(1)

)
as t→ T. (3.7)

In particular, we have

|∇u(·, t)|2 ⇀ |∇u∗|2 + 8π

k∑
j=1

δqj as t→ T

as a weak-star convergence of Radon measure.

Remark 3.1. The same construction works for the Cauchy problem in the entire space R2 as well.

We consider the LLG equation with target manifold S2 and domainM = R2, and positive damping parameter
a > 0 {

ut = a(∆u+ |∇u|2u)− bu ∧∆u in R2 × (0, T ),

u(·, 0) = u0 ∈ S2 in R2.
(3.8)
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We are interested in the case of multiple bubbles to LLG (3.8) in the general non-radially symmetric setting.
Our construction is based on the following degree 1 profile

W (y) =
1

|y|2 + 1

 2y1

2y2

|y|2 − 1

 , y = (y1, y2) ∈ R2,

and clearly

QγW

(
x− ξ
λ

)
solves the stationary equation of LLG (3.8) for any ξ ∈ R2, λ > 0, and any γ-rotation matrix around z-axis

Qγ :=

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 .
Let us define U∞ = [0, 0, 1]tr, and U∞ = W (∞). Our main result is stated as follows.

Theorem 4. For any prescribed N distinct points q[j] ∈ R2, j = 1, 2, . . . , N , N ∈ Z+ and T sufficiently small,
there exists a smooth initial data u0 such that the gradient of the solution u to LLG (3.8) with a > 0 blows up
at these N points at finite time t = T . More precisely, the solution u takes the sharply scaled degree 1 profile
around each point q[j]

u(x, t) = −(N − 1)U∞ +

N∑
j=1

QγjW

(
x− ξ[j]

λj

)
+ Φper

with

λj(t) = κ∗jλ∗(t)(1 + o(1)), λ∗(t) =
| lnT |(T − t)
| ln(T − t)|2

, ξ[j](t) = q[j] + o(1), γj(t) = γ∗j (1 + o(1))

where o(1)→ 0 as t→ T ; κ∗j > 0, γ∗j ∈ R; the leading part of κ∗j is determined by ∇u0 and independent of a, b;
the leading part of γ∗j is determined by ∇u0 and a, b; ‖Φper‖L∞(R2×(0,T )) � 1, and λ∗(t)‖∇Φper(·, t)‖L∞(R2) .
λε∗(t) for ε > 0 small. Moreover,

u(x, t)− u∗(x)−
N∑
j=1

Qγj

[
W

(
x− ξ[j]

λj

)
−W (∞)

]
→ 0 as t→ T

in H1
loc(R2) ∩ L∞(R2) for some u∗(x) ∈ H1

loc(R2) ∩ L∞(R2), and in particular,

|∇u(·, t)|2 dx ⇀ |∇u∗|2 dx+ 8π

N∑
j=1

δq[j] as t→ T

as weak-star convergence of Radon measure.

Remark 3.2.

• The positivity of the damping term (a) plays a crucial role in our construction.
• In fact, due to the method employed, the construction works equally well for the case of smooth, bounded

domain Ω ⊂ R2 as long as the technical ingredient in [34] can be generalized to general domains with
proper boundary conditions.

3.1. Harmonic map heat flow. We sketch the construction of Theorem 7.

• The 1-corrotational harmonic maps and their linearized operator.
The harmonic map equation for functions U : R2 → S2 is the elliptic problem

∆U + |∇U |2U in R2, |U | = 1. (3.9)

For ξ ∈ R2, ω ∈ R, λ > 0, we consider the family of solutions of (3.9) given by the following 1-corrotational
harmonic maps

Uλ,ξ,ω(x) := QωW
(x− ξ

λ

)
,



28 J. WEI, Q. ZHANG, AND Y. ZHOU

where W is the canonical least energy harmonic map

W (y) =
1

1 + |y|2

(
2y

|y|2 − 1

)
, y ∈ R2,

and Qω is the ω-rotation matrix

Qω :=

cosω − sinω 0
sinω cosω 0

0 0 1

 .
The linearized operator for (3.9) around U = Uλ,ξ,ω is the elliptic operator

LU [ϕ] = ∆ϕ+ |∇U |2ϕ+ 2(∇ϕ · ∇U)U.

Differentiating U with respect to each of its parameters we obtain functions that annihilate this operator,
namely solutions of LU [ϕ] = 0. Setting y = x−ξ

λ , these functions are

∂λUλ,ξ,ω(x) =
1

λ
Qω∇W (y) · y,

∂ωUλ,ξ,ω(x) =(∂ωQω)W (y)

∂ξjUλ,ξ,ω(x) =
1

λ
Qω∂yjW (y).

We observe that

(∂ωQω) = QωJ0, J0 =

0 −1 0
1 0 0
0 0 0

 .
We can represent W (y) in polar coordinates,

W (y) =

(
eiθ sinw(ρ)

cosw(ρ)

)
, w(ρ) = π − 2 arctan(ρ), y = ρeiθ.

We notice that

wρ = − 2

1 + ρ2
, sinw = −ρwρ =

2ρ

1 + ρ2
, cosw =

ρ2 − 1

1 + ρ2
,

and derive the alternative expressions

∂λUλ,ξ,ω(x) =
1

λ
QωZ01(y), Z01(y) = ρwρ(ρ)E1(y)

∂ωUλ,ξ,ω(x) = QωZ02(y), Z02(y) = ρwρ(ρ)E2(y)

∂ξjUλ,ξ,ω(x) =
1

λ
QωZ11(y), Z11(y) = wρ(ρ) [cos θ E1(y) + sin θ E2(y)]

∂ξjUλ,ξ,ω(x) =
1

λ
QωZ12(y), Z12(y) = wρ(ρ) [sin θ E1(y)− cos θ E2(y)], (3.10)

where

E1(y) =

(
eiθ cosw(ρ)
− sinw(ρ)

)
, E2(y) =

(
ieiθ

0

)
.

The relation |Uλ,ξ,ω| = 1 implies that all the functions Zij are pointwise orthogonal to Uλ,ξ,ω. In fact the vectors
E1(y), E2(y) constitute an orthonormal basis of the tangent space to S2 at the point W (y).

We have LW [Zlj ] = 0 where for a function φ(y) we define

LW [φ] = ∆yφ+ |∇W (y)|2φ+ 2(∇W (y) · ∇φ)W (y).

In addition to the elements (3.10) in the kernel of LW there are also two other relevant functions in the kernel,
namely

Z−1,1 = ρ2wρ(ρ)(cos θE1 − sin θE2)

Z−1,2 = ρ2wρ(ρ)(sin θE1 + cos θE2). (3.11)

It is worth noticing the connection between this operator and LU which is given by

LU [ϕ] =
1

λ2
QωLW [φ], ϕ(x) = φ(y), y =

x− ξ
λ

.
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• The linearized operator at functions orthogonal to U . It will be especially significant to compute the
action of LU on functions with values pointwise orthogonal to U . In what remains of this section we will derive
various formulas that will be very useful later on.

For an arbitrary function Φ(x) with values in R3 we denote

ΠU⊥Φ := Φ− (Φ · U)U

A direct computation shows the validity following:

LU [ΠU⊥Φ] = ΠU⊥∆Φ + L̃U [Φ]

where
L̃U [Φ] := |∇U |2ΠU⊥Φ− 2∇(Φ · U)∇U,

and
∇(Φ · U)∇U = ∂xj (Φ · U) ∂xjU.

A very convenient expression for L̃U [Φ] is obtained if we use polar coordinates. Writing in complex notation

Φ(x) = Φ(r, θ), x = ξ + reiθ,

we find

L̃U [Φ] = − 2

λ
wρ(ρ) [(Φr · U)QωE1 −

1

r
(Φθ · U)QωE2], ρ =

r

λ
. (3.12)

We single out two consequences of formula (3.12) which will be crucial for later purposes. Let us assume
that Φ(x) is a C1 function Φ : Ω→ C× R, which we express in the form

Φ(x) =

(
ϕ1(x) + iϕ2(x)

ϕ3(x)

)
. (3.13)

We also denote
ϕ = ϕ1 + iϕ2, ϕ̄ = ϕ1 − iϕ2

and define the operators
divϕ = ∂x1

ϕ1 + ∂x2
ϕ2, curlϕ = ∂x1

ϕ2 − ∂x2
ϕ1.

We have the validity of the following formula

L̃U [Φ] = L̃U [Φ]0 + L̃U [Φ]1 + L̃U [Φ]2 , (3.14)

where 

L̃U [Φ]0 = λ−1ρw2
ρ

[
div(e−iωϕ)QωE1 + curl(e−iωϕ)QωE2

]
L̃U [Φ]1 = − 2λ−1wρ cosw

[
(∂x1

ϕ3) cos θ + (∂x2
ϕ3) sin θ

]
QωE1

− 2λ−1wρ cosw
[

(∂x1ϕ3) sin θ − (∂x2ϕ3) cos θ
]
QωE2 ,

L̃U [Φ]2 = λ−1ρw2
ρ

[
div(eiωϕ̄) cos 2θ − curl(eiωϕ̄) sin 2θ

]
QωE1

+ λ−1ρw2
ρ

[
div(eiωϕ̄) sin 2θ + curl(eiωϕ̄) cos 2θ

]
QωE2.

(3.15)

Another corollary of formula (3.12) that we single out is the following: assume that

Φ(x) =

(
φ(r)eiθ

0

)
, x = ξ + reiθ, ρ =

r

λ

where φ(r) is complex valued. Then

L̃U [Φ] =
2

λ
wρ(ρ)2

[
Re (e−iω∂rφ(r))QωE1 +

1

r
Im (e−iωφ(r))QωE2

]
. (3.16)

A final result in this section is a computation (in polar coordinates) of the operator LU acting on a function
of the form

Φ(x) = ϕ1(ρ, θ)QωE1 + ϕ2(ρ, θ)QωE2, x = ξ + λρeiθ.
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We have:

LU [Φ] = λ−2

(
∂2
ρϕ1 +

∂ρϕ1

ρ
+
∂2
θϕ1

ρ2
+ (2w2

ρ −
1

ρ2
)ϕ1 −

2

ρ2
∂θϕ2 cosw

)
QωE1

+ λ−2

(
∂2
ρϕ2 +

∂ρϕ2

ρ
+
∂2
θϕ2

ρ2
+ (2w2

ρ −
1

ρ2
)ϕ2 +

2

ρ2
∂θϕ1 cosw

)
QωE2.

• The ansatz for a blowing-up solution.
In what follows we shall closely follow notation and computational formulas derived in the previous sections,

here applied in a time-dependent framework. Thus we consider the semilinear parabolic equation

ut = ∆u+ |∇u|2u in Ω× (0, T ) (3.17)

u = u∂Ω on ∂Ω× (0, T ) (3.18)

u(·, 0) = u0 in Ω (3.19)

for a function u : Ω̄× [0, T )→ S2. Here u0 : Ω̄→ S2 is a given smooth map and

u∂Ω = u0

∣∣
∂Ω
≡ e3 on ∂Ω. (3.20)

Here and in what follows we denote

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 . (3.21)

The constant boundary value e3 precisely corresponds to W (∞) where W is the standard degree 1 harmonic
map. This choice of u∂Ω as a constant is made for convenience, in fact sufficiently small non-constant pertur-
bations of it are also admissible in all arguments below.

In order to keep the notation to a minimum, we shall do this in the case k = 1 of a single bubbling point.
We will later indicate the necessary changes in the general case. Given a fixed point q ∈ Ω, and any sufficiently
small number T > 0 we look for a solution u(x, t) of problem (3.17)-(3.19) which at main order looks like

U(x, t) := Uλ(t),ξ(t),ω(t)(x) = Qω(t)W
(x− ξ(t)

λ(t)

)
for certain functions ξ(t), λ(t) and ω(t) of class C1([0, T ]) such that

ξ(T ) = q, λ(T ) = 0,

so that u(x, t) blows-up at time T and the point q. We shall find values for these functions so that for a small
remainder v(x, t) we have that u = U + v solves (3.17)-(3.19) for u0(x) = U(x, 0) + v(x, 0). Let us denote

S(u) := −ut + ∆u+ |∇u|2u
A useful observation that we make is that as long as the constraint |u| = 1 is kept at all times and u = U + v
with |v| ≤ 1

2 uniformly, then for u to solve equation (3.17) it suffices that

S(U + v) = b(x, t)U (3.22)

for some scalar function b. Indeed, we observe that since |u| ≡ 1 we have

b (U · u) = S(u) · u = −1

2

d

dt
|u|2 +

1

2
∆|u|2 = 0,

and since U · u ≥ 1
2 , we find that b ≡ 0.

We can parametrize all small functions v(x, t) such that |U + v| = 1 in the form

v = ΠU⊥ϕ+ a(ΠU⊥ϕ)U, (3.23)

where ϕ is an arbitrary small function with values into R3, and

ΠU⊥ϕ := ϕ− (ϕ · U)U, a(ζ) :=
√

1− |ζ|2 − 1.

Using that
∆U + |∇U |2U = 0

we find the following expansion for S(U + v) with v given by (3.23):

S(U + ΠU⊥ϕ+ aU) = −Ut − ∂tΠU⊥ϕ+ LU (ΠU⊥ϕ) +NU (ΠU⊥ϕ) + c(ΠU⊥ϕ)U
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where for ζ = ΠU⊥ϕ, a = a(ζ),

LU (ζ) = ∆ζ + |∇U |2ζ + 2(∇U · ζ)U

NU (ζ) =
[
2∇(aU) · ∇(U + ζ) + 2∇U · ∇ζ + |∇ζ|2 + |∇(aU)|2

]
ζ − aUt

+ 2∇a∇U,
c(ζ) = ∆a− at + (|∇(U + ζ + aU)|2 − |∇U |2)(1 + a)− 2∇U · ∇ζ

Since we just need to have an equation of the form (3.22) satisfied, we find that

u = U + ΠU⊥ϕ+ a(ΠU⊥ϕ)U

solves (3.17) if and only if ϕ satisfies

0 = −Ut − ∂tΠU⊥ϕ+ LU (ΠU⊥ϕ) +NU (ΠU⊥ϕ) + b(x, t)U, (3.24)

for some scalar function b. The logic of the construction goes like this: We decompose ϕ into the sum of two
functions ϕ = ϕi +ϕo, the “inner” and “outer” solutions and reduce equation (3.24) to solving a system of two
equations in (ϕi, ϕo) that we call the inner and outer problems.

The inner function ϕi(x, t) will be assumed supported only near x = ξ(t) and better read as a function of

the scaled space variable y = x−ξ(t)
λ(t) with zero initial condition and such that ϕi · U = 0, so that ΠU⊥ϕ

i = ϕi.

The outer function ϕo(x, t) will be made out of several pieces and its role is essentially to satisfy (3.24) far away
from the concentration point x = ξ(t).

We write equation (3.24) in the following way:

0 = −∂tϕi + LU [ϕi] + L̃U [ϕo]−ΠU⊥ [∂tϕ
o −∆ϕo + Ut] (3.25)

+NU (ϕi + ΠU⊥ϕ
o) + (ϕo · U)Ut + bU.

For the outer problem, we consider a function Φ0 that depends explicitly on the parameter functions chosen in
such a way that ΠU⊥ [∂tΦ

0 −∆Φ0 +Ut] gets concentrated near x = ξ(t) by elimination of the terms in the first
error Ut associated to dilation and rotation. Then we write

ϕo(x, t) = Φ0(x, t) + Ψ∗(x, t). (3.26)

For the inner solution, we consider a smooth smooth cut-off function η0(s) with η0(s) = 1 for s < 1 and = 0 for
s > 3

2 . We also consider a positive, large smooth function R(t)→ +∞ as t→ T that we will later specify. We
define

η(x, t) := η0

(
R(t)−1|y|

)
, y =

x− ξ(t)
λ(t)

and let

ϕi(x, t) = η(x, t)Qωφ(y, t), y =
x− ξ(t)
λ(t)

for a function φ(y, t) with initial condition φ(·, 0) = 0 that satisfies φ(·, t) ·W ≡ 0, defined for |y| ≤ 2R(t) and
that vanishes as t→ T . Then we have

Q−ωLU [ϕi] = λ−2ηLW [φ] + (∆xη)φ+ 2λ−1∇xη∇yφ

Q−ωϕ
i
t = η

(
φt − λ−1λ̇y · ∇yφ− λ−1ξ̇ · ∇yφ+ ω̇Q−ω∂ωQωφ

)
+ ηtφ.

Equation (3.25) then becomes

0 = λ−2ηQω[−λ2φt + LW [φ] + λ2Q−ωL̃U [Ψ∗]] (3.27)

+ ηQω(λ−1λ̇y · ∇yφ+ λ−1ξ̇ · ∇yφ− ω̇Jφ)

+ L̃U [Φ0] + ΠU⊥ [∂tΦ
0 −∆xΦ0 + Ut]

− ∂tΨ∗ + ∆Ψ∗ + (1− η)L̃U [Ψ∗] +Qω[(∆xη)φ+ 2∇xη∇xφ− ηtφ]

+NU (ηQωφ+ ΠU⊥(Φ0 + Ψ∗)) + ((Ψ∗ + Φ0) · U)Ut + bU.

Next we will define precisely the operator Φ0 and estimate the quantity

L̃U [Φ0] + ΠU⊥ [∂tΦ
0 −∆xΦ0 + Ut]. (3.28)

The idea is to choose Φ0 such that ∂tΦ
0 −∆xΦ0 + Ut ≈ 0 whenever |x− ξ| � λ, so that in particular the last

error term in the outer equation (3.26) is of smaller order.
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Invoking formulas (3.10) to compute Ut we get

Ut = λ̇∂λUλ,ξ,ω + ω̇∂ωUλ,ξ,ω + ∂ξUλ,ξ,ω · ξ̇ = E0 + E1,

where, setting y = x−ξ
λ = ρeiθ, we have

E0(x, t) = −Qω[
λ̇

λ
ρwρ(ρ)E1(y) + ω̇ρwρ(ρ)E2(y) ]

E1(x, t) = − ξ̇1
λ
wρ(ρ)Qω[ cos θ E1(y) + sin θ E2(y)]

− ξ̇2
λ
wρ(ρ)Qω[sin θ E1(y)− cos θ E2(y) ].

Since E1 has faster space decay in ρ than E0 we will choose Φ0 to be an approximate solution of

Φ0
t −∆xΦ0 + E0 = 0. (3.29)

For x = ξ + reiθ and r � λ we have

E0(x, t) = − 2r

r2 + λ2

[
λ̇QωE1 + λω̇QωE2

]
≈ − 2r

r2 + λ2

[
(λ̇+ iλω̇)ei(θ+ω)

0

]
.

Here and in what follows we let

p(t) = λ(t)eiω(t).

Then

− 2r

r2 + λ2

[
(λ̇+ iλω̇)ei(θ+ω)

0

]
= − 2r

r2 + λ2

[
ṗ(t)eiθ

0

]
=: Ẽ0(x, t).

With the aid of Duhamel’s formula for the standard heat equation, we find that the following function is a good
approximate solution of Φ0

t −∆xΦ0 + Ẽ0 = 0 and hence of (3.29). We define

Φ0[ω, λ, ξ] :=

[
ϕ0(r, t)eiθ

0

]
ϕ0(r, t) = −

ˆ t

−T
ṗ(s)rk(z(r), t− s) ds

z(r) =
√
r2 + λ2, k(z, t) = 2

1− e− z
2

4t

z2
,

where for technical reasons that will be made clear later on, p(t) is also assumed to be defined for negative
values of t.

A direct computations yields

Φ0
t + ∆xΦ0 + Ẽ0 = R̃0 + R̃1, R̃0 =

(
R0

0

)
, R̃1 =

(
R1

0

)
where

R0 := −reiθ λ
2

z4

ˆ t

−T
ṗ(s)(zkz − z2kzz)(z(r), t− s) ds

and

R1 := −eiθRe (e−iθ ξ̇(t))

ˆ t

−T
ṗ(s) k(z(r), t− s) ds

+
r

z2
eiθ (λλ̇(t)− Re (reiθ ξ̇(t)))

ˆ t

−T
ṗ(s) zkz(z(r), t− s) ds.

We observe that R1 is actually a term of smaller order. Using formulas (3.14), (3.16) and the facts

λ2r

z4
=

1

4λ
ρw2

ρ,
r

z2
(1− cosw) =

1

2λ
ρw2

ρ,
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we derive an expression for the quantity (3.28):

L̃U [Φ0] + ΠU⊥ [−Ut + ∆Φ0 − Φ0
t ]

= L̃U [Φ0]− E1 + ΠU⊥ [Ẽ0]− E0 + ΠU⊥ [R̃0] + ΠU⊥ [R̃1]

= K0[p, ξ] +K1[p, ξ] + ΠU⊥ [R̃1]

where

K0[p, ξ] = K01[p, ξ] +K02[p, ξ]

with

K01[p, ξ] := − 2

λ
ρw2

ρ

ˆ t

−T

[
Re (ṗ(s)e−iω(t))QωE1 + Im (ṗ(s)e−iω(t))QωE2

]
·k(z, t− s) ds (3.30)

K02[p, ξ] :=
1

λ
ρw2

ρ

[
λ̇−
ˆ t

−T
Re (ṗ(s)e−iω(t))rkz(z, t− s)zr ds

]
QωE1

− 1

4λ
ρw2

ρ cosw

[ˆ t

−T
Re (ṗ(s)e−iω(t)) (zkz − z2kzz)(z, t− s) ds

]
QωE1

− 1

4λ
ρw2

ρ

[ˆ t

−T
Im (ṗ(s)e−iω(t)) (zkz − z2kzz)(z, t− s) ds

]
QωE2, (3.31)

K1[p, ξ] :=
1

λ
wρ
[
<
(
(ξ̇1 − iξ̇2)eiθ

)
QωE1 + =

(
(ξ̇1 − iξ̇2)eiθ

)
QωE2

]
. (3.32)

We insert this decomposition in equation (3.27) and see that we will have a solution to the equation if the pair
(φ,Ψ∗) solves the inner-outer gluing system

λ2φt = LW [φ] + λ2Q−ω

[
L̃U [Ψ∗] +K0[p, ξ] +K1[p, ξ]

]
in D2R

φ ·W = 0 in D2R

φ(·, 0) = 0 = φ(·, T ),

(3.33)

Ψ∗t = ∆xΨ∗ + g[p, ξ,Ψ∗, φ] in Ω× (0, T ) (3.34)

where

g[p, ξ,Ψ∗, φ] := (1− η)L̃U [Ψ∗] + (Ψ∗ · U)Ut (3.35)

+Qω
(
(∆xη)φ+ 2∇xη∇xφ− ηtφ

)
+ ηQω

(
−ω̇Jφ+ λ−1λ̇y · ∇yφ+ λ−1ξ̇ · ∇yφ

)
+ (1− η)[K0[p, ξ] +K1[p, ξ]] + ΠU⊥ [R̃1] + (Φ0 · U)Ut

+NU (ηQωφ+ ΠU⊥(Φ0 + Ψ∗)),

and we denote
DγR = {(y, t) ∈ R2 × (0, T ) / |y| < γR(t)}.

Indeed if (φ,Ψ∗) solves this system, then we have that

u(x, t) = U + ΠU⊥ [Φ0 + Ψ∗ + ηQωφ] + a(ΠU⊥ [Φ0 + Ψ∗ + ηQωφ])U (3.36)

solves equation (3.17). The boundary condition (3.20) u = e3 amounts to

ΠU⊥ [Φ0 + Ψ∗] + a(ΠU⊥ [U + Φ0 + Ψ∗])U = (e3 − U)

and then it suffices that we take the boundary condition for (3.34)

Ψ∗
∣∣
∂Ω

= e3 − U − Φ0. (3.37)

Since we want that u(x, t) be a small perturbation of U(x, t) when we stand close to (q, T ), it is natural to
require that Ψ∗ satisfies the final condition

Ψ∗
(
q, T ) = 0.
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This constraint amounts to three Lagrange multipliers when we solve the problem, which we choose to put in
the initial condition. Then we assume

Ψ∗
(
x, 0) = Z∗0 (x) + c1e1 + c2e2 + c3e3,

where c1, c2, c3 are undetermined constants and Z∗0 (x) is a small function for which specific assumptions will
later be made.

• The reduced equations. In this section we will informally discuss the procedure to achieve our purpose in
particular deriving the order of vanishing of the scaling parameter λ(t) as t→ T .

The main term that couples equations (3.33) and (3.34) inside the second equation is the linear expression

Qω[(∆xη)φ+ 2∇xη∇xφ+ ηtφ],

which is supported in |y| = O(R). This motivates the fact that we want φ to exhibit some type of space decay
in |y| since in that way Ψ∗ will eventually be smaller and in turn that would make the two equations at main
order uncoupled. Equation (3.33) has the form

λ2φt = LW [φ] + h[p, ξ,Ψ∗](y, t) in D2R

φ ·W = 0 in D2R

φ(·, 0) = 0 in B2R(0),

where, for convenience we assume that h(y, t) is defined for all y ∈ R2 extending outside D2R as

h[p, ξ,Ψ∗] = λ2Q−ωL̃U [Ψ∗]χD2R
+ λ2Q−ωK0[p, ξ] + λ2Q−ωK1[p, ξ]χD2R

, (3.38)

where χA designates characteristic function of a set A, K0 is defined in (3.30), (3.31) and K1 in (3.32). If λ(t)
has a relatively smooth vanishing as t → T it seems natural that the term λ2φt be of smaller order and then
the equation is approximately represented by the elliptic problem

LW [φ] + h[p, ξ,Ψ∗] = 0, φ ·W = 0 in R2. (3.39)

Let us consider the decaying functions Zlj(y) defined in formula (3.10), which satisfy LW [Zlj ] = 0. If φ(y, t)
is a solution of (3.39) with sufficient decay, then necessarilyˆ

R2

h[p, ξ,Ψ∗](y, t) · Zlj(y) dy = 0 for all t ∈ (0, T ), (3.40)

for l = 0, 1, j = 1, 2. These relations amount to an integro-differential system of equations for p(t), ξ(t), which,
as a matter of fact, detemine the correct values of the parameters so that the solution (φ,Ψ∗) with appropriate
asymptotics exists.

We derive next useful expressions for relations (3.40). Let us first compute the quantities

B0j [p](t) :=
λ

2π

ˆ
R2

Q−ω[K0[p, ξ] +K1[p, ξ]] · Z0j(y) dy. (3.41)

Using (3.30), (3.31) the following expressions for B01, B02 are readily obtained:

B01[p](t) =

ˆ t

−T
Re (ṗ(s)e−iω(t)) Γ1

(
λ(t)2

t− s

)
ds

t− s
− 2λ̇(t)

B02[p](t) =

ˆ t

−T
Im (ṗ(s)e−iω(t)) Γ2

(
λ(t)2

t− s

)
ds

t− s
where Γj(τ), j = 1, 2 are the smooth functions defined as follows:

Γ1(τ) = −
ˆ ∞

0

ρ3w3
ρ

[
K(ζ) + 2ζKζ(ζ)

ρ2

1 + ρ2
− 4 cos(w)ζ2Kζζ(ζ)

]
ζ=τ(1+ρ2)

dρ

Γ2(τ) = −
ˆ ∞

0

ρ3w3
ρ

[
K(ζ)− ζ2Kζζ(ζ)

]
ζ=τ(1+ρ2)

dρ

where

K(ζ) = 2
1− e−

ζ
4

ζ
,
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and we have used that
´∞

0
ρ3w3

ρdρ = −2. Using these expressions we find that

|Γl(τ)− 1| ≤ Cτ(1 + | log τ |) for τ < 1, (3.42)

|Γl(τ)| ≤ C

τ
for τ > 1.

Let us define

B0[p] :=
1

2
eiω(t) (B01[p] + iB02[p]) (3.43)

and

a0j [p, ξ,Ψ
∗] := − λ

2π

ˆ
B2R

Q−ωL̃U [Ψ∗] · Z0j(y) dy

a0[p, ξ,Ψ∗] :=
1

2
eiω(t) (a01[p, ξ,Ψ∗] + ia02[p, ξ,Ψ∗]) . (3.44)

Similarly, we let

B1j [ξ](t) :=
λ

2π

ˆ
R2

Q−ω[K0[p, ξ] +K1[p, ξ]] · Z1j(y) dy,

B1[ξ](t) := B11[ξ](t) + iB12[ξ](t).

Using (3.32), (3.10) and the fact that
´∞

0
ρw2

ρdρ = 2 we get

B1[ξ](t) = 2[ ξ̇1(t) + iξ̇2(t) ].

At last, we set

a1j [p, ξ,Ψ
∗] :=

λ

2π

ˆ
B2R

Q−ωL̃U [Ψ∗] · Z1j(y) dy

a1[p, ξ,Ψ∗] := −eiω(t)(a11[p, ξ,Ψ∗] + ia12[p, ξ,Ψ∗]).

We get that the four conditions (3.40) reduce to the system of two complex equations

B0[p] = a0[p, ξ,Ψ∗], (3.45)

B1[ξ] = a1[p, ξ,Ψ∗]. (3.46)

At this point we will make some preliminary considerations on this system that will allow us to find a first
guess of the parameters p(t) and ξ(t). First, we observe that

B0[p] =

ˆ t−λ2

−T

ṗ(s)

t− s
ds +O

(
‖ṗ‖∞

)
.

To get an approximation for a0, we analyze the operator L̃U in a0. For this let us write

Ψ∗ =

[
ψ∗

ψ∗3

]
, ψ∗ = ψ∗1 + iψ∗2 .

From formula (3.14) we find that

L̃U [Ψ∗](y) = [L̃U ]0[Ψ∗] + [L̃U ]1[Ψ∗] + [L̃U ]2[Ψ∗],

where

λQ−ω[L̃U ]0[Ψ∗] = ρw2
ρ

[
div(e−iωψ∗)E1 + curl(e−iωψ∗)E2

]
λQ−ω[L̃U ]1[Ψ∗] = − 2wρ cosw

[
(∂x1ψ

∗
3) cos θ + (∂x2ψ

∗
3) sin θ

]
E1

− 2wρ cosw
[

(∂x1ψ
∗
3) sin θ − (∂x2ψ

∗
3) cos θ

]
E2 ,

λQ−ω[L̃U ]2[Ψ∗] = ρw2
ρ

[
div(eiωψ̄∗) cos 2θ − curl(eiωψ̄∗) sin 2θ

]
E1

+ ρw2
ρ

[
div(eiωψ̄∗) sin 2θ + curl(eiωψ̄∗) cos 2θ

]
E2,

and the differential operators in Ψ∗ on the right hand sides are evaluated at (x, t) with x = ξ(t)+λ(t)y, y = ρeiθ

while El = El(y), l = 1, 2.

From the above decomposition, assuming that Ψ∗ is of class C1 in space variable, we find that

a0[p, ξ,Ψ∗] = [divψ∗ + i curlψ∗](ξ, t) + o(1),
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where o(1)→ 0 as t→ T .
Similarly, we have that

a1(p, ξ) = 2(∂x1ψ
∗
3 + i∂x2ψ

∗
3)(ξ, t)

ˆ ∞
0

cosww2
ρρ dρ+ o(1)

= o(1) as t→ T,

since
´∞

0
w2
ρ coswρdρ = 0.

Let us discuss informally how to handle (3.45)-(3.46). For this we simplify this system in the form
ˆ t−λ2

−T

ṗ(s)

t− s
ds = [divψ∗ + i curlψ∗](ξ(t), t) + o(1) +O(‖ṗ‖∞)

ξ̇(t) = o(1) as t→ T. (3.47)

We assume for the moment that the function Ψ∗(x, t) is fixed, sufficiently regular, and we regard T as a
parameter that will always be taken smaller if necessary. We recall that we want ξ(T ) = q where q ∈ Ω is given,
and λ(T ) = 0. Equation (3.47) immediately suggests us to take ξ(t) ≡ q as a first approximation. Neglecting
lower order terms, we arrive at the “clean” equation for p(t) = λ(t)eiω(t),

ˆ t−λ(t)2

−T

ṗ(s)

t− s
ds = divψ∗(q, 0) + i curlψ∗(q, 0) =: a∗0 (3.48)

At this point we make the following assumption:

divψ∗(q, 0) < 0. (3.49)

This implies that a∗0 = −|a∗0|eiω0 for a unique ω0 ∈ (−π2 ,
π
2 ). Let us take ω(t) ≡ ω0. Then equation (3.48)

becomes ˆ t−λ2

−T

λ̇(s)

t− s
ds = −|a∗0|. (3.50)

We claim that a good approximate solution of (3.50) as t→ T is given by

λ̇(t) = − κ

log2(T − t)
for a suitable κ > 0. In fact, substituting, we haveˆ t−λ2

−T

λ̇(s)

t− s
ds =

ˆ t−(T−t)

−T

λ̇(s)

t− s
ds+ λ̇(t) [log(T − t)− 2 log(λ(t))]

+

ˆ t−λ(t)2

t−(T−t)

λ̇(s)− λ̇(t)

t− s
ds

≈
ˆ t

−T

λ̇(s)

T − s
ds − λ̇(t) log(T − t) =: β(t) (3.51)

as t→ T . We see that

log(T − t)dβ
dt

(t) =
d

dt
(log2(T − t) λ̇(t)) = 0

from the explicit form of λ̇(t). Hence β(t) is constant. As a conclusion, equation (3.50) is approximately satisfied
if κ is such that

κ

ˆ T

−T

λ̇(s)

T − s
= −|a∗0|.

And this finally gives us the approximate expression

λ̇(t) = −|divψ∗(q, 0) + i curlψ∗(q, 0)| λ̇∗(t),
where

λ̇∗(t) = − | log T |
log2(T − t)

.
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Naturally imposing λ∗(T ) = 0 we then have

λ∗(t) =
| log T |

log2(T − t)
(T − t) (1 + o(1)) as t→ T.

• Solving the inner-outer gluing system.
Our purpose is to determine, for a given q ∈ Ω and a sufficiently small T > 0, a solution (φ,Ψ∗) of system

(3.33)-(3.34) with a boundary condition of the form (3.37) such that u(x, t) given by (3.36) blows up with
U(x, t) as its main order profile. This will only be possible for adequate choices of the parameter functions ξ(t)
and p(t) = λ(t)eiω(t). These functions will eventually be found by fixed point arguments, but a priori we need
to make some assumptions regarding their behavior. For some positive numbers a1, a2, σ independent of T we
will assume that

a1|λ̇∗(t)| ≤ |ṗ(t)| ≤ a2|λ̇∗(t)| for all t ∈ (0, T ), (3.52)

|ξ̇(t)| ≤ λ∗(t)σ for all t ∈ (0, T ). (3.53)

We also take

R(t) = λ∗(t)
−β , (3.54)

where β ∈ (0, 1
2 ).

To solve the outer equation (3.34) we will decompose Ψ∗ in the form

Ψ∗ = Z∗ + ψ

where we let Z∗ : Ω× (0,∞)→ R3 satisfy
Z∗t = ∆Z∗ in Ω× (0,∞),

Z∗(·, t) = 0 in ∂Ω× (0,∞),

Z∗(·, 0) = Z∗0 in Ω,

(3.55)

with Z∗0 (x) a function satisfying certain conditions to be described below. Since we would like that u(x, t) given
by (3.36) has a blow-up behavior given at main order by that of U(x, t), we will require

Ψ∗(q, T ) = 0.

This constraint has three parameters. Therefore we need three “Lagrange multipliers” which we include in the
initial datum.
• Assumptions on Z∗0 .

To describe the assumptions on Z∗0 , let us write

Z∗0 (x) =

[
z∗0(x)
z∗03(x)

]
, z∗0(x) = z∗01(x) + iz∗02(x). (3.56)

A first condition that we require, consistent with (3.49), is div z∗0(q) < 0. In addition we require that Z∗0 (q) ≈ 0
in a non-degenerate way.

We want also Z∗ to be sufficiently small, but independently of T , so that the heat equation (3.55) is a good
approximation of the linearized harmonic map flow far from the singularity. In order to achieve later the desired
stability property, it is convenient split Z∗0 into two parts

Z∗0 = Z∗00 + Z∗10 ,

where Z∗00 is sufficiently smooth and Z∗10 allows more irregular perturbations. More precisely, for Z∗00 we assume
that for some α0 > 0 small and some α1, α2 > 0, all independent of T , we have

‖Z∗00 ‖C3(Ω) ≤ α0,

|Z∗00 (q)| ≤ 5T,

|(Dz∗00 (q))−1| ≤ α1,

−α1 ≤ div z∗00 (q) ≤ −α2.

(3.57)

(The notation here is analogous to (3.56).)
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To describe Z∗10 we introduce the following norm

‖Z∗10 ‖∗ = sup
Ω
|Z∗10 (x)|+ 1

| log ε∗|
sup

Ω
|∇xZ∗10 (x)| (3.58)

+
1

| log ε∗|1/2
sup

Ω
(|x− q0|+ ε∗) |D2

xZ
∗1
0 (x)|,

where

ε∗ = λ∗(0).

Then we assume that for some σ > 0 fixed we have

‖Z∗10 ‖∗ ≤ Tσ. (3.59)

In summary, the conditions on Z∗0 are the following:

Z∗0 = Z∗00 + Z∗10 with Z∗00 , Z∗10 satisfying (3.57) and (3.59). (3.60)

• Linear theory for the inner problem. The inner problem (3.33) is written as
λ2∂tφ = LW [φ] + h[p, ξ,Ψ∗] in D2R

φ ·W = 0 in D2R

φ(·, 0) = 0 in B2R(0)

where h[p, ξ,Ψ∗] is given by (3.38). To find a good solution to this problem we would like that h[p, ξ,Ψ∗] satisfies
the orthogonality conditions (3.40).

We split the right hand side h[p, ξ,Ψ∗] and the inner solution into components with different roles regarding
these orthogonality conditions.

Recall that
h[p, ξ,Ψ∗] = λ2Q−ωL̃U [Ψ∗]χD2R

+ λ2Q−ωK0[p, ξ] + λ2Q−ωK1[p, ξ]χD2R
,

the decomposition of L̃U given in (3.14):

L̃U [Ψ∗] = L̃U [Ψ∗]0 + L̃U [Ψ∗]1 + L̃U [Ψ∗]2 ,

with L̃U [Φ]j defined in (3.15). Using the notation (3.13), we then define

L̃U [Φ]
(0)
1 = − 2λ−1wρ cosw

[
(∂x1

ϕ3(ξ(t), t)) cos θ + (∂x2
ϕ3(ξ(t), t))) sin θ

]
QωE1

− 2λ−1wρ cosw
[

(∂x1ϕ3(ξ(t), t))) sin θ − (∂x2ϕ3(ξ(t), t))) cos θ
]
QωE2 .

We then decompose
h = h1 + h2 + h3

where

h1[p, ξ,Ψ∗] = λ2Q−ω(L̃U [Ψ∗]0 + L̃U [Ψ∗]2)χD2R
+ λ2Q−ωK0[p, ξ],

h2[p, ξ,Ψ∗] = λ2Q−ωL̃U [Ψ∗]
(0)
1 χD2R

+ λ2Q−ωK1[p, ξ]χD2R

h3[p, ξ,Ψ∗] = λ2Q−ω(L̃U [Ψ∗]1 − L̃U [Ψ∗]
(0)
1 )χD2R

.

Next we decompose φ = φ1 + φ2 + φ3 + φ4. The function φ1 will solve the inner problem with right hand
side h1[p, ξ,Ψ∗] projected so that it satisfies essentially (3.40). The advantage of doing this is that h1 has faster
spatial decay, which gives better bounds for the solution. For this we let, for any function h(y, t) defined in
R2 × (0, T ) with sufficient decay,

clj [h](t) :=
1´

R2 w2
ρ|Zlj |2

ˆ
R2

h(y, t) · Zlj(y) dy. (3.61)

Note that h[p, ξ,Ψ∗] is defined in R2 × (0, T ), and for simplicity we will assume that the right hand sides
appearing in the different linear equations are always defined in R2 × (0, T ).

We would like that φ1 solves

λ2∂tφ1 = LW [φ1] + h1[p, ξ,Ψ∗]−
1∑

l=−1

2∑
j=1

clj [h1(p, ξ,Ψ∗)]w2
ρZlj in D2R,
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but the estimates for φ1 are better if the projections c0j [h(p, ξ,Ψ∗)] are modified slightly.
Here is the precise result that we will use later. We define the norms

‖h‖ν,a = sup
R2×(0,T )

|h(y, t)|
λν∗(1 + |y|)−a

, (3.62)

and

‖φ‖∗,ν,a,δ = sup
D2R

|φ(y, τ)|+ (1 + |y|)|∇yφ(y, τ)|
λν∗ max( R

δ(5−a)

(1+|y|)3 ,
1

(1+|y|)a−2 )
. (3.63)

Proposition 3.1. Let a ∈ (2, 3), δ ∈ (0, 1), ν > 0. Assume ‖h‖ν,a <∞. Then there is a solution φ = Tλ,1[h],
c̃0j [h] of 

λ2∂tφ = LW [φ] + h−
∑
j=1,2

c̃0j [h]Z0jχB1 −
∑

l=−1,1
j=1,2

clj [h]ZljχB1 in D2R

φ ·W = 0 in D2R

φ(·, 0) = 0 in B2R(0)

where clj is defined in (3.61), which is linear in h, such that

‖φ‖∗,ν,a,δ ≤ C‖h‖ν,a
and such that

|c0j [h]− c̃0j [h]| ≤ Cλν∗R−
1
2 δ(a−2)‖h‖ν,a.

The function φ2 solves the equation with right hand side h2[p, ξ,Ψ∗], which is in mode 1, a notion that we
define next (this is basically motivated by the analysis of section 3.1, where we consider the linearized parabolic
equation and use a Fourier decomposition of the right hand side and the solution).

Let h(y, t) ∈ R3, be defined in R2 × (0, T ) or D2R with h ·W = 0. We say that h is un mode k ∈ Z if h has
the form

h(y, t) = <(h̃k(|y|, t)eikθ)E1 + <(h̃k(|y|, t)eikθ)E2,

for some complex valued function h̃k(ρ, t).
Consider then 

λ2∂tφ = LW [φ] + h−
∑
j=1,2

c1j [h]w2
ρZ1j in D2R

φ ·W = 0 in D2R

φ(·, 0) = 0 in B2R(0)

(3.64)

Proposition 3.2. Let a ∈ (2, 3), δ ∈ (0, 1), ν > 0. Assume that h is in mode 1 and ‖h‖ν,a < ∞. Then there
is a solution φ = Tλ,2[h] of (3.64), which is linear in h, such that

‖φ‖ν,a−2 ≤ C‖h‖ν,a.

In the above statemen the norm ‖φ‖ν,a−2 analogous to the one in (3.62), but the supremum is taken in D2R.
Another piece of the inner solution, φ3, will handle h3[p, ξ,Ψ∗], which does not satisfy orthogonality conditions

in mode 0. We will still project it to satisfy the orthogonality condition in mode 1. Let us consider then (3.64)
without any orthogonality conditions on h in mode 0. We define

‖φ‖∗∗,ν = sup
D2R

|φ(y, t)|+ (1 + |y|) |∇yφ(y, t)|
λ∗(t)νR(t)2(1 + |y|)−1

. (3.65)

Proposition 3.3. Let 1 < a < 3 and ν > 0. There exists a C > 0 such that if ‖h‖a,ν < +∞ there is a solution
φ = Tλ,3[h] of (3.64), which is linear in h and satisfies the estimate

‖φ‖∗∗,ν ≤ C‖h‖a,ν .

Note that we allow a to be less than 2 in the previous proposition.
Next we have a variant of Proposition 3.3 when h is in mode −1.
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Proposition 3.4. Let 2 < a < 3 and ν > 0. There exists a C > 0 such that for any h in mode −1 with
‖h‖a,ν < +∞, there is a solution φ = Tλ,4[h] of problem (3.64), which is linear in h and satisfies the estimate

‖φ‖∗∗∗,ν ≤ C‖h‖a,ν ,
where

‖φ‖∗∗∗,ν = sup
D2R

|φ(y, t)|+ (1 + |y|) |∇yφ(y, t)|
λ∗(t)ν log(R(t))

.

All propositions stated here are corollaries of Proposition 3.11 and proved in section 3.1.
• The equations for p = λeiω. We need to choose the free parameters p, ξ so that clj [h(p, ξ,Ψ∗)] = 0 for
l = −1, 0, 1, j = 1, 2. This will be easy to do for l = 1 (mode 1), but mode l = 0 is more complicated.

To handle c0j we note that by definitions (3.38), (3.41), (3.44)

c0,j [h(p, ξ,Ψ∗)] =
2πλ´

R2 w2
ρ|Z0j |2

(B0j [p]− a0j [p, ξ,Ψ
∗])

where B0, a0 are defined in (3.43), (3.44) and we recall that p = λeiω.
So to achieve c0j [h(p, ξ,Ψ∗)] = 0 we should solve

B0[p](t) = a0[p, ξ,Ψ∗](t), t ∈ [0, T ], (3.66)

adjusting the parameters λ(t) and ω(t). This equation is delicate and we will instead impose a modified version
of this condition. The modification of (3.66) consists in introducing another term in the equation, essentially
modifying the operator B0.

To make this precise we define the following norms. Let I denote either the interval [0, T ] or [−T, T ]. For
Θ ∈ (0, 1), l ∈ R and a continuous function g : I → C we let

‖g‖Θ,l = sup
t∈I

(T − t)−Θ| log(T − t)|l|g(t)|, (3.67)

and for γ ∈ (0, 1), m ∈ (0,∞), and l ∈ R we let

[g]γ,m,l = sup (T − t)−m| log(T − t)|l |g(t)− g(s)|
(t− s)γ

, (3.68)

where the supremum is taken over s ≤ t in I such that t− s ≤ 1
10 (T − t).

We have then the following result.

Proposition 3.5. Let α, γ ∈ (0, 1
2 ), l ∈ R, C1 > 1. There is α0 > 0 such that if Θ ∈ (0, α0) and m ≤ Θ − γ,

then for a : [0, T ]→ C is such that

Re(a(T )) < 0, with
1

C1
≤ Re(a(T )) ≤ C1

and

TΘ| log T |1+σ−l‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1 ≤ C1,

for some σ > 0, then, for T > 0 small enough there are two operators P and R0 so that p = P[a] : [−T, T ]→ C
satisfies

B0[p](t) = a(t) +R0[a](t), t ∈ [0, T ], (3.69)

with

|R0[a](t)|

≤ C
(
Tσ + TΘ log | log T |

| log T |
‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1

) (T − t)m+(1+α)γ

| log(T − t)|l
, (3.70)

for some σ > 0.

We have additional properties of the solution to this problem.
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Proposition 3.6. Let us make the same assumptions as in Proposition 3.5. Then P[a] can be written as

P[a] = p0,κ[a] + P1[a] + P2[a]

where p0,κ is defined by

p0,κ(t) = κ| log T |
ˆ T

t

1

| log(T − s)|2
ds, t ≤ T, (3.71)

and each term
κ = κ[a], p1 = P1[a], p2 = P2[a],

has the following bounds:

κ = |a(T )|(1 +O(
1

| log T |
),

|ṗ1(t)− ṗ0,κ(t)| ≤ C | log T |1−σ log(| log T |)2

| log(T − t)|3−σ
,

|p̈1(t)| ≤ C | log T |
| log(T − t)|3(T − t)

,

‖ṗ2‖Θ,l ≤ C
(
T

1
2 +σ−Θ + ‖a(·)− a(T )‖Θ,l−1),

[ṗ2]γ,m,l ≤ C(| log T |l−3Tα0−m−γ + TΘ log | log T |
| log T |

‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1),

where α0 > 0 is some fixed some constant and σ > 0 is arbitrary (with C depending on σ).

Roughly speaking, to obtain the modified equation (3.69) we notice that the main term in p in B0[p] is the
integral operator ˆ t−λ∗(t)2

−T

ṗ(s)

t− s
ds.

Thus we define

B̃0[p] = B0[p]−
ˆ t−λ∗(t)2

−T

ṗ(s)

t− s
ds.

It will be sufficient to solve approximately equations (3.40) replacing in part this integral operator by a “regu-
larized” version of it following the logic of the formal derivation of the rate (3.51). For α > 0 let us write

ˆ t−λ∗(t)2

−T

ṗ(s)

t− s
ds = Sα[ṗ] +Rα[ṗ]

where

Sα[g] := g(t)[−2 log λ∗(t) + (1 + α) log(T − t)] +

ˆ t−(T−t)1+α

−T

g(s)

t− s
ds, (3.72)

Rα[g] := −
ˆ t−λ2

∗

t−(T−t)1+α

g(t)− g(s)

t− s
ds. (3.73)

Thus equation (3.66) can be written in the form

Sα[ṗ] +Rα[ṗ] + B̃0[p] = a(t), in [0, T ],

for some function a(t). The modified equation is

Sα[ṗ] + B̃0[p] = a(t) in [0, T ],

and the remainder R0 is essentially Rα[ṗ]. This is a sketch of how we obtain the modified equation and
remainder.

Another modification to equations (3.66) that we introduce is to replace a0[p, ξ,Ψ∗] by its main term. To do
this we write

a0[p, ξ,Ψ] = a
(0)
0 [p, ξ,Ψ] + a

(1)
0 [p, ξ,Ψ] + a

(2)
0 [p, ξ,Ψ]
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where

a
(l)
0 [p, ξ,Ψ] = − λ

4π
eiω
ˆ
B2R

(
Q−ωL̃U [Ψ]l · Z01 + iQ−ωL̃U [Ψ]l · Z02

)
dy

for l = 0, 1, 2.
We define

c∗0[p, ξ,Ψ∗](t) :=
4πλ´

R2 w2
ρ|Z01|2

e−iω
(
R0

[
a

(0)
0 [p, ξ,Ψ∗]

]
(t) + a

(1)
0 [p, ξ,Ψ∗](t)

+ a
(2)
0 [p, ξ,Ψ∗](t)

)
− (c0[h[p, ξ,Ψ∗]]− c̃0[h1[p, ξ,Ψ∗]]),

and

c∗01 := Re(c∗0), c∗02 := Im(c∗0),

where R0 is the operator given Proposition 3.5 and c̃0 = c̃01 + ic̃02 are the operators defined in Proposition 3.1.
• The system of equations.

We transform the system (3.33)-(3.34) in the problem of finding functions ψ(x, t), φ1, . . . , φ4, parameters
p(t) = λ(t)eiω(t), ξ(t) and constants c1, c2, c3 such that the following system is satisfied:

ψt = ∆xψ + g(p, ξ, Z∗ + ψ, φ1 + φ2 + φ3 + φ4) in Ω× (0, T )

ψ = (e3 − U)− Φ0 on ∂Ω× (0, T )

ψ(·, 0) = (c1 e1 + c2 e2 + c3 e3)χ+ (1− χ)(e3 − U − Φ0) in Ω

ψ(q, T ) = −Z∗(q, T )

(3.74)



λ2∂tφ1 = LW [φ1] + h1[p, ξ,Ψ∗]−
∑
j=1,2

c̃0j [h1[p, ξ,Ψ∗]]w2
ρZ0j

−
∑

l=−1,1
j=1,2

clj [h1[p, ξ,Ψ∗]]w2
ρZlj in D2R

φ1 ·W = 0 in D2R

φ1(·, 0) = 0 in B2R(0)

(3.75)


λ2∂tφ2 = LW [φ2] + h2[p, ξ,Ψ∗]−

∑
j=1,2

c1j [h2[p, ξ,Ψ∗]]w2
ρZ1j in D2R

φ2 ·W = 0 in D2R

φ2(·, 0) = 0 in B2R(0)

(3.76)



λ2∂tφ3 = LW [φ3] + h3 −
∑
j=1,2

c1j [h3[p, ξ,Ψ∗]]w2
ρZ1j

+
∑
j=1,2

c∗0j [p, ξ,Ψ
∗]w2

ρZ0j in D2R

φ3 ·W = 0 in D2R

φ3(·, 0) = 0 in B2R(0)

(3.77)



λ2∂tφ4 = LW [φ4] +
∑
j=1,2

c−1,j [h1[p, ξ,Ψ∗]]w2
ρZ−1j

φ4 ·W = 0 in D2R

φ4(·, t) = 0 on ∂B2R(t)

φ4(·, 0) = 0 in B2R(0)

(3.78)

c0j [h(p, ξ,Ψ∗)](t)− c̃0j [p, ξ,Ψ∗](t) = 0 for all t ∈ (0, T ), j = 1, 2, (3.79)

c1j [h(p, ξ,Ψ∗)](t) = 0 for all t ∈ (0, T ), j = 1, 2. (3.80)
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In (3.74) χ is a smooth cut-off function with compact support in Ω which is identically 1 on a fixed neighborhood
of q independent of T and the function g(p, ξ,Ψ∗, φ) is given by (3.35).

We see that if (φ1, φ2, φ3, φ4, ψ, p, ξ) satisfies system (3.74)–(3.80) then the functions

φ = φ1 + φ2 + φ3 + φ4, Ψ∗ = Z∗ + ψ

solve the outer-inner gluing system (3.33)–(3.34).

The way in which we will proceed to solve the full problem (3.74)–(3.80) is the following. For given functions
φ1, . . . , φ4 and parameters p, ξ in a suitable class, we solve first the outer problem (3.74) in the form of an
operator ψ = Ψ[φ1 + φ2 + φ3 + φ4, p, ξ] and denote Ψ∗[φ1 + φ2 + φ3, p, ξ] = Z∗ + Ψ[φ1 + φ2 + φ3 + φ4, p, ξ].
Then we substitute Ψ∗[φ1 + φ2 + φ3 + φ4, p, ξ] in (3.75)–(3.78) and solve for φ1, φ2, φ3, φ4 as operators of the
pair (p, ξ). Finally, we solve for p and ξ the remaining equations. All this will be done by suitable control on
the linear parts of the equation and contraction mapping principle.
• The outer problem. Our main result for problem (3.74) is the existence of a small solution for all small T ,
with certain precise absolute and Lipschitz estimates satisfied. To obtain this result we need a suitable norm
that we define next.

Given Θ > 0, γ ∈ (0, 1
2 ) we define

‖ψ‖],Θ,γ := λ∗(0)−Θ 1

| log T |λ∗(0)R(0)
‖ψ‖L∞(Ω×(0,T )) + λ∗(0)−Θ‖∇xψ‖L∞(Ω×(0,T ))

+ sup
Ω×(0,T )

λ∗(t)
−Θ−1R(t)−1 1

| log(T − t)|
|ψ(x, t)− ψ(x, T )|

+ sup
Ω×(0,T )

λ∗(t)
−Θ|∇xψ(x, t)−∇xψ(x, T )|

+ supλ∗(t)
−Θ(λ∗(t)R(t))2γ |∇xψ(x, t)−∇xψ(x′, t′)|

(|x− x′|2 + |t− t′|)γ
, (3.81)

where the last supremum in taken in the region

x, x′ ∈ Ω, t, t′ ∈ (0, T ), |x− x′| ≤ 2λ∗R(t), |t− t′| < 1

4
(T − t).

• Choice of constants. We explain here the constants used in the different norms and the values we choose
for them.

• β ∈ (0, 1
2 ) is so that R(t) = λ∗(t)

−β .

• α ∈ (0, 1
2 ) appears in Proposition 3.5. It is the parameter used to define the remainder Rα in (3.73).

• We use the norm ‖ ‖∗,ν1,a1,δ (3.63) to measure the solution φ1 in (3.75). Here we will ask that ν1 ∈ (0, 1),
a1 ∈ (2, 3), and δ > 0 small and fixed.

• We use the norm ‖ ‖ν2,a2−2 (3.62) to measure the solution φ2 in (3.76), with ν2 ∈ (0, 1), a2 ∈ (2, 3).
• We use the norm ‖ ‖∗∗,ν3 (3.65) for the solution φ3 of (3.77), with ν3 > 0.
• We use the norm ‖ ‖∗∗∗,ν4 for the solution φ4 of (3.78), with ν4 > 0.
• We are going to use the norm ‖ ‖],Θ,γ with a parameters Θ, γ satisfying some restrictions given below.
• We have parameters m, l in Proposition 3.5. We work with m given by m := Θ − 2γ(1 − β) and l

satisfying l < 1 + 2m.

We will need a series of additional inequalities satisfied by these parameters ensuring the gluing procedure.
See [22].

• The outer problem. The next proposition gives a solution to the outer problem (3.74). To state this result
we define the spaces

E1 = {φ1 ∈ L∞(D2R) : ∇yφ1 ∈ L∞(D2R), ‖φ1‖∗,ν1,a1,δ <∞}
E2 = {φ2 ∈ L∞(D2R) : ∇yφ2 ∈ L∞(D2R), ‖φ2‖ν2,a2 <∞}
E3 = {φ3 ∈ L∞(D2R) : ∇yφ3 ∈ L∞(D2R), ‖φ3‖∗∗,ν3 <∞}
E4 = {φ4 ∈ L∞(D2R) : ∇yφ4 ∈ L∞(D2R), ‖φ4‖∗∗∗,ν4 <∞}

and use the notation
E = E1 × E2 × E3 × E4,
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Φ = (φ1, φ2, φ3, φ4) ∈ E
‖Φ‖E = ‖φ1‖∗,ν1,a1,δ + ‖φ2‖ν2,a2−2 + ‖φ3‖∗∗,ν3 + ‖φ4‖∗∗∗,ν4

We define the closed ball
B = {Φ ∈ X : ‖Φ‖E ≤ 1}.

Proposition 3.7. Assume Z∗0 satisfies (3.60). Let p(t) = λ(t)eiω(t) and ξ(t) satisfy estimates (3.52), (3.53),
Φ ∈ B. Then there exists C > 0 such that if T > 0 is sufficiently small then there exists a solution ψ =
Ψ(p, ξ,Φ, Z∗0 ) to equation (3.74) such that

‖Ψ(p, ξ,Φ, Z∗0 )‖],Θ,γ ≤ CTσ(‖Φ‖E + ‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗0‖∗).

The operator Ψ(p, ξ,Φ, Z∗0 ) satisfies Lipschitz properties, which are consequence of its construction.

Corollary 3.1. Let Ψ(p, ξ,Φ, Z∗0 ) be the solution to the outer problem constructed in Proposition 3.7. Let pl, ξ
satisfy (3.52), (3.53) and pl = λeiωl , ‖Φl‖E ≤ 1, and ‖Z∗0l‖∗ <∞, l = 1, 2. Then

‖Ψ(p1, ξ,Φ1, Z
∗
01)−Ψ(p2, ξ,Φ2, Z

∗
02)‖],Θ,γ

≤ CTσ(‖Φ1 − Φ2‖E + ‖λ∗(ω̇1 − ω̇2)‖∞ + ‖Z∗01 − Z∗02‖∗).

Corollary 3.1 gives a partial Lipschitz property of the exterior solution Ψ(p, ξ, φ) with respect to p, namely
it only considers variations of p = λeiω with respect to ω. We will need Lipschitz estimates for variations of
p = λeiω in λ and also variations with respect to ξ. These estimates are obtained for Ψ(p, ξ, φ) when considered
as a function of the inner variable (y, t) ∈ D2R.

For this let us introduce some notation. Suppose that ψ(x, t) is defined in Ω× (0, T ). We let

ψ̃(y, t) = ψ(ξ(t) + λ(t)y, t), (y, t) ∈ D2R.

The following expression is ‖ψ‖],Θ,γ expressed in terms of ψ̃ (and restricted to D2R):

‖ψ̃‖]],Θ,γ := λ∗(0)−Θ 1

| log T |λ∗(0)R(0)
‖ψ̃‖L∞(D2R) + λ∗(0)−Θ−1‖∇yψ‖L∞(D2R)

+ sup
D2R

λ∗(t)
−Θ−1R(t)−1 1

| log(T − t)|
|ψ̃(y, t)− ψ̃(y, T )|

+ sup
(y,t)∈D2R

λ∗(t)
−Θ−1|∇yψ̃(y, t)−∇yψ̃(y, T )|

+ sup
(y,t),(y′,t)∈D2R

λ∗(t)
−Θ−1R(t)2γ |∇yψ̃(y, t)−∇yψ̃(y′, t)|

|y − y′|2γ

+ supλ∗(t)
−Θ−1(λ∗(t)R(t))2γ |∇yψ̃(y, t)−∇yψ̃(x′, t′)|

|t− t′|γ
,

where the last supremum is taken in the region

(y, t), (y, t′),∈ D2R, |t− t′| ≤ 1

10
(T − t).

Corollary 3.2. Let Ψ(p, ξ, φ) be the outer solution in Proposition 3.7. Let pl = λle
iω, ξl satisfy (3.52), (3.53)

and ‖φ‖∗,a,ν ≤ 1. Then for Θ̃ ∈ (0,Θ) we have

‖Ψ̃(p1, ξ1, φ)− Ψ̃(p2, ξ2, φ)‖]],Θ̃,γ

≤ C
[ ∥∥∥λ1 − λ2

λ∗

∥∥∥
L∞

+ ‖λ̇1 − λ̇2‖L∞ +
∥∥∥ξ1 − ξ2
λ∗R

∥∥∥
L∞

+
∥∥∥ ξ̇1 − ξ̇2

R

∥∥∥
L∞

]
.

What we do next is to take Φ ∈ E with ‖Φ‖E ≤ 1 and write Ψ∗(p, ξ,Φ, Z∗0 ) = Z∗ + Ψ(p, ξ,Φ, Z∗0 ). We can
then write the inner problems as the fixed point problem

Φ = F(Φ) (3.82)

where

F(Φ) = (F1(Φ),F2(Φ),F3(Φ)), F : B̄1 ⊂ E → E
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is defined as

F(Φ) = (F1(Φ),F2(Φ),F3(Φ),F4(Φ)),

F1(Φ) = Tλ,1(h1[p, ξ,Ψ∗(p, ξ,Φ, Z∗0 )])

F2(Φ) = Tλ,2(h2[p, ξ,Ψ∗(p, ξ,Φ, Z∗0 )])

F3(Φ) = Tλ,3
(
h3[p, ξ,Ψ∗(p, ξ,Φ, Z∗0 )] +

2∑
j=1

c∗0j [p, ξ,Ψ
∗(p, ξ,Φ, Z∗0 )]w2

ρZ0j

)

F4(Φ) = Tλ,4
( 2∑
j=1

c−1,j [h1[p, ξ,Ψ∗(p, ξ,Φ, Z∗0 )]]w2
ρZ−1,j

)
.

Although F also depends on p, ξ, Z∗0 we will omit this dependence from the notation for the moment.
Our next step is to solve problem (3.82).

• The inner problem.

Proposition 3.8. Assume that p and ξ satisfy estimates (3.52) and that Z∗0 satisfies (3.60). Then the system
of equations (3.82) for Φ = (φ1, φ2, φ3) has a solution Φ(p, ξ, Z∗0 ) in B̄1 ⊂ E.

Let Φ(p, ξ, Z∗0 ) be the solution of (3.82) constructed in Proposition 3.8. Next we show that the solution
Φ(p, ξ, Z∗0 ) is Lipschitz in the parameters p, ξ, Z∗0 .

Proposition 3.9. Assume that p1, p2 and ξ1, ξ2 satisfy estimates (3.52) and that Z∗0,1, Z∗0,2 have the form

Z∗0,l = Z∗00 + Z∗10,l, l = 1, 2,

with Z∗00 satisfying (3.57) and
‖Z∗10,l‖∗ ≤ Tσ,

Let us write pj = λje
iωj for j = 1, 2. for some σ > 0. Then

‖Φ(p1, ξ1, Z
∗
0,1)− Φ(p2, ξ2, Z

∗
0,2)‖E ≤ λ∗(0)σ

[
‖λ∗(ω̇1 − ω̇2)‖∞ +

∥∥∥λ1 − λ2

λ∗

∥∥∥
L∞

+ ‖λ̇1 − λ̇2‖L∞ +
∥∥∥ξ1 − ξ2
λ∗R

∥∥∥
L∞

+
∥∥∥ ξ̇1 − ξ̇2

R

∥∥∥
L∞

+ ‖Z∗10,1 − Z∗10,2‖∗
]
,

for some possibly smaller σ > 0.

With this we can now state the following result. Let Φ(p, ξ, Z∗0 ) denote the solution of (3.82) constructed in
Proposition 3.8.

Proposition 3.10. Given Z∗0 of the form (3.60) there exists p = λeiω and ξ such that (3.79) and (3.80) are
satisfied.

The proposition above yields the existence of a blow-up solution.
• Linear theory for the inner problem.

At the very heart of capturing the bubbling structure is the construction of an inverse for the linearized heat
operator around the basic harmonic map. We consider the linear equation

λ2∂tφ = LW [φ] + h(y, t) in D2R (3.83)

φ(·, 0) = 0 in B2R(0)

φ ·W = 0 in D2R

where
D2R = {(y, t) / t ∈ (0, T ), y ∈ B2R(t)(0)}.

We assume that h(y, t) is defined for all (y, t) ∈ R2 × (0, T ) and satisfies

h ·W = 0, |h(y, t)| ≤ C λν∗
(1 + |y|)a

,

where ν > 0 and a ∈ (2, 3) (so that ‖h‖a,ν <∞).
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The parameter R is given by (3.54), that is R(t) = λ∗(t)
−β , β ∈ ( 1

4 ,
1
2 ). Also, we assume that the parameter

function λ(t) satisfies we have that

aλ∗(t) ≤ λ(t) ≤ bλ∗(t) for all t ∈ (0, T )

for some positive numbers a, b, c independent of T .
We observe that a priori we are not imposing boundary conditions in problem (3.83). Our purpose is to

construct a solution φ that defines a linear operator of h and satisfies uniform bounds in terms of suitable
norms.

All functions h(y, t) with h(y, t) ·W (y) ≡ 0 can be expressed in polar form as

h(y, t) = h1(ρ, θ, t)E1(y) + h2(ρ, θ, t)E2(y), y = ρeiθ. (3.84)

We can also expand in Fourier series

h̃(ρ, θ, t) := h1 + ih2 =

∞∑
k=−∞

h̃k(ρ, t)eikθ, h̃k = h̃k1 + ih̃k2 (3.85)

so that

h(y, t) =

∞∑
k=−∞

hk(y, t) =: h0(y, t) + h1(y, t) + h−1(y, t) + h⊥(y, t), (3.86)

where
hk(y, t) = Re (h̃k(ρ, t)eikθ)E1 + Im (h̃k(ρ, t)eikθ)E2. (3.87)

We consider the functions Zkj(y) defined in (3.10) and (3.11) and define for k = −1, 0, 1,

h̄k(y, t) :=

2∑
j=1

χZkj(y)´
R2 χ|Zkj |2

ˆ
R2

h(x, t) · Zkj(z) dz,

where

χ(y, t) =

{
w2
ρ(|y|) if |y| < 2R(t),

0 if |y| ≥ 2R(t).

The main result in this section is the following, where we use the norm ‖h‖a,ν defined in (3.62).

Proposition 3.11. Let 2 < a < 3, ν > 0 and let h with ‖h‖a,ν < +∞. Let us write h = h0 + h1 + h−1 + h⊥

with h⊥ =
∑
k 6=0,±1 hk. Then there exists a solution φ[h] of problem (3.83), which defines a linear operator of

h, and satisfies the following estimate in D2R:

(1 + |y|) |∇yφ(y, t)|+ |φ(y, t)|

.
λ∗(t)

νR(t)
5−a
2

1 + |y|
min{1, R

5−a
2 |y|−2} ‖h0 − h̄0‖a,ν +

λ∗(t)
νR(t)2

1 + |y|
‖h̄0‖a,ν

+
λ∗(t)

ν

1 + |y|a−2

∥∥h1 − h̄1

∥∥
a,ν

+
λ∗(t)

νR(t)4

1 + |y|2
∥∥h̄1

∥∥
a,ν

+
λ∗(t)

νR(t)
5−a
2

1 + |y|
min{1, R

5−a
2 |y|−2} ‖h−1 − h̄−1‖a,ν + λ∗(t)

ν logR(t) ‖h̄−1‖a,ν

+
λ∗(t)

ν

1 + |y|a−2
‖h⊥‖a,ν .

The construction of the operator φ[h] as stated in the proposition will be carried out mode by mode in the
Fourier series expansion. We shall use the convention that h(y, t) = 0 for |y| > 2R(t). Let us write

φ =

∞∑
k=−∞

φk, φk(y, t) = Re (ϕk(ρ, t)eikθ)E1 + Im (ϕk(ρ, t)eikθ)E2.

We shall build a solution of (3.83) by solving separately each of the equations

λ2∂tφk = LW [φk] + hk(y, t) = 0 in D4R, (3.88)

φk(y, 0) = 0 in B4R(0)(0),
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which, are equivalent to the problems

λ2∂tϕk = Lk[ϕk] + h̃k(ρ, t) in D̃4R,

ϕk(ρ, 0) = 0 in (0, 4R0)

with
D̃4R = {(ρ, t) / t ∈ (0, T ), ρ ∈ (0, 4R(t))}

and we recall

Lk[ϕk] := ∂2
ρϕk +

∂ρϕk
ρ
− (k2 + 2k cosw + cos(2w))

ϕk
ρ2

We have the validity of the following result.

Lemma 3.1. Let ν > 0 and 0 < a < 3, a 6= 1, 2. Assume that

‖hk(y, t)‖a,ν < +∞.
Then problem (3.88) has a unique bounded solution φk(y, t) of the form

φk(y, t) = Re (ϕk(ρ, t)eikθ)E1 + Im (ϕk(ρ, t)eikθ)E2

which in addition satisfies the boundary condition

φk(y, t) = 0 for all t ∈ (0, T ), y ∈ ∂BR(t)(0). (3.89)

These solutions satisfy the estimates

|φk(y, t)| ≤ C‖h‖a,ν λν∗k−2

{
R2−a if a < 2,

(1 + ρ)2−a if a > 2,
if k ≥ 2.

|φ−1(y, t)| ≤ C‖h‖a,ν λν∗
{
R2−a if a < 2,
logR if a > 2,

|φ0(y, t)| ≤ C‖h‖a,νλν∗(1 + ρ)−1

{
R2 if a > 1,
R3−a if a < 1,

|φ1(y, t)| ≤ C‖h‖a,νλν∗(1 + ρ)−2R4.

with C independent of R and k.

Proof. Standard parabolic theory yields existence of a unique solution to equation (3.88) that satisfies the
boundary condition (3.89), for each k. Equivalently, the problem

λ2∂tϕk = Lk[ϕk] + h̃k(ρ, t) in D̃4R, (3.90)

ϕk(t, 4R) = 0 for all t ∈ (0, T )

ϕk(0, ρ) = 0 in (0, 4R(0)),

Lk[ϕk] = ∂2
ρϕk +

∂ρϕk
ρ
− (k2 + 2k cosw + cos(2w))

ϕk
ρ2

has a unique solution ϕk(ρ, t) which is bounded in ρ for each t.

We use barriers to derive the desired estimates. A first observation we make is that for mode k = −1 the
elliptic equation L−1[ϕ] + g(ρ) = 0 in (0, 4R) with ϕ(4R) = 0 has a unique bounded solution given by the
variation of parameters formula

ϕ(ρ) := Z−1(ρ)

ˆ 4R

ρ

dr

ρZ−1(r)2

ˆ r

0

g(s)Z−1(s)s ds, (3.91)

Z−1(ρ) = −ρ2wρ =
2ρ2

ρ2 + 1
.

Here we have used that L−1[Z−1] = 0. Let us call ϕ0(ρ) the function in (3.91) with g(ρ) := 2(1 + ρ)−a. We
readily estimate

|ϕ0(ρ)| ≤

{
R2−a if a < 2,

(1 + ρ)2−a if a > 2.
.
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Let us call ϕ̄(ρ, t) = λ∗(t)
νϕ0(ρ). Then we see that

−λ2ϕ̄t(ρ, t) + L−1[ϕ̄(ρ, t)] +
λν∗

(1 + ρ)a
≤ c λν+1

∗ |λ̇∗|ϕ0(ρ)− λν∗
(1 + ρ)a

≤ −λν∗(1 + ρ)−a
[
1− Cλ∗R2−a(1 + ρ)a

]
< 0

in D̃4R. Indeed, since R(t) � λ
− 1

2
∗ , the inequality holds provided that T was chosen sufficiently small. Thus

for k = −1 the barrier ‖h‖a,ν ϕ̄(ρ, t) dominates both, real and imaginary parts of ϕ−1(ρ, t). As a conclusion,
we find

|φ−1(y, t)| ≤ C‖h‖a,νλν∗

{
R2−a if a < 2,

(1 + ρ)2−a if a > 2,
in D4R.

The cases k = 0, 1,−2 can be dealt with in exactly the same manner, by replacing Z−1 in Formula (3.91)
respectively by the functions

Z0(ρ) =
ρ

ρ2 + 1
, Z1(ρ) =

1

ρ2 + 1
, Z−2(ρ) =

ρ3

ρ2 + 1
. (3.92)

The estimates for φk predicted in the lemma then readily follow for k = −2,−1, 0, 1. Finally, let us now consider
k with |k| ≥ 2 and k 6= −2 and the function ϕ̄(ρ, t) as above. Now we find

−λ2ϕ̄t(ρ, t) + Lk[ϕ̄(ρ, t)] ≤ (Lk − L−1)[ϕ̄(ρ, t)]

≤ −Cλν∗(k2 − 1 + 2(k − 1))
1

ρ2
(1 + ρ)2−a

< −C(k2 − 1 + 2(k − 1))
λν∗

(1 + ρ)a
in D̃4R.

The latter quantity is negative provided that |k| ≥ 2 and k 6= −2 and hence we get the estimate

|φk(y, t)| ≤ C

k2
‖h‖a,νλ−ν∗

{
R2−a if a < 2,

(1 + ρ)2−a if a > 2,
in D4R.

The proof is concluded. �

We can get gradient estimates for the solutions built in the above lemma by means of the following result.

Lemma 3.2. Let φ be a solution of the equation

λ2∂tφ = LW [φ] + h(y, t) in D4γR (3.93)

φ(·, 0) = 0 in B4γR(0).

Given numbers a, b, γ, there exists a C such that if for some M > 0 we have

|φ(y, t)|+ (1 + |y|)2|h(y, t)| ≤M λ∗(t)
b(1 + |y|)−a in D4γR, (3.94)

then
(1 + |y|)|∇yφ(y, t)| ≤ CMλ∗(t)

b(1 + |y|)−a in D3γR (3.95)

and we recall
DγR = {(y, t) / |y| < γR(t), t ∈ (0, T )}.

If in addition we know that φ satisfies the boundary condition φ(·, t) = 0 on ∂B4γR(t) for all t ∈ (0, T ) then
estimate (3.95) holds in the entire region D4γR.

Proof. To prove the gradient estimates, we change the time variable, defining

τ(t) =

ˆ t

0

ds

λ(s)2
,

so that (3.93) becomes in the variables (y, τ)

∂τφ = LW [φ] + h(y, τ) in D4γR

φ(·, 0) = 0 in B4R(0)
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Let τ1 > 0 and y1 ∈ B3γR(τ1)(0). Let ρ = |y1|
5 + 1 so that Bρ(y1) ⊂ B4γR(τ1)(0). Let us define

φ̃(z, t) := φ(y1 + ρz, τ1 + ρ2s), z ∈ B1(0), s > − τ1
ρ2
.

We distinguish two cases. First, when τ1 ≥ ρ2, we use interior estimates for parabolic equations, while for
the case τ1 < ρ2, we use estimates for a parabolic equation with initial condition.

Assume τ1 ≥ ρ2. Then φ̃(z, s) satisfies an equation of the form

φ̃s = ∆zφ̃+A∇zφ̃+Bφ̃+ h̃(z, s) in B1(0)× (−1, 0]

with coefficients A(z, s) and B(z, s) uniformly bounded by O((1 + ρ)−2) in B1(0)× (−1, 0] and

h̃(z, s) = ρ2h(y1 + ρz, τ1 + ρ2s).

Since ρ ≤ CR(τ1) and R(τ1)2 � τ1 for τ1 large we get

λ∗(τ1)b . λ∗(τ1 + ρ2s)b . λ∗(τ1)b, s ∈ (−1, 0].

Standard parabolic estimates and assumption (3.94) yield

‖∇zφ̃‖L∞(B 1
4

(0)×(1,2)) . ‖φ̃‖L∞B 1
2

(0)×(0,2) + ‖h̃‖L∞(B 1
2

(0)×(0,2))

. M λ∗(τ1)bρ2−a,

so that in particular
ρ|∇yφ(y1, τ1)| = |∇zφ̃(0, 1)| .M λ∗(τ1)bρ2−a.

In the case τ1 ≥ ρ2 the argument is similar, but the equation for φ̃ holds in B1(0)× (− τ1
ρ2 , 0] and has initial

condition 0 at s = − τ1
ρ2 . Finally, for the last assertion we argue in similar way but using boundary rather that

interior gradient estimates. �

In addition to estimate (3.95) we have a Hölder gradient estimate which is more natural to express using the
variable τ as follows. We denote

B`(y, τ) = {(y′, τ ′) / |y − y′|2 + |τ ′ − τ | < `2}.
For a function g(y, τ), a number 0 < α < 1, and a set A we let

[g]α,A := sup
{ |f(y, τ)− f(y′, τ ′)|

(|y − y′|2 + |τ ′ − τ |)α2
/ (y, τ), (y′, τ ′) ∈ A

}
.

Corollary 3.3. Let φ be a solution of the equation (3.93) with h(y, τ) = divH(y, τ). Given α ∈ (0, 1) and
constants a, b, γ there is C such that if

|φ(y, τ)|+ (1 + |y|)|H(y, τ)|+ (1 + |y|)1+α[H]B`(y)(y,τ)∩D4γR
≤M λ∗(τ)b(1 + |y|)−a

in D4γR, where `(y) = 1 + |y|
4 , then

(1 + |y|)|∇yφ(y, τ)|+ (1 + |y|)1+α[∇yφ]B`(y)(y,τ)∩D4γR
≤ CMλ∗(t)

b(1 + |y|)−a (3.96)

in D3γR. If in addition we know that φ satisfies the boundary condition φ(·, t) = 0 on ∂B4γR(t) for all t ∈ (0, T )
then estimate (3.96) holds in the entire region D4γR.

Our next goal is to construct an inverse for modes k = −1, 0, 1 with a better control when subject to a certain
solvability condition.

•Mode k = 0. Let us consider again equation (3.88) for k = 0 and the functions Z0j(y) defined in (3.10) . We
have the following result.

Lemma 3.3. Let assume that 2 < a < 3, k = 0 andˆ
R2

h0(y, t) · Z0j(y) dy = 0 for all t ∈ [0, T ) (3.97)

for j = 1, 2. Then there exist a solution φ0 to equation (3.88) for k = 0 that defines a linear operator of h0 and
satisfies the estimate in D3R,

|φ0(y, t)| . ‖h0‖a,νR
5−a
2 λν∗(1 + |y|)−1 min{1, R

5−a
2 |y|−2} . (3.98)
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A central feature of estimate (3.98) is that it matches the size of the solutions obtained in Lemma 3.1 for
k 6= 0, 1 when |y| ∼ R.

Proof. We observe that conditions (3.97) can be written asˆ 2R

0

h̃0(ρ, t)Z0(ρ)ρ dρ = 0 for all τ ∈ (0, T ). (3.99)

Let us consider the complex valued functions

H̃0(ρ, t) := −Z0(ρ)

ˆ ∞
ρ

1

sZ0(s)2

ˆ ∞
s

h̃0(ζ, t)Z0(ζ)ζ dζ, k = 0, 1.

They are well-defined thanks to (3.99). Then the function

H0(y, t) := Re (H̃0(ρ, τ))E1(y) + Re (H̃0(ρ, t))E2(y)

solves
LW [H0(y, τ)] = h0(y, τ) in D4R

and satisfies
|H0(y, t)| . λ∗(t)

ν(1 + |y|)2−a‖h0‖a,ν in D4R.

Moreover, elliptic gradient estimates yield

|∇yH0(y, τ)| . λ∗(t)ν(1 + |y|)1−a‖h0‖a,ν in D3R.

Let us consider the problem

λ2Φt = LW [Φ] +H0(y, t) in D4R, (3.100)

Φ(y, 0) = 0 in B4R(0)

Φ(y, t) = 0 for all t ∈ (0, T ), y ∈ ∂B4R(0)(0)

According to Lemma 3.1, this problem has unique solution Φ = Φ0 that satisfies the estimates

|Φ0(y, t)| ≤ C‖H0‖a−2,νλ∗(τ)ν(1 + |y|)−1 R5−a in D4R.

Applying Lemma 3.2 we deduce that, also,

|∇yΦ0(y, t)| . ‖H0‖a−2,νλ∗(τ)ν(1 + |y|)−2 R5−a in D3R

Let us write
Φ0j := ∂yjΦ0, H0j := ∂yjH0

Then we have

λ2∂tΦ0j = LW [Φ0j ] + ∂yj |∇W |2Φ0 + 2∇∂yjW∇Φ0 +H0j(y, τ)

+ 2(∇Φ0∂yj∇W )W + 2(∇Φ0∇W )∂yjW in D3R,

Φ0j(y, 0) = 0 for all y ∈ B3R(0)(0)

According to Lemma 3.2 and the above estimates we obtain that

(1 + |y|)|∇Φ0j(y, t)| . ‖h0‖a,νλ∗(t)ν(1 + |y|)−2R5−a

+ ‖h0‖a,νλ∗(t)ν(1 + |y|)4−a in D3R.

Then we define
φ0 := LW [Φ0]

so that φ = φ0 solves

λ2φt = LW [φ] + h0(y, t) in D3R,

φ(y, 0) = 0 for all y ∈ B3R(0)(0)

and defines a linear operator of the function h0. Moreover, observing that

|LW [Φ0]| .
∣∣D2

yΦ0

∣∣+O(ρ−4) |Φ0|+O(ρ−2) |DyΦ0|
we then get the estimate

|φ0(y, t)| . ‖h0‖a,νR5−aλ∗(t)
ν(1 + |y|)−3 . (3.101)

To complete the proof of estimate (3.98), we let ϕ0 be the complex valued function defined as

φ0(y, t) = Re (ϕ0(ρ, t))E1 + Im (ϕ0(ρ, t))E2
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so that letting R′ = R
5−a
4 � R, using the notation in (3.90), ϕ0 satisfies the equation

λ2∂tϕ0 = L0[ϕ0] + h̃0(ρ, t) in D̃R′ , (3.102)

ϕ0(0, ρ) = 0 in (0, R′),

and from (3.101), we can find an explicit supersolution for the real and imaginary parts of equation (3.102),
which also dominates their boundary values at R′, which yields

|ϕ0(y, t)| . ‖h0‖a,νλν∗ |R′|2(1 + |y|)−1 , |y| < R′.

Combining this estimate and (3.101) yields the validity of (3.98). �

We mention next a variant of Lemma 3.3, in which we weaken the hypothesis on the right hand side, allowing
it to be a divergence of Hölder continuous function. This will be needed when analyzing estimates of the
derivative with respect to λ of operator Tλ,2 (Proposition 3.3).

Lemma 3.4. Let assume that 2 < a < 3, ν > 0, and k = 0. Let h0 have the form

h0(y, τ) = divH0(y, τ)

such that
(1 + |y|)|H0(y, τ)|+ (1 + |y|)1+α[H0]B`(y)(y,τ)∩D4R

≤ λ∗(τ)ν(1 + |y|)−a,
in D4R, where α ∈ (0, 1) and `(y) = 1 + |y|

4 . Assume also that

ˆ
R2

h0(y, t) · Z0j(y) dy = 0 for all t ∈ [0, T )

for j = 1, 2. Then there exist a solution φ0 to equation (3.88) for k = 0 that defines a linear operator of h0 and
satisfies

|φ0(y, t)| . ‖h0‖a,νR
5−a
2 λν0(1 + |y|)−1 min{1, R

5−a
2 |y|−2},

in D3R.

• Mode k = −1. Let us consider equation (3.88) for k = −1 and the functions Z−1j(y) defined in (3.11) . We
have the following result.

Lemma 3.5. Let assume that 2 < a < 3, k = 0 andˆ
R2

h−1(y, t) · Z−1j(y) dy = 0 for all t ∈ [0, T )

for j = 1, 2. Then there exist a solution φ−1 to equation (3.88) for k = −1 that defines a linear operator of h0

and satisfies the estimate in D3R,

|φ−1(y, t)| . ‖h−1‖a,νλν∗ min{logR,R4−a|y|−2}.

Proof. The proof is essentially the same as that of Lemma 3.3. �

• Mode k = 1. Now we deal with (3.88) for k = 1. For convenience we give the result for a right hand side
more general than strictly need for the proof of Proposition 3.11. Let us assume that h1 is defined in entire
R2 × (0, T ) and that

h1(y, t) = divy G(y, t) (3.103)

where

|G(y, t)| ≤ λ∗(t)
ν

1 + |y|a−1
, y ∈ R2, t ∈ (0, T ), (3.104)

for some ν > 0, a ∈ (2, 3). Then the following result holds.

Lemma 3.6. Let assume that 2 < a < 3, k = 1, h1 has the form (3.103) so that (3.104) holds andˆ
R2

h1(y, t) · Zj1(y) dy = 0 for all t ∈ (0, T )

for j = 1, 2. Then there exist a solution φ1 to equation (3.88) for k = 1 that defines a linear operator of h1 and
satisfies the estimate in D3R,

|φ1(y, t)| . λ∗(t)ν(1 + |y|)2−a.
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From this we get directly the next result.

Corollary 3.4. Let assume that 2 < a < 3, k = 1 andˆ
B2R

h1(y, t) · Zj1(y) dy = 0 for all t ∈ (0, T )

for j = 1, 2. Then there exist a solution φ1 to equation (3.88) for k = 1 that defines a linear operator of h1 and
satisfies the estimate in D3R,

|φ1(y, t)| . ‖h1‖a,νλ∗(t)ν(1 + |y|)2−a .

Let us do the same change of the time variable so that (3.88) for k = 1 in entire R2 becomes in the variables
(y, τ)

∂τφ = LW [φ] + h in R2 × (0,∞), (3.105)

φ(·, 0) = 0 in R2.

Thus, we consider a function h(y, τ) defined in entire R2 × (0,+∞) of the form

h = Re (h̃eiθ)E1 + Im (h̃eiθ)E2, (3.106)

that satisfies the orthogonality conditions for j = 1, 2ˆ
R2

h(·, τ) · Z1j = 0 for all τ ∈ (0,∞) (3.107)

and such that h(y, τ) = 0 for |y| ≥ 2R(τ).
By standard parabolic theory, this problem has a unique solution, which is therefore of the form

φ = Re (ϕeiθ)E1 + Im (ϕeiθ)E2, (3.108)

where the complex valued function ϕ(ρ, τ) solves the initial value problem

∂τϕ = L1[ϕ] + h̃(ρ, τ) in (0,∞)× (0,∞), (3.109)

ϕ(ρ, 0) = 0 in (0,∞),

L1[ϕ] = ∂2
ρϕ+

∂ρϕ

ρ
− (1 + 2 cosw + cos(2w))

ϕ

ρ2
.

We have the validity of the following result.

Lemma 3.7. Let 0 < σ < 1, ν > 0. Assume that h is mode 1, that is, has the form (3.106), satisfies the
orthogonality conditions (3.107), and can be written as in (3.103) with gj satisfying (3.104) where b = 1 + σ.
Then there exists a constant C > 0 such that the solution φ of problem (3.105) satisfies the estimate

|φ(y, t)| ≤ C λ∗(t)
ν

1 + |y|σ
. (3.110)

The proof of this result is done by the blow-up argument together with a Liouville theorem, a non-degeneracy
of the blow-up profile, and the convolution estimates in order to get a contradiction. See Appendix B.

Proof of Lemma 3.6. We take h to be the extension as zero of the function h1 as in the statement of the lemma.
Then we let φ be the unique solution of the initial value problem (3.105), which clearly defines a linear operator
of h1. From Lemma 3.7, expressing the resulting estimate in the variables (y, t), we have that for any t1 ∈ (0, T )

|φ(y, t)| ≤ Cλ∗(t)ν(1 + |y|)−σ‖h‖2+σ,t1 for all t ∈ (0, t1), y ∈ R2.

Then letting φ1 := φ
∣∣
D3R

and letting t1 ↑ T the result follows. �

Combining the estimates for all the modes readily yields the validity of Proposition 3.11.

• Modified theory for mode 0 (re-gluing).
We will perform another gluing procedure that we refer to as the re-gluing process, for mode 0 to further

refine the estimates. The re-gluing is not limited to this specific mode and can be in fact applied to a wider
class of operators. For a more general setting, see Appendix D.
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Let us consider the problem

ϕτ = LWϕ+ h(y, τ) +
∑
j=1,2

c̃0jZ0jw
2
ρ in D2R

ϕ ·W = 0 in D2R

ϕ = 0 on ∂B2R × (τ0,∞)

ϕ(·, τ0) = 0 in B2R(τ0),

(3.111)

in mode 0. We work with the norm ‖ ‖ν,b defined in (3.62).

Proposition 3.12. Let σ ∈ (0, 1), δ ∈ (0, 1), ν > 0. Assume ‖h‖ν,2+σ <∞. Then there is a solution φ, c̃0j of
(3.111), which is linear in h, such that

|ϕ(y, τ)|+ (1 + |y|)|∇yϕ(y, τ)| ≤ Cτ−ν‖h‖ν,2+σ

{
Rδ(3−σ)

(1+|y|)3 |y| ≤ 2Rδ

1
(1+|y|)σ 2Rδ ≤ |y| ≤ R,

and such that

c̃0j [h] = −

´
BR2

h · Z0j´
R2 w2

ρ|Z0j |2
−G[h]

where G is a linear operator of h satisfying the estimate

|G[h]| ≤ Cτ−νR−δσ
′
‖h‖ν,2+σ.

with 0 < σ′ < σ.

We will construct ϕ solving (3.111) of the form

ϕ = ηφ+ ψ

where

η(y, τ) = η1

( |y|
R1

)
and η1(r) = 1 for r ≤ 1, η1(r) = 0 for r ≥ 2. Here R1 = Rδ.

We find a solution to (3.111) if we get φ, ψ solving the system
∂τφ = LWφ+Bψ + h(y, τ) +

∑
j=1,2

c0jZ0jw
2
ρ in D2R1

φ ·W = 0 in D2R1

φ(·, τ0) = 0 in B2R1(τ0),

(3.112)


∂τψ = ∆ψ + (1− η)Bψ +Aφ+ (1− η)h(y, τ) in D2R

ψ ·W = 0 in D2R

ψ = 0 on ∂B2R × (τ0,∞)

ψ(·, τ0) = 0 on B2R(τ0),

(3.113)

where

Bψ = |∇W |2ψ + 2(∇W · ∇ψ)W

Aφ = φ∆η + 2∇φ∇η − φηt + φ(∇W∇η)W.

Consider 
∂τψ = ∆ψ + (1− η)Bψ + h(y, τ) in D2R

ψ ·W = 0 in D2R

ψ = 0 on ∂B2R × (τ0,∞),

ψ(y, τ0) = 0 ∀y ∈ B2R,

(3.114)

Let
‖ψ‖(1)

ν,σ = sup
D2R

τν(1 + |y|)σ
[
|ψ(y, τ)|+ (1 + |y|)|∇yψ(y, τ)|

]
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Lemma 3.8. Let σ ∈ (0, 1), ν > 0 and let ψ solve (3.114). If R1 is sufficiently large, then

‖ψ‖(1)
ν,σ ≤ C‖h‖ν,2+σ. (3.115)

If in (3.114) h is replaced by (1− η)h we get the additional estimate

|ψ(y, t)|+R1|∇ψ(y, t)| ≤ 1

τν
1

Rσ1
|y| ≤ 2R1.

Proof. To prove this lemma, we first claim that for the equation
∂τψ = ∆ψ + h(y, τ) in D2R

ψ = 0 on ∂B2R × (τ0,∞),

ψ(y, τ0) = 0 ∀y ∈ B2R,

in mode 0, we have

‖ψ‖(1)
ν,σ ≤ C‖h‖ν,2+σ. (3.116)

To find the estimate for the solution of (3.114) we need to estimate ‖(1− η)Bψ‖ν,2+σ. We have that

(1− η)|∇W |2 |ψ| ≤ (1− η)τ−ν(1 + |y|)−4−σ‖ψ‖(1)
ν,σ

≤ R−2
1 τ−ν(1 + |y|)−2−σ‖ψ‖(1)

ν,σ.

Similarly

(1− η)|∇W · ∇ψ)W | ≤ (1− η)τ−ν(1 + |y|)−3−σ‖ψ‖(1)
ν,σ

≤ R−1
1 τ−ν(1 + |y|)−2−σ‖ψ‖(1)

ν,σ.

Therefore
‖(1− η)Bψ‖ν,2+σ ≤ CR−1

1 ‖ψ‖(1)
ν,σ.

Then, if ψ satisfies (3.114), using (3.116) we get

‖ψ‖(1)
ν,σ ≤ C‖(1− η)Bψ + h‖ν,2+σ ≤ CR−1

1 ‖ψ‖(1)
ν,σ + C‖h‖ν,2+σ.

If R1 is large enough, we obtain (3.115). �

Proof of Proposition 3.12. We use Lemma 3.8 to find a solution ψ[φ] of (3.114) with h replaced by Aφ, and a
solution ψ[h] of (3.114) with h replaced by (1− η)h, so that ψ[φ] + ψ[h] is the solution of (3.113).

Let σ1 ∈ (0, 1). We also get the estimate

‖ψ[φ]‖(1)
ν,σ1
≤ C‖Aφ‖ν,2+σ1

. (3.117)

We take R1 = Rδ and construct a solution of the system (3.112), (3.113). For this it suffices to find φ such
that 

∂τφ = LWφ+Bψ[φ] +Bψ[h] + h(y, τ) +
∑
j=1,2

c0jZ0jχB1 in D2R1

φ ·W = 0 in D2R1

φ(·, τ0) = 0 in B2R1(τ0).

(3.118)

Let T denote the linear operator given by Lemma 3.3, Applied in D2R1
. Then to solve (3.118) we consider the

fixed point problem
φ = T [Bψ[φ] +Bψ[h] + h].

Let σ ∈ (0, 1). By Lemma 3.3,

‖T [g]‖∗,ν,2+σ ≤ ‖g‖ν,2+σ, (3.119)

where

‖φ‖∗,ν,σ = sup
τν(1 + |y|)3

R3−σ
1

[|φ(y, τ)|+ (1 + |y|)|∇yφ(y, τ)|] .

We claim that if
σ1 < σ
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then

‖Aφ‖ν,2+σ1
≤ CR1(0)σ1−σ‖φ‖∗,ν,σ. (3.120)

Indeed, we have

|φ∆η| ≤ 1

R2
1

τ−ν
R3−σ

1

(1 + |y|)3
|∆η1|‖φ‖∗,ν,σ ≤ Cτ−ν

Rσ1−σ
1

(1 + |y|)2+σ1
‖φ‖∗,ν,σ

≤ CR1(0)σ1−στ−ν
1

(1 + |y|)2+σ1
‖φ‖∗,ν,σ.

Similarly

|∇φ∇η| ≤ 1

R1
τ−ν

R3−σ
1

(1 + |y|)4
|∇η1|‖φ‖∗,ν,σ ≤ Cτ−ν

Rσ1−σ
1

(1 + |y|)2+σ1
‖φ‖∗,ν,σ.

Similar estimates for the remaining terms in A prove (3.120).
¿From (3.117) and (3.120) we find

‖ψ[φ]‖(1)
ν,σ1
≤ CR1(0)σ1−σ‖φ‖∗,ν,σ. (3.121)

Now we claim that

‖Bψ‖ν,2+σ ≤ C‖ψ‖(1)
ν,σ1

. (3.122)

Indeed, since |∇W |2 ≤ C(1 + |y|)−4, we have

|∇W |2 |ψ| ≤ C τ−ν

(1 + |y|)4+σ1
‖ψ‖(1)

ν,σ1
≤ C τ−ν

(1 + |y|)2+σ
‖ψ‖(1)

ν,σ1

Also

|(∇W · ∇ψ)W | ≤ C τ−ν

(1 + |y|)3+σ1
‖ψ‖(1)

ν,σ1
≤ C τ−ν

(1 + |y|)2+σ
‖ψ‖(1)

ν,σ1

These two inequalities prove (3.122).
Combining (3.122) and (3.121) we get

‖Bψ[φ‖ν,2+σ ≤ C‖ψ[φ]‖(1)
ν,σ1
≤ CR1(0)σ1−σ‖φ‖∗,ν,σ.

¿From the above inequality and (3.119) we then get

‖T [Bψ[φ]]‖∗,ν,σ ≤ CR1(0)σ1−σ‖φ‖∗,ν,σ,
which shows that the operator φ 7→ T [Bψ[φ] +Bψ[h] + h] is a contraction if R1(0) is sufficiently large, and we
find a unique fixed point, which satisfies the estimate

‖φ‖∗,ν,σ ≤ C‖T [Bψ[h] + h]‖∗,ν,σ. (3.123)

Next we estimate ‖T [Bψ[h] + h]‖∗,ν,σ. We have by (3.119)

‖T [Bψ[h] + h]‖∗,ν,σ ≤ C‖Bψ[h] + h‖ν,2+σ

≤ C‖ψ[h]‖(1)
ν,σ + ‖h‖ν,2+σ ≤ C‖h‖ν,2+σ,

and hence

‖φ‖∗,ν,σ ≤ C‖h‖ν,2+σ. (3.124)

Similar to (3.121) we have

‖ψ[φ]‖(1)
ν,σ ≤ C‖φ‖∗,ν,σ ≤ C‖h‖ν,2+σ.

and

‖ψ[h]‖(1)
ν,σ ≤ C‖h‖ν,2+σ.

Recalling that ϕ = ηφ+ ψ and R1 = Rδ, we get

|ϕ(y, τ)|+ (1 + |y|)|∇yϕ(y, τ)| ≤ Cτ−ν‖h‖ν,2+σ

{
Rδ(3−σ)

(1+|y|)3 |y| ≤ 2Rδ

1
(1+|y|)σ 2Rδ ≤ |y| ≤ R.
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Finally, thanks to Lemma 3.3, we have that

c0j [h] = − 1´
B1
|Z0j |2

[ˆ
B2R1

h · Z0j +

ˆ
B2R1

(Bψ[φ] +Bψ[h]) · Z0j

]
The last term is a linear operator of h, which we estimate next. A similar computation as in (3.120) shows that

‖Aφ‖ν+δ(σ−σ1),2+σ1
≤ C‖φ‖∗,ν,σ.

This implies
‖ψ[φ]‖ν+δ(σ−σ1),σ1

≤ C‖φ‖∗,ν,σ
and therefore ∣∣∣∣∣

ˆ
B2R1

Bψ[φ] · Z0j

∣∣∣∣∣ ≤ Cτ−νRσ1−σ‖φ‖∗,ν,σ

and using (3.124) ∣∣∣∣∣
ˆ
B2R1

Bψ[φ] · Z0j

∣∣∣∣∣Cτ−νRσ1−σ‖h‖ν,2+σ.

We have for |y| ≤ 2Rδ

|ψ[h](y, t)|+ (1 + |y|)|∇yψ[h](y, t)| ≤ CR−σ1 ‖h‖ν,2+σ.

Then for |y| ≤ 2Rδ we have

|∇W |2 |ψ[h]| ≤ Cτ−ν(1 + |y|)−4R−σ1 ‖h‖ν,2+σ

and

|(∇W · ∇ψ)W | ≤ Cτ−ν(1 + |y|)−4R−σ1 ‖h‖ν,2+σ.

As a consequence we get

|Bψ[h]| ≤ Cτ−ν(1 + |y|)−4R−σ1 ‖h‖ν,2+σ.

and hence ∣∣∣∣∣
ˆ
B2R1

Bψ[h] · Z0j

∣∣∣∣∣ ≤ Cτ−νR−σ1 ‖h‖ν,2+σ.

�

3.2. Landau-Lifshitz-Gilbert equation. The basic ansatz in LLG for the construction is similar to the
HMF’s. We point out some difference and new aspects as follows.

• Ansatz of multiple bubbles

The construction begins with a careful choice of first approximation. Since the target is the 2-sphere, one
has to choose some profile for multiple bubbles which is relatively reasonable to analyze. Here we choose

U∗ = −(N − 1)U∞ +

N∑
j=1

QγjW

(
x− ξ[j]

λj

)
as the first approximation. Notice that |U∗| ≈ 1 at any space-times as those bubbles are essentially separated.
Based on U∗, we then look for solution to LLG in the form

u(x, t) = (1 +A)U∗ + Φ− (Φ · U∗)U∗ (3.125)

for some perturbation term Φ and scalar A. Here the purpose of the scalar A, depending on Φ, is to preserve
the unit-length of the map u(x, t) for any (x, t) ∈ R2 × (0, T ). So here part of the interactions between bubbles
get encoded in the scalar A. Let us denote the error of u as

S[u] := −ut + a(∆xu+ |∇xu|2u)− bu ∧∆xu.

An important observation here is that instead of solving S[u] = 0, we only need to solve

S[u] = Ξ(x, t)U∗
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for some scalar function Ξ. Indeed, since |u| = 1 is kept for all t ∈ (0, T ) and u = U∗+ w̃ where the perturbation
w̃ is uniformly small, then

Ξ(U∗ · u) = S[u] · u = −1

2
∂t(|u|2) +

a

2
∆|u|2 = 0.

Thus Ξ ≡ 0 follows from U∗ ·u ≥ δ0 > 0. This provides us the flexibility to adjust the error terms in U∗ direction,
and we will call this U∗-operation throughout this note. This operation can simplify analysis especially for the
dealing of multiple bubbles.

• Slow decaying errors and non-local corrections by approximate parabolic system

The error S(U∗) contains slowing decaying terms

N∑
j=1

E [j]

0 /∈ L2(R2)

which correspond to the re-scaling and rotation around z-axis. To improve the spatial decay of the error at
remote region, we add well-designed global/non-local corrections around each bubble. Since the operator

−∂t + (a− bU [j]∧)∆x

depends on the blow-up profile U j as well as the parameters λj , γj and ξ[j], one cannot expect explicit represen-
tation formula apriori without knowing the blow-up dynamics. We consider instead an approximate parabolic
operator

−∂t + (a− bU∞∧)∆x

and add correction Φ∗[j]0 around each bubble U [j] with

−∂tΦ∗[j]0 + (a− bU∞∧)∆xΦ∗[j]0 + E [j]

0 ≈ 0.

Then the new error with corrections is given by those created by Φ∗[j]0 and the remainder b(U∞−U [j])∧∆xΦ∗[j]0 .
This is rather important in the analysis of the non-local reduced problems.

• Formulation of the inner-outer gluing system

We next look for the perturbation Φ consisting of inner and outer parts with non-local corrections added

Φ(x, t) =

N∑
j=1

(
η[j]

R (x, t)QγjΦ
[j]

in (y[j], t) + η[j]

dq
(x, t)Φ∗[j]0

)
+ Φout(x, t)

where Φ[j]

in is on the tangent plane of W [j], η[j]

R and η[j]

dq
are suitable cut-off functions near q[j]. Then u solving

LLG implies a coupled inner-outer gluing system for Φ[j]

in and Φout, j = 1, . . . , N
λ2
j∂tΦ

[j]

in =
(
a− bW [j]∧

) [
∆y[j]Φ

[j]

in + |∇y[j]W [j]|2Φ[j]

in + 2
(
∇y[j]W [j] · ∇y[j]Φ

[j]

in

)
W [j]

]
+H[j][Φ[j]

in ,Φout, λj , γj , ξ
[j]] in D2R,

∂tΦout = BΦ,U∗∆xΦout + G[Φ[j]

in ,Φout, λj , γj , ξ
[j]] in R2 × (0, T ),

where W [j] is the j-th bubble expressed in the rescaled variable y[j] = x−ξ[j]
λj

, the right hand sides H[j], G
consists of the error terms, couplings and nonlinear terms depending on the parameters λj , γj , ξ

[j], and BΦ,U∗

is a matrix, that involves the perturbation Φ and the blow-up profile U∗.

For the full system above, finding blow-up of LLG at multiple points now gets reduced to finding well-behaved
inner and outer profiles such that gluing procedure can be implemented. In other words, we need to devise
appropriate weighted topologies in which the gluing system becomes weakly coupled and thus can be solved
by fixed point arguments. For the outer problem, we make use of the sub-Guassian estimate recently proved
in [34]. For the inner problem, good solutions with sufficient decay in space and time can only be captured
with careful choices of the parameters λj , γj , ξ

[j]. We shall develop linear theory for the inner problems with
orthogonality conditions, and these orthogonalities in turn determine the blow-up dynamics.

• Solving the inner problem
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The linear theory for the inner problem is established by analyzing each Fourier mode. Decomposing the
complex form in Fourier modes, one obtains the linearized operator at mode k of the form

λ2
j∂t − (a− ib)

(
∂ρρ +

∂ρ
ρ
− (k + 1)2ρ4 + (2k2 − 6)ρ2 + (k − 1)2

(ρ2 + 1)2

1

ρ2

)
, (3.126)

where ρj = |y[j]|. Then for all the modes k ∈ Z\{−1}, good inner solutions are found by the following

Step 1: we first use energy methods to get a rough pointwise upper bounds for the inner solutions φk;
Step 2: next we use Duhamel’s formula to refine the pointwise bounds and further gain decay estimates;
Step 3: finally we perform re-gluing procedure to obtain better estimates in the innermost region.

See also Appendix D. In Step 1, the following spectral gap for each mode k ∈ Z plays a central role:

Lemma 3.9. Let

λR,k = inf
f∈X0(BR)\{0}

QR,k(f, f)

‖f‖2L2(BR)

for k 6= 1, λR,1 = inf
f∈H1

0 (BR)\{0}

QR,1(f, f)

‖f‖2L2(BR)

for k = 1.

Here

QR,k(f, f) = 2π

ˆ R

0

[
|∂ρf |2 +

(k + 1)2ρ4 + (2k2 − 6)ρ2 + (k − 1)2

(ρ2 + 1)2

|f |2

ρ2

]
ρdρ (3.127)

denotes the quadratic form of the associated linearized operator. Then λR,k is attained by a real-valued function
in X0(BR) for k 6= 1 and H1

0 (BR) for k = 1. When R is large,

λR,0 ∼ (R2 lnR)−1, λR,1 ∼ R−4, λR,−1 & (R2 lnR)−1, λR,k & |k|2R−2 for |k| ≥ 2.

As mentioned earlier, the treatment for mode k = −1 is different from the techniques that we employ for
all the other modes. The reason is the following: as one can see from (3.126), mode −1 can be roughly viewed
as a problem in 2D, which is worse than any other mode as one cannot gain spatial decay in Step 2 above.
Motivated by a recent work of Krieger, Miao and Schlag [61] on the stability of blow-up for wave maps beyond
the equivariant class as well as a series important works of Krieger-Miao-Schlag-Tataru [59, 60, 62], we try to
apply the techniques of distorted Fourier transform (DFT) to this specific mode −1. The general framework
and theories of the spectral analysis of half-line Schrödinger operators have been established earlier by Gesztesy-
Zinchenko [42]. See also recent applications of DFT in the study of asymptotic stability of solitons and kinks
[13, 41, 68, 69].

Fortunately, it turns out that the use of distorted Fourier transform can give us almost the optimal bound.
The results and ideas are given in Appendix C.

• Non-local reduced problems

The development of the linear theory for the inner problem relies on orthogonalities which are achieved by
adjusting modulation parameters λj , γj , ξ

[j]. The dynamics for ξ[j] turns out to be governed by an ODE, which

is relatively straightforward to solve. However, the non-local feature in the corrections Φ∗[j]0 gets inherited by
the mode 0 (λj and γj) of each bubble as the corrections are essentially for mode 0. Here one might expect
the complex system involving both λj and γj is a rather sophisticated form due to the presence of dispersion.

Fortunately, it turns out that the contribution of both Φ∗[j]0 and the remainder b(U∞ − U [j]) ∧∆xΦ∗[j]0 in the
orthogonal equation at mode 0 results in the following well-ordered non-local problemˆ t−λ2

j (t)

0

ṗj(s)

t− s
ds ∼ O(1),

where pj(t) = λj(t)e
iγj(t). This λj-γj system was first found and handled in the context of HMF [22]. Surpris-

ingly, this comes with a similar form in LLG with the presence of dispersion.

• Solving the outer problem

The linear theory for the outer problem is done by using the sub-Gaussian estimate for the fundamental
matrix of the parabolic system in the non-divergence form. Dong-Kim-Lee [34] proved that, for a uniformly
parabolic system in the non-divergence form, if the entries belong to DMOx (Dini mean oscillation in space),
then the fundamental matrix Γ satisfies the sub-Gaussian estimate:

|Γ(x, t, y, s)| ≤ C(t− s)− d2 e−c
(
|x−y|√
t−s

)2−δ

,
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d is the dimension, c, C > 0, and δ ∈ (0, 1). Here the Gilbert damping a > 0 makes sure that the system is
uniformly parabolic. Higher regularity estimates can be obtained by the blow-up argument.

In the matrix BΦ,U∗ appearing in the outer system, the dependence on Φ in the matrix shall be dealt with
via Schauder fixed point theorem, and the key thing here is the dependence on the blow-up profile U∗. In fact,
to ensure DMOx-regularity in U∗, the type II blow-up rate

λ∗ �
√
T − t

plays a crucial rule.

Roughly speaking, the reason why we choose to work in DMOx is that we need weighted C2 estimates, but
C0 cannot ensure C2. On the other hand, one cannot expect good Cα bound either since there is a loss of λ−α∗ .
So one has to work in some intermediate space between C0 and Cα that we choose as certain Dini space.

4. Long-time dynamics for 1-equivariant harmonic map flow, critical heat equation in R4,
Keller-Segel system in R2

In this section, we consider the long-time dynamics for three intimately related problems: the 1-equivariant
harmonic map flow, the critical heat equation in R4, and the Keller-Segel system in R2. These three models
share a common feature that they are all at the borderline separating the regime of slow decay and fast decay.

The harmonic map flow (HMF) from R2 into S2 has the form{
ut = ∆u+ |∇u|2u in R2 × (0,∞)

u(·, 0) = u0 in R2.

A special class of solutions are given by the k-equivariant ansatz

u(reiθ, t) =
(

cos(kθ) sin v(r, t), sin(kθ) sin v(r, t), cos v(r, t)
)
,

and thus HMF gets reduced to a scalar equation for the polar angle vt = vrr +
1

r
vr −

k2 sin(2v)

2r2
, (r, t) ∈ R+ × R+

v(r, 0) = v0, r ∈ R+.
(4.1)

We consider the 1-equivariant class vt = vrr +
vr
r
− sin(2v)

2r2
, (r, t) ∈ R+ × (t0,∞)

v(r, t0) = v0(r), r ∈ R+,
(4.2)

where t0 > 0 is some large initial time. The aim of this section is to understand the possible long-term behavior
of (4.2), and the main result stated below depends precisely on the power decay rate of the initial data v0.

Define the cut-off function η as η(r) = 1 for 0 ≤ r ≤ 1, η(r) = 0 for r ≥ 2, and 0 ≤ η ≤ 1.

Theorem 5. Given any γ > 1, for t0 sufficiently large, there exists an initial data v0(r) with v0(0) = π and

for r ≥ 2
√
t0, |v0(r)| . r1−γ if 1 < γ ≤ 2 and |v0(r)| . r1−γ + (t0 ln t0)−1re−

r2

32t0 if γ > 2, such that the global
solution of (4.2) takes the form

v(r, t) = η

(
r√
t

)[
π − 2 arctan

(
r

µ(t)

)]
+O

(
r〈r〉−1t−

1
4 min{γ−1,1}

)
,

vr(r, t) = −2η

(
r√
t

)
µ(t)−1

1 + (µ(t)−1r)2
+O

(
µ(t)−1t−

1
2 min{γ−1,1}

)
,

where

µ(t) =


Cµ(γ)t1−

γ
2 (ln t)−1

(
1 +O

(
(ln t)−1 ln ln t

))
, if 1 < γ < 2

Cµ(γ)
(
1 +O

(
(ln t)−1 ln ln t

))
, if γ = 2

(ln t)−1
(
1 +O

(
(ln t)−1 ln ln t

))
, if γ > 2

with a constant Cµ(γ) > 0 depending on γ. In particular, ‖vr(·, t)‖L∞([0,∞)) = 2µ(t)−1
(

1 +O
(
t−

1
2 min{γ−1,1}

))
.
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Remark 4.1. A similar approach in the proof of [100, Lemma A.3] gives the lower bound for |v0(r)|. In fact,
the initial data of the solutions that we constructed satisfies v0(r) ∼ r1−γ as r →∞.

Due to the natural connection between the k-equivariant harmonic map flow and the critical heat equation,
we also built the long time behavior for the critical heat equation in dimension 4{

ut = ∆u+ u3 in R4 × (t0,∞),

u(x, t0) = u0(x) in R4.
(4.3)

Theorem 6 ([100]). For t0 sufficiently large, there exists initial value u0 > 0 with exponential decay such that
the positive solution u(x, t) to (4.3) blows up at infinite time. More precisely, the solution takes the form of the
sharply scaled bubble

u(x, t) = η

(
x− ξ√

t

)
µ−1(t)w

(
x− ξ(t)
µ(t)

)
+O

(
(ln t)−1 min{t−1, |x|−2}

)
where w(y) = 2

3
2

1
1+|y|2 . The blow-up rate and location are given by

µ(t) =
1

ln t

(
1 +O

( ln ln t

ln t

))
, ξ(t) = O(t−1).

The dynamics for establishing Theorem 6 is original from the one in [18]. Consider the classical Keller-Segel
problem in R2, 

ut =∆u−∇ · (u∇v) in R2 × (0,∞),

v =(−∆R2)−1u :=
1

2π

ˆ
R2

log
1

|x− z|
u(z, t) dz,

u(·, 0) = u0 ≥ 0 in R2.

(4.4)

Theorem 7 ([18]). There exists a nonnegative, radially symmetric function u∗0(x) with critical mass
´
R2 u

∗
0(x) dx =

8π and finite second moment
´
R2 |x|2 u∗0(x) dx < +∞ such that for every u1(x) sufficiently close (in suit-

able sense) to u∗0 with
´
R2 u1 dx = 8π, we have that the solution u(x, t) of system (4.4) with initial condition

u(x, 0) = u1(x) has the form

u(x, t) =
1

λ(t)2
U
(x− ξ(t)

λ(t)

)
(1 + o(1)), U(y) =

8

(1 + |y|2)2
(4.5)

uniformly on bounded sets of R2, and

λ(t) =
c√
log t

(1 + o(1)), ξ(t)→ q as t→ +∞,

for some number c > 0 and some q ∈ R2.

Our results are inspired by the formal analysis in [35]. Fila and King [35] conjectured that for{
ut = ∆u+ |u|

4
N−2u, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN
(4.6)

with initial data lim
r→∞

rγ̃u0(r) = A for some A > 0, the ‖u(·, t)‖L∞(RN )-norm of threshold solution obeys

N−2
2 < γ̃ < 2 γ̃ = 2 γ̃ > 2

N = 3 t
γ̃−1
2 t

1
2 (ln t)−1 t

1
2

N = 4 t−
2−γ̃
2 ln t 1 ln t

N = 5 t−
3(2−γ̃)

2 (ln t)−3 1

In particular, the trichotomy constructed in Theorem 5 can be viewed as an analogue of the Fila-King diagram
in R4. Recently, global unbounded solutions for Fujita equation (4.6) in R3 and R4 have been rigorously
constructed in [26, 100], confirming the existence of upper off-diagonal entries in the above diagram (including
a sub-case 1 < γ̃ < 2 when N = 3).
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The heart of the construction is non-local dynamics, governing the scaling parameter µ(t) in a unified way:
ˆ t−µ2(t)

t/2

µ̇(s)

t− s
ds

:=Inl

+
µ(t)

t

:=Iss

∼ 2Cγvγ(t)

:=Iic

, ∀γ > 1. (4.7)

Here, Inl is in fact from a non-local correction dealing with the slow spatial decay. Such non-local/global
feature usually appears in lower dimensional problems and was first observed in [22, 26]. The second term Iss
comes from a self-similar correction improving the error in the intermediate region, and the last term Iic is the
contribution from the initial condition v0 whose expression depends only on γ (cf. (4.12)). The trichotomy in
Theorem 5 is captured by approximating the non-local problem by a leading ODE, but the solvability of the
full non-local problem is rather involved.

In this part, we will give the proof of Theorem 5 as a prototype for the construction of global solutions.

We use the following notations.

• For x ∈ Rd, t0 ≤ t and admissiable functions g(x), h(x, t), denote

(Td ◦ g) (x, t) := (4πt)−
d
2

ˆ
Rd
e−
|x−y|2

4t g(y)dy,

(Td • h) (x, t, t0) :=

ˆ t

t0

ˆ
Rd

[4π(t− s)]−
d
2 e−

|x−y|2
4(t−s) h(y, s)dyds.

• For any c ∈ R, we use the notation c− (resp. c+) to denote a constant less (resp. greater) than c and
can be chosen arbitrarily close to c.

4.1. Approximation and corrections. The first approximation is built on the one parameter family of steady
states to the equation (4.2)

Qµ = π − 2 arctan

(
r

µ

)
, µ > 0.

Then we have

π − 2 arctan (ρ) ∼ 〈ρ〉−1, sin(2Qµ) =
4ρ(ρ2 − 1)

(ρ2 + 1)2
, cos(2Qµ)− 1 = − 8ρ2

(ρ2 + 1)2
for ρ :=

r

µ
. (4.8)

We take the first approximate solution of the equation (4.2) to be

v∗ = η

(
r√
t

)
Qµ, µ = µ(t),

and define the error operator as

E[v] := −vt + vrr +
1

r
vr −

sin(2v)

2r2
.

Let us write
z :=

r√
t
.

Then we have

E[v∗] = µ−1µ̇ρ∂ρQµη(z) +
1

t
η′′(z)Qµ +

2

µ
√
t
η′(z)∂ρQµ

+

(
r

2t
√
t

+
1

r
√
t

)
η′(z)Qµ + η(z)

sin(2Qµ)

2r2
− sin(2η(z)Qµ)

2r2

= E1 [µ] + E2 [µ] + η(z)
sin(2Qµ)

2r2
− sin(2η(z)Qµ)

2r2

(4.9)
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where

E2 [µ] := µ−1µ̇ρ∂ρQµη(z) = r
−2µ̇

r2 + µ2
η(z), E1 [µ] := E11 [µ] + E12 [µ] ,

E11 [µ] :=
2

tρ
η′′(z)− 4

µ
√
tρ2

η′(z) +
2

ρ

(
r

2t
√
t

+
1

r
√
t

)
η′(z)

= 2rµt−2
(
z−2η′′(z) + 2−1z−1η′(z)− z−3η′(z)

)
,

E12 [µ] :=

[
1

t
η′′(z) +

(
r

2t
√
t

+
1

r
√
t

)
η′(z)

](
Qµ −

2

ρ

)
+

2

µ
√
t

(
∂ρQµ +

2

ρ2

)
η′(z).

(4.10)

Throughout this section, we make the ansatz µ(t) <
√
t/9. Then

E12 [µ] = O
(
rt−3µ31{

√
t≤r≤2

√
t}

)
. (4.11)

The initial data plays an important role in determining the leading term of µ. Set

∂tΨ∗ = ∂rrΨ∗ +
1

r
∂rΨ∗ −

1

r2
Ψ∗, Ψ∗(r, 0) = r〈r〉−γ ,

where Ψ∗ is given by

Ψ∗(r, t) = rψ∗(r, t), ψ∗(r, t) = (4πt)
−2
ˆ
R4

e−
|re1−y|

2

4t 〈y〉−γdy

with e1 := [1, 0, 0, 0]. For t ≥ 1, the leading term of ψ∗ is given by

ψ∗(0, t) = vγ(t)(Cγ + gγ(t)),

where

vγ(t) =


t−

γ
2 , γ < 4

t−2 ln(1 + t), γ = 4

t−2, γ > 4,

Cγ =


(4π)−2

´
R4 e
− |z|

2

4 |z|−γdz, γ < 4

(4π)
−2 1

2 |S
3|, γ = 4

(4π)
−2 ´

R4〈y〉−γdy, γ > 4,

(4.12)

gγ(t) = O

(


t−1, γ < 2

t−1〈ln t〉, γ = 2

t
γ−4
2 , 2 < γ < 4

(ln(1 + t))−1, γ = 4

t
4−γ
2 , γ < 6

t−1〈ln t〉, γ = 6

t−1 γ > 6

)
.

The remainder term is bounded by

|ψ∗(r, t)− ψ∗(0, t)| =
∣∣∣ (4πt)−2

ˆ
R4

ˆ 1

0

e−
|θre1−y|

2

4t
−(θre1 − y) · re1

2t
〈y〉−γdθdy

∣∣∣
. rt−

5
2

ˆ
R4

ˆ 1

0

e−
|θre1−y|

2

8t 〈y〉−γdθdy . rt− 1
2 vγ(t).

Combining [100, Lemma A.3], we have

ψ∗ =
[
vγ(t) (Cγ + gγ(t)) +O

(
rt−

1
2 vγ(t)

)]
1
{r≤2t

1
2 }

+O

(
r−γ , γ < 4

r−4 + t−2e−
r2

16t ln(r + 2), γ = 4

r−γ + t−2e−
r2

16t , γ > 4

)
1
{r>2t

1
2 }
.

(4.13)
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4.1.1. Non-local corrections. We add two corrections Φi, i = 1, 2 to transfer the error Ei of slow spatial decay,
where

∂tΦi = ∂rrΦi +
1

r
∂rΦi −

1

r2
Φi + Ei [µ] . (4.14)

Set Φi = rϕi, i = 1, 2. It suffices to consider

∂tϕi = ∂rrϕi +
3

r
∂rϕi + r−1Ei [µ] . (4.15)

By a similar reason to derive [100, Lemma 2.1], the leading term of ϕ1 is obtained from the self-similar
solution, while the remaining smaller errors are resolved using Duhamel’s formula. More specifically,

ϕ1 = ϕ1[µ] := µϕ̂1 + T4 •
(
r−1E12[µ]− µ̇ϕ̂1

)
(r, t,

t0
2

), ϕ̂1 := 2r−2

(
e−

r2

4t − η(
r√
t
)

)
(4.16)

and ϕ̂1 satisfies

ϕ̂1 =
(
−2−1t−1 +O(t−2r2)

)
1
{|r≤t

1
2 }

+O
(
r−2e−

r2

4t

)
1
{r>t

1
2 }
,

|∂rϕ̂1| . rt−21
{r≤t

1
2 }

+ r−1t−1e−
r2

4t 1
{r>t

1
2 }
.

(4.17)

By the same argument for deriving [100, Lemma 2.2], ϕ2 is given by Duhamel’s formula

ϕ2 = ϕ2[µ] := T4 •
(
r−1E2[µ]

)
(r, t,

t0
2

). (4.18)

Denote ϕ = ϕ[µ] := ϕ1 + ϕ2.

Proposition 4.1. Suppose that C−1
1 µ(t) ≤ µ(s) ≤ C1µ(t) for all s ∈ [t, 2t] with a constant C1 > 1, µ(t) ∼

µ∗(t) ≤
√
t/2; µ1 satisfies |µ1| ≤ µ/2. Then we have

|ϕ[µ]| . (µt−1 + g[µ])1
{r≤2t

1
2 }

+
(
µr−2 + g[µ]

)
e−

r2

32t1
{r>2t

1
2 }

+ sup
t1∈[t/2,t]

|µ̇(t1)|
(
〈ln(µ−1t

1
2 )〉1{r≤µ(t)} + 〈ln(r−1t

1
2 )〉1

{µ(t)<r≤2t
1
2 }

+ tr−2e−
r2

32t1
{r>2t

1
2 }

) (4.19)

where g[µ] := t−2

ˆ t

t0/2

(
s−1µ3(s) + s|µ̇(s)|

)
ds. For r ≤ 2t

1
2 ,

F [µ](r, t) := ϕ[µ] + 2−1
(
µt−1 +

ˆ t−µ2
∗

t/2

µ̇(s)

t− s
ds
)

= µ
(
ϕ̂1 + 2−1t−1

)
+ T4 •

(
r−1E12[µ]− µ̇ϕ̂1

)
(r, t,

t0
2

) + T4 • (r−1E2[µ])(r, t,
t0
2

) + 2−1

ˆ t−µ2
∗

t/2

µ̇(s)

t− s
ds

= O
(
µt−2r2 + sup

t1∈[t/2,t]

|µ̇(t1)|+ min
{
µ−1r, ln t

}
sup

t1∈[t/2,t−µ2
∗(t)]

|µ̇(t1)|+ g[µ]
)
.

(4.20)

∣∣ϕ[µ+ µ1]− ϕ[µ]
∣∣ . (|µ1|t−1 + g̃[µ, µ1]

)
1
{r≤2t

1
2 }

+
(

sup
t1∈[t/2,t]

|µ1(t1)|r−2 + g̃[µ, µ1]
)
e−

r2

32t1
{r>2t

1
2 }

+ sup
t1∈[t/2,t]

(
|µ̇1|+ µ−1 |µ̇µ1|

)
(t1)

(
〈ln(µ−1t

1
2 )〉1{r≤µ(t)} + 〈ln(r−1t

1
2 )〉1

{µ(t)<r≤2t
1
2 }

+ tr−2e−
r2

32t1
{r>2t

1
2 }

)
(4.21)

where

g̃[µ, µ1] := t−2µ2 sup
t1∈[t/2,t]

|µ1(t1)|+ t−2

ˆ t/2

t0/2

[
s
(
|µ̇1|+ µ−1 |µ̇µ1|

)
(s) + s−1|µ1(s)|µ2(s)

]
ds. (4.22)
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For r ≤ 2t
1
2 ,

F̃ [µ, µ1](r, t) := ϕ[µ+ µ1]− ϕ[µ] + 2−1
(
µ1t
−1 +

ˆ t−µ2
∗

t/2

µ̇1(s)

t− s
ds
)

= µ1

(
ϕ̂1 + 2−1t−1

)
+ T4 •

(
r−1 (E12[µ+ µ1]− E12[µ])− µ̇1ϕ̂1

)
(r, t,

t0
2

)

+ T4 •
(
r−1 (E2[µ+ µ1]− E2[µ])

)
(r, t,

t0
2

) + 2−1

ˆ t−µ2
∗

t/2

µ̇1(s)

t− s
ds

= O
(
|µ1|t−2r2 +

(
1 + min

{
µ−1r, ln t

})
sup

t1∈[t/2,t]

(
|µ̇1|+ µ−1|µ̇µ1|

)
(t1) + g̃[µ, µ1]

)
.

(4.23)

Remark 4.2. The precise form (4.20), (4.23) are prepared for solving the leading term and minor terms of the
scaling parameter µ respectively.

Proof. The proof is similar to [100, Lemma 2.1, Lemma 2.2]. See also [18, Lemma 7.1, Lemma 7.3]. First, we
estimate ϕ1 given in (4.16). The first term ϕ̂1 is deduced in [100, Lemma 2.1], which satisfies

∂tϕ̂1 = ∂rrϕ̂1 +
3

r
∂rϕ̂1 + 2t−2

(
z−2η′′(z) + 2−1z−1η′(z)− z−3η′(z)

)
.

By (4.11) and [100, Lemma A.1], we have∣∣T4 •
(
r−1E12[µ]

)∣∣ . t−2e−
r2

16t

ˆ t/2

t0/2

µ3(s)s−1ds+ µ3t−21
{r≤t

1
2 }

+ µ3t−1r−2e−
r2

16t1
{r>t

1
2 }
. (4.24)

r−1 (E12[µ+ µ1]− E12[µ]) =

[
1

t
η′′(z) +

(
r

2t
√
t

+
1

r
√
t

)
η′(z)

]ˆ 1

0

−2µ1(µ+ θµ1)2

r2 [(µ+ θµ1)2 + r2]
dθ

+
η′(z)√
t

4µ1

r3

ˆ 1

0

3r2(µ+ θµ1)2 + (µ+ θµ1)4

[r2 + (µ+ θµ1)2]
2 dθ,

(4.25)

which implies
r−1 |E12[µ+ µ1]− E12[µ]| . |µ1|µ2t−31{

√
t≤r≤2

√
t}. (4.26)

So we get∣∣T4 •
(
r−1 (E12[µ+ µ1]− E12[µ])

)∣∣
. t−2e−

r2

16t

ˆ t/2

t0/2

|µ1(s)|µ2(s)s−1ds+ sup
t1∈[t/2,t]

|µ1(t1)|
(
µ2t−21

{r≤t
1
2 }

+ µ2t−1r−2e−
r2

16t1
{r>t

1
2 }

)
.

(4.27)

Note that |µ̇ϕ̂1| . |µ̇|t−11
{r≤t

1
2 }

+ |µ̇|r−2e−
r2

4t 1
{r>t

1
2 }

. By Lemma A.2, one has

|T4 • (µ̇ϕ̂1)| . t−2e−
r2

32t

ˆ t/2

t0/2

s|µ̇(s)|ds+ sup
t1∈[t/2,t]

|µ̇(t1)|
(
1
{r≤t

1
2 }

+ tr−2e−
r2

32t1
{r>t

1
2 }

)
. (4.28)

Similarly,

|T4 • (µ̇1ϕ̂1)| . t−2e−
r2

32t

ˆ t/2

t0/2

s|µ̇1(s)|ds+ sup
t1∈[t/2,t]

|µ̇1(t1)|
(
1
{r≤t

1
2 }

+ tr−2e−
r2

32t1
{r>t

1
2 }

)
. (4.29)

Next, we consider ϕ2. By Lemma A.1,∣∣T4 •
(
r−1E2

)∣∣ . t−2e−
r2

16t

ˆ t/2

t0/2

s|µ̇(s)|ds

+ sup
t1∈[t/2,t]

|µ̇(t1)|
(
〈ln(µ−1t

1
2 )〉1{r≤µ(t)} + 〈ln(r−1t

1
2 )〉1

{µ(t)<r≤t
1
2 }

+ tr−2e−
r2

16t1
{r>t

1
2 }

)
.

(4.30)

Combining (4.17), (4.24), (4.28), (4.30), we get (4.19). Note that

r−1 (E2[µ+ µ1]− E2[µ]) = −2

[
µ̇1

r2 + (µ+ µ1)2
+

−µ̇µ1 (2µ+ µ1)

[r2 + (µ+ µ1)2] (r2 + µ2)

]
η(z). (4.31)

For µ1 satisfying |µ1| ≤ µ/2, we have∣∣r−1 (E2[µ+ µ1]− E2[µ])
∣∣ . (|µ̇1|+ µ−1 |µ̇µ1|

)
(r + µ)

−2
η(z). (4.32)
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By Lemma A.1,∣∣T4 •
(
r−1 (E2[µ+ µ1]− E2[µ])

)∣∣ . t−2e−
r2

16t

ˆ t/2

t0/2

s
(
|µ̇1|+ µ−1 |µ̇µ1|

)
(s)ds

+ sup
t1∈[t/2,t]

∣∣(|µ̇1|+ µ−1 |µ̇µ1|
)

(t1)
∣∣ (〈ln(µ−1t

1
2 )〉1{r≤µ(t)} + 〈ln(r−1t

1
2 )〉1

{µ(t)<r≤t
1
2 }

+ tr−2e−
r2

16t1
{r>t

1
2 }

)
.

(4.33)
Combining (4.17), (4.27), (4.29), (4.33), we get (4.21).

In order to extract the dominating part of ϕ2 for later purpose of solving the orthogonal equation, we split
ϕ2 into several parts to estimate.

ϕ2 =

(ˆ t/2

t0/2

+

ˆ t−µ2
∗(t)

t/2

+

ˆ t

t−µ2
∗(t)

) ˆ
R4

(4π(t− s))−2e−
|x−y|2
4(t−s) |y|−1E2[µ](y, s)dyds := I1[µ] + I2[µ] + I3[µ].

For I1, by Lemma A.1 (for the cases v(s) = |µ̇(s)|1{t0/2≤s≤t/2} and v(s) =
(
|µ̇1|+ µ−1 |µ̇µ1|

)
(s)1{t0/2≤s≤t/2}),

we have

|I1[µ]| . t−2e−
r2

16t

ˆ t/2

t0/2

s|µ̇(s)|ds,
∣∣I1[µ+ µ1]− I1[µ]

∣∣ . t−2e−
r2

16t

ˆ t/2

t0/2

s
(
|µ̇1|+ µ−1 |µ̇µ1|

)
(s)ds. (4.34)

For I3, given s ∈ [t− µ2
∗(t), t], we have∣∣r−1E2[µ](r, s)
∣∣ . sup

t1∈[t−µ2
∗(t),t]

|µ̇(t1)| (r + µ(t))
−2

1
{r≤2t

1
2 }
,∣∣r−1 (E2[µ+ µ1]− E2[µ]) (r, s)

∣∣ . sup
t1∈[t−µ2

∗(t),t]

(
|µ̇1|+ µ−1 |µ̇µ1|

)
(t1) (r + µ(t))

−2
1
{r≤2t

1
2 }
.

Then

|I3[µ]| . sup
t1∈[t−µ2

∗(t),t]

|µ̇(t1)|
ˆ t

t−µ2
∗(t)

(t− s)−2

ˆ 2
√
t

0

e−
r2

4(t−s) (r + µ(t))
−2
r3drds . sup

t1∈[t−µ2
∗(t),t]

|µ̇(t1)| ,

|I3[µ+ µ1]− I3[µ]| . sup
t1∈[t−µ2

∗(t),t]

(
|µ̇1|+ µ−1 |µ̇µ1|

)
(t1).

(4.35)

For I2, more delicate calculations are needed to single out the leading term. Set

I2[µ](0, t) := I∗[µ] + I021[µ] + I022[µ]

where

I∗[µ] := − 2

ˆ t−µ2
∗(t)

t/2

ˆ
R4

(4π(t− s))−2e−
|y|2

4(t−s) µ̇(s)|y|−2dyds = −2−1

ˆ t−µ2
∗(t)

t/2

µ̇(s)

t− s
ds,

I021[µ] := 2

ˆ t−µ2
∗(t)

t/2

ˆ
R4

(4π(t− s))−2e−
|y|2

4(t−s) µ̇(s)|y|−2
(

1− η(
|y|√
s

)
)
dyds,

I022[µ] :=

ˆ t−µ2
∗(t)

t/2

ˆ
R4

(4π(t− s))−2e−
|y|2

4(t−s)

( −2µ̇(s)

|y|2 + µ2(s)
+ 2µ̇(s)|y|−2

)
η(
|y|√
s

)dyds.

For I021, by the same calculation in [100, p. 10], we get

|I021[µ]| . sup
t1∈[t/2,t−µ2

∗(t)]

|µ̇(t1)|,
∣∣I021[µ+ µ1]− I021[µ]

∣∣ . sup
t1∈[t/2,t−µ2

∗(t)]

|µ̇1(t1)|. (4.36)

For I022, since
−2µ̇(s)

|y|2 + µ2(s)
+ 2µ̇(s)|y|−2 =

2µ̇(s)µ2(s)

|y|2 (|y|2 + µ2(s))
,

2 (µ̇+ µ̇1) (s) (µ+ µ1)
2

(s)

|y|2
[
|y|2 + (µ+ µ1)

2
(s)
] − 2µ̇(s)µ2(s)

|y|2 (|y|2 + µ2(s))

=
2

|y|2

{
µ̇1(s)(µ+ µ1)2(s)

|y|2 + (µ+ µ1)2(s)
+

µ̇(s)µ1(s) (2µ+ µ1) (s)|y|2

[|y|2 + (µ+ µ1)2(s)] (|y|2 + µ2(s))

}
= O

(
µ2
(
|µ̇1|+ µ−1|µ̇µ1|

)
|y|−2 (|y|+ µ)

−2
)
,

(4.37)
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by the same calculation in [100, pp. 10-11], we have

|I022[µ]| . sup
t1∈[t/2,t−µ2

∗(t)]

|µ̇(t1)|, |I022[µ+ µ1]− I022[µ]| . sup
t1∈[t/2,t−µ2

∗(t)]

∣∣(|µ̇1|+ µ−1|µ̇µ1|
)

(t1)
∣∣ . (4.38)

By the same calculation in [100, pp. 11-12], then

|I2[µ](r, t)− I2[µ](0, t)| . min
{
µ−1r, ln t

}
sup

t1∈[t/2,t−µ2
∗(t)]

|µ̇(t1)|,

|(I2[µ+ µ1](r, t)− I2[µ+ µ1](0, t))− (I2[µ](r, t)− I2[µ](0, t))|
. min

{
µ−1r, ln t

}
sup

t1∈[t/2,t−µ2
∗(t)]

(
|µ̇1|+ µ−1|µ̇µ1|

)
(t1).

(4.39)

Combining (4.17), (4.24), (4.28), (4.34), (4.35), (4.36), (4.38), and (4.39), we get (4.20). Combining (4.17),
(4.27), (4.29), (4.34), (4.35), (4.36), (4.38), and (4.39), we get (4.23). The proposition is concluded.

�

4.2. Elliptic improvement and the leading dynamics of µ(t). In order to improve the time decay of the
error, we will introduce Φe by solving the linearized elliptic equation. Let us first denote

v1(r, t) := η(z)Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe

where η(4z) is used to restrict the influence of Φe within the self-similar region. Then we compute

E[v1] = − ∂t (η(4z)Φe) + ∂rr (η(4z)Φe) +
1

r
∂r (η(4z)Φe) +

1

r2
(Φ1 + Φ2 + Ψ∗)

− sin[2(η(z)Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe)]

2r2
+ η(z)

sin(2Qµ)

2r2

= − ∂t (η(4z)Φe) + ∂rr (η(4z)Φe) +
1

r
∂r (η(4z)Φe)− η(4z)

cos(2Qµ)

r2
Φe

− η(z)
cos(2Qµ)− 1

r2
(Φ1 + Φ2 + Ψ∗) + Ee

(4.40)

where

Ee := −η(z)
1

2r2

[
sin[2(Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe)]− sin(2Qµ)− 2 cos(2Qµ) (Φ1 + Φ2 + Ψ∗ + η(4z)Φe)

]
+

1

2r2

[
− sin[2(η(z)Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe)] + η(z) sin[2(Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe)]

+ 2 (1− η(z)) (Φ1 + Φ2 + Ψ∗)
]
.

(4.41)
Roughly speaking, we will choose Φe(ρ, t) which solves

∂rrΦe +
1

r
∂rΦe −

cos(2Qµ)

r2
Φe ≈ η(z)

cos(2Qµ)− 1

r2
(Φ1 + Φ2 + Ψ∗).

By (4.8), it is equivalent to

∂ρρΦe +
1

ρ
∂ρΦe −

ρ4 − 6ρ2 + 1

ρ2(ρ2 + 1)2
Φe ≈ η(

µρ√
t
)µ

−8ρ

(ρ2 + 1)2
(ϕ[µ](µρ, t) + ψ∗(µρ, t)) .

The linearly independent kernels Z, Z̃ of the homogeneous part satisfying the Wronskian W [Z, Z̃] = ρ−1 are
given as follows:

Z(ρ) =
ρ

ρ2 + 1
, Z̃(ρ) =

ρ4 + 4ρ2 ln ρ− 1

2ρ(ρ2 + 1)
.

Let us write the orthogonality

M[µ] :=

ˆ ∞
0

η(
µρ√
t
)

8ρ

(ρ2 + 1)2
(ϕ[µ](µρ, t) + ψ∗(µρ, t))Z(ρ)ρdρ

=

ˆ ∞
0

η(
µρ√
t
)

8ρ3

(ρ2 + 1)3
(ϕ[µ](µρ, t) + ψ∗(µρ, t)) dρ.

(4.42)
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Written as the leading term of µ, µ0 will be determined soon. By (4.13) and using (4.20) for the case µ∗ = µ0,
we have

M[µ] =

ˆ ∞
0

η(
µρ√
t
)

8ρ3

(ρ2 + 1)3

[
− 2−1

(
µt−1 +

ˆ t−µ2
0

t/2

µ̇(s)

t− s
ds
)

+O
(
µ3t−2ρ2 + 〈ρ〉 sup

t1∈[t/2,t]

|µ̇(t1)|+ g[µ]
)

+ vγ(t)(Cγ + gγ(t)) +O(µρt−
1
2 vγ(t))

]
dρ

=

[
−
(
µt−1 +

ˆ t−µ2
0

t/2

µ̇(s)

t− s
ds
)

+ 2vγ(t)(Cγ + gγ(t))

][
1 +

ˆ ∞
0

(
η(
µρ√
t
)− 1

) 4ρ3

(ρ2 + 1)3
dρ
]

+O
(
µ3t−2 ln(t

1
2µ−1) + sup

t1∈[t/2,t]

|µ̇(t1)|+ g[µ]
)

+O(µt−
1
2 vγ(t)),

(4.43)

where we used
´∞

0
4ρ3

(ρ2+1)3 dρ = 1.

In order to make M[µ] close to 0, we single out the leading terms

µt−1 +

ˆ t−µ2
0

t/2

µ̇(s)

t− s
ds ≈ 2vγ(t) (Cγ + gγ(t)) . (4.44)

The leading term µ0 of the scaling parameter µ will be derived by balancing (4.44). Suppose µ0 has the form
µ0(t) = c1t

1−p0(ln t)−1 with 1/2 ≤ p0 < 1, then µ̇0(t) = c1(1 − p0)t−p0(ln t)−1
[
1− (1− p0)−1(ln t)−1

]
. For

2 ≤ t1 ≤ t/2, one has

ˆ t−µ2
0(t)

t1

µ̇0(s)

t− s
ds =

ˆ 1−µ
2
0(t)

t

t1
t

µ̇0(tz)

1− z
dz

= c1(1− p0)t−p0
ˆ 1−µ

2
0(t)

t

t1
t

(1− z)−1z−p0(ln(tz))−1
[
1− (1− p0)−1(ln(tz))−1

]
dz

= c1(1− p0)(2p0 − 1)t−p0 +O(t−p0(ln t)−1 ln ln t),

where we have used the following estimates in the last step

ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1z−p0(ln(tz))−1dz

= (ln t)−1

ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1z−p0dz +

ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1z−p0
(
(ln(tz))−1 − (ln t)−1

)
dz

= (ln t)−1

ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1dz + (ln t)−1

ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1
(
z−p0 − 1

)
dz

+

ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1z−p0
− ln z

(ln t+ ln z) ln t
dz

= (ln t)−1
(
− ln(t−1µ2

0(t)) + ln(1− t−1t1)
)

+O((ln t)−1)

= (ln t)−1
(
− ln(c21)− (1− 2p0) ln t+ 2 ln ln t+ ln(1− t1t−1)

)
+O((ln t)−1)

= 2p0 − 1 +O((ln t)−1 ln ln t);

and ˆ 1−µ
2
0(t)

t

t1
t

(1− z)−1z−p0(ln(tz))−2dz = O((ln t)−1)
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since
ˆ 1−µ

2
0(t)

t

1
2

(1− z)−1z−p0(ln(tz))−2dz = O((ln t)−2)

ˆ 1−µ
2
0(t)

t

1
2

(1− z)−1dz = O((ln t)−1),

ˆ 1
2

t1
t

(1− z)−1z−p0(ln(tz))−2dz ∼
ˆ 1

2

t1
t

z−p0(ln(tz))−2dz = tp0−1

ˆ t
2

t1

a−p0(ln a)−2da = O((ln t)−2).

• For 1 < γ < 2, in order to balance out (4.44),

c1t
−p0(ln t)−1 + c1(1− p0)(2p0 − 1)t−p0 +O

(
t−p0(ln t)−1 ln ln t

)
≈ 2vγ(t) (Cγ + gγ(t)) ,

we take p0 = γ
2 , c1 = (1− γ

2 )−1(γ − 1)−12Cγ , which implies µ0(t) = (1− γ
2 )−1(γ − 1)−12Cγt

1− γ2 (ln t)−1.

• For γ > 2, by the same argument in [100, pp. 13-14], a good approximation is µ0 = (ln t)−1.
• For γ = 2, we choose µ0 = 2Cγ + (ln t)−1 by a similar argument as in the case γ > 2.

In conclusion, the non-local problem (4.44) has a good approximation of the form

µ0(t) :=


(1− γ

2 )−1(γ − 1)−12Cγt
1− γ2 (ln t)−1, 1 < γ < 2

2Cγ + (ln t)−1, γ = 2

(ln t)−1, γ > 2,

(4.45)

where the constant Cγ is defined in (4.12). Obviously, µ0 � t
1
2 since γ > 1. Moreover, for γ ≥ 2, by the similar

calculation for the case 1 < γ < 2 shown above (see also [100, p. 14], which is related to the case γ > 2), we
obtain

−
(
µ0t
−1 +

ˆ t−µ2
0

t/2

µ̇0(s)

t− s
ds
)

+ 2vγ(t)(Cγ + gγ(t)) = O

(
t−

γ
2 (ln t)−1 ln ln t, 1 < γ < 2

t−1(ln t)−2, γ = 2

t−1(ln t)−2 ln ln t, γ > 2

)
= O (ln ln t|µ̇0|) .

(4.46)
This cancellation is crucial when solving the orthogonal equations.

After several times correction, we achieve that for t0 sufficiently large, there exists µ̄0 = µ̄0(t) such that

µ̄0 = µ0

(
1 +O

(
(ln t)−1 ln ln t

))
, ˙̄µ0 = µ̇0

(
1 +O

(
(ln t)−1 ln ln t

))
,

8µ̄0/9 ≤ µ0 ≤ 9µ̄0/8, 8| ˙̄µ0|/9 ≤ |µ̇0| ≤ 9| ˙̄µ0|/8, M[µ̄0] = O(t−2).
(4.47)

The following corollary is a direct consequence of Proposition 4.1 by our choice of µ0 in (4.45).

Corollary 4.1. For f ∼ µ0, |ḟ | . |µ̇0| and µ1 satisfying |µ1| ≤ f/2, we have

g[f ] . |µ̇0| ∼

{
t−

γ
2 (ln t)−1, 1 < γ < 2

t−1(ln t)−2, γ ≥ 2.
(4.48)

|ϕ[f ]| .


t−

γ
2 1{r≤µ0} + t−

γ
2 (ln t)−1

(
〈ln(r−1t

1
2 )〉1

{µ0<r≤t
1
2 }

+ e−
r2

32t1
{r>t

1
2 }

)
, if 1 < γ < 2

t−1e−
r2

32t , if γ = 2

(t ln t)−1e−
r2

32t , if γ > 2.

(4.49)

Combining (4.13) and (4.49), we have

|ϕ[f ]|+ |ψ∗| .

t
− γ2 1

{r≤2t
1
2 }

+ r−γ1
{r>2t

1
2 }
, 1 < γ ≤ 2

(t ln t)−11
{r≤2t

1
2 }

+
(
r−γ + (t ln t)−1e−

r2

32t

)
1
{r>2t

1
2 }
, γ > 2.

(4.50)

|∂rϕ[f ]|+ |∂rψ∗| . 1{r≤9
√
t}µ
−1
0


t−

γ
2 (ln t)−

1
2 , 1 < γ < 2

t−1(ln t)−1, γ = 2

t−1(ln t)−
3
2 , γ > 2

+ 1{r>9
√
t}t
− 1

2

{
r−γ , 1 < γ ≤ 2

r−γ + (t ln t)−1e−
r2

64t , γ > 2.

(4.51)

|g̃[f, µ1]| . t−2µ2
0 sup
t1∈[t/2,t]

|µ1(t1)|+ t−2

ˆ t/2

t0/2

s
(
|µ̇1|+ µ−1

0 |µ̇0| |µ1|
)

(s)ds. (4.52)
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|ϕ[f + µ1]− ϕ[f ]| .
(
|µ1|t−1 + g̃[f, µ1]

)
1
{r≤2t

1
2 }

+
(

sup
t1∈[t/2,t]

|µ1(t1)|r−2 + g̃[f, µ1]
)
e−

r2

32t1
{r>2t

1
2 }

+ sup
t1∈[t/2,t]

(
|µ̇1|+ µ0(t)−1|µ̇0(t)| |µ1|

)
(t1)

(
ln t1{r≤f(t)} + 〈ln(r−1t

1
2 )〉1

{f(t)<r≤2t
1
2 }

+ tr−2e−
r2

32t1
{r>2t

1
2 }

)
.

(4.53)

Proof. We only prove (4.51) and the other terms can be deduced by Proposition 4.1 directly. Recall (4.15),
(4.10). Then

∂tϕ[f ] = ∂rrϕ[f ] +
3

r
∂rϕ[f ] + r−1E1[f ] + r−1E2[f ]

where ∣∣r−1E1[f ] + r−1E2[f ]
∣∣ . 1{r≤2

√
t}µ
−2
0 |µ̇0| ∼ 1{r≤2

√
t}µ
−2
0

{
t−

γ
2 (ln t)−1, 1 < γ < 2

t−1(ln t)−2, γ ≥ 2.

Combining (4.50) and using the scaling argument twice, we have (4.51).
�

Set µ = µ̄0 + µ1, where µ1 is the next order term with the ansatz

|µ1| ≤ µ̄0/9, |µ̇1| ≤ | ˙̄µ0|/9. (4.54)

Then
µ0(t)/2 ≤ µ(t) ≤ 2µ0(t), |µ̇0(t)|/2 ≤ |µ̇(t)| ≤ 2|µ̇0(t)|. (4.55)

Combining (4.13) (4.20) and (4.46), for r ≤ 2t
1
2 , we have

ϕ[µ] + ψ∗ = −2−1
(
µ1t
−1 +

ˆ t−µ2
0

t/2

µ̇1(s)

t− s
ds
)

+O

(
µt−2r2 +

(
1 + min

{
µ−1r, ln t

})
sup

t1∈[t/2,t]

|µ̇(t1)|+ g[µ] + ln ln t|µ̇0|+ rt−
1
2 vγ(t)

) (4.56)

where we used the cancellation in r ≤ 2t
1
2 due to the choice of µ̄0.

Given µ̄0 above, we are now able to describe Φe rigorously. Set ρ̄ = r
µ̄0

and consider Φe = Φe(ρ̄, t) solving

∂ρ̄ρ̄Φe +
1

ρ̄
∂ρ̄Φe −

ρ̄4 − 6ρ̄2 + 1

ρ̄2(ρ̄2 + 1)2
Φe = H̃(ρ̄, t)

where

H̃(ρ̄, t) := µ̄0η(
µ̄0ρ̄√
t

)
−8ρ̄

(ρ̄2 + 1)2
(ϕ[µ̄0](µ̄0ρ̄, t) + ψ∗(µ̄0ρ̄, t)) + µ̄0M[µ̄0]

η(ρ̄)Z(ρ̄)´ 3

0
η(x)Z2(x)xdx

.

Φe is taken as

Φe(ρ̄, t) = Z̃(ρ̄)

ˆ ρ̄

0

H̃(x, t)Z(x)xdx−Z(ρ̄)

ˆ ρ̄

0

H̃(x, t)Z̃(x)xdx.

By the definition of M[µ̄0], one clearly hasˆ ∞
0

H̃(x, t)Z(x)xdx = 0. (4.57)

Using (4.56) for the case µ1 ≡ 0 and (4.48), we have

H̃ = µ̄0η(
µ̄0ρ̄√
t

)
−8ρ̄

(ρ̄2 + 1)2
O
(
µ3

0t
−2ρ̄2 + |µ̇0|min{〈ρ̄〉, ln t}+ ln ln t|µ̇0|+ µ0ρ̄t

− 1
2 vγ(t)

)
+
µ̄0O(t−2)η(ρ̄)Z(ρ̄)´ 3

0
η(x)Z2(x)xdx

.

Thus

|H̃| . µ0η(
µ̄0ρ̄√
t

)ρ̄〈ρ̄〉−3

{
t−

γ
2 (ln t)−1 ln ln t, 1 < γ < 2

t−1(ln t)−2 ln ln t, γ ≥ 2.

By (4.50), another upper bound of H̃ with faster spatial decay but slower time decay is given by

|H̃| . µ0η(
µ̄0ρ̄√
t

)ρ̄〈ρ̄〉−4

{
t−

γ
2 , 1 < γ ≤ 2

(t ln t)−1, γ > 2.
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Combining the above two upper bounds, H̃ is then bounded by

|H̃| . µ0η(
µ̄0ρ̄√
t

)


min

{
ρ̄〈ρ̄〉−4t−

γ
2 , ρ̄〈ρ̄〉−3t−

γ
2 (ln t)−1 ln ln t

}
, 1 < γ < 2

min
{
ρ̄〈ρ̄〉−4t−1, ρ̄〈ρ̄〉−3t−1(ln t)−2 ln ln t

}
, γ = 2

min
{
ρ̄〈ρ̄〉−4(t ln t)−1, ρ̄〈ρ̄〉−3t−1(ln t)−2 ln ln t

}
, γ > 2.

Using (4.57), we have

〈ρ̄〉|∂ρ̄Φe|+ |Φe| . µ0ρ̄
3〈ρ̄〉−3


min

{
t−

γ
2 〈ρ̄〉−1 ln(ρ̄+ 2), t−

γ
2 (ln t)−1 ln ln t

}
, 1 < γ < 2

min
{
t−1〈ρ̄〉−1 ln(ρ̄+ 2), t−1(ln t)−2 ln ln t

}
, γ = 2

min
{

(t ln t)−1〈ρ̄〉−1 ln(ρ̄+ 2), t−1(ln t)−2 ln ln t
}
, γ > 2.

(4.58)

By the same argument in [100, (2.28)], we also have

|∂tΦe| . µ0ρ̄
3〈ρ̄〉−3


t−1− γ2 ln t〈ρ̄〉−1 ln(ρ̄+ 2), 1 < γ < 2

t−2 ln t〈ρ̄〉−1 ln(ρ̄+ 2), γ = 2

t−2〈ρ̄〉−1 ln(ρ̄+ 2), γ > 2.

(4.59)

We now use the expression of Φe to compute the new error.

E [v1] = Φeη
′(4z)

2r

t
3
2

− η(4z)∂tΦe +
16

t
η′′(4z)Φe +

8√
t
η′(4z)∂rΦe +

1

r

4√
t
η′(4z)Φe

+ (η(4z)− η(z))
−8µ̄−1

0 ρ̄

(ρ̄2 + 1)2
(ϕ[µ̄0](r, t) + ψ∗(r, t))

+ η(z)

[(
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2

)
(ϕ[µ̄0](r, t) + ψ∗(r, t)) +

8µ−1ρ

(ρ2 + 1)
2 (ϕ[µ](r, t)− ϕ[µ̄0](r, t))

]

+ µ̄−1
0 M[µ̄0]

η(ρ̄)Z(ρ̄)´ 3

0
η(x)Z2(x)xdx

+ η(4z)µ̄−2
0 (cos(2Qµ̄0)− cos(2Qµ)) ρ̄−2Φe + Ee.

(4.60)

4.3. Gluing system. Having improved the spatial decay by non-local corrections and time decay by solving
the linearized elliptic equation, we are now ready to formulate the gluing system to deal with the remaining
errors. We introduce the correction term

Ψ(r, t) + ηR(ρ)Φ(ρ, t), ρ = µ−1r

where ηR(ρ) = η(R−1ρ) with R = R(t) = tω with ω > 0 to be determined later. In order to restrict the inner
problem within the self-similar region, we make the ansatz

µR�
√
t, (4.61)

and by (4.45) and (4.55), it is true provided

0 < ω <

{
γ−1

2 , 1 < γ < 2
1
2 , γ ≥ 2.

(4.62)

By direct calculation, one has

E [v1 + Ψ + ηRΦ] = −∂tΨ + ∂rrΨ +
1

r
∂rΨ−

1

r2
Ψ + Λ[Φ]

− ηR∂tΦ + ηRµ
−2∂ρρΦ + ηRµ

−2 ∂ρΦ

ρ
− µ−2 ρ

4 − 6ρ2 + 1

ρ2 (ρ2 + 1)
2 ηRΦ + ηRρ∂ρΦµ

−1µ̇+ ηR
8µ−2

(ρ2 + 1)
2 Ψ

+ (1− ηR)
8µ−2

(ρ2 + 1)
2 Ψ− η(z)− 1

r2
cos(2Qµ)Ψ +N + E [v1] ,

where E [v1] is given in (4.60),

Λ[Φ] := η′′(
ρ

R
)(µR)−2Φ + η′(

ρ

R
)µ−2(ρR)−1Φ + 2(µR)−1µ−1η′(

ρ

R
)∂ρΦ + η′(

ρ

R
)
ρ

R

(µR)′

µR
Φ (4.63)
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and we used (4.61) and

1

2r2
(sin (2v1)− sin (2 (v1 + Ψ + ηRΦ))) = −η(z)

r2
cos(2Qµ) (Ψ + ηRΦ) +N ,

N = N [Ψ,Φ, µ1] :=
1

2r2

[
sin (2 (η(z)Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe))

− η(z) sin (2 (Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe)) + η(z) sin (2 (Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe + Ψ + ηRΦ))

− sin (2 (η(z)Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe + Ψ + ηRΦ))

]

+
η(z)

2r2

{
sin (2 (Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe))− sin(2Qµ)− 2 cos(2Qµ) (Φ1 + Φ2 + Ψ∗ + η(4z)Φe)

−
[

sin (2 (Qµ + Φ1 + Φ2 + Ψ∗ + η(4z)Φe + Ψ + ηRΦ))− sin(2Qµ)

− 2 cos(2Qµ) (Φ1 + Φ2 + Ψ∗ + η(4z)Φe + Ψ + ηRΦ)

]}
.

(4.64)
In order to make E [v1 + Ψ + ηRΦ] = 0, it suffices to solve the following gluing system.
• The outer problem: {

∂tΨ = ∂rrΨ + 1
r∂rΨ−

1
r2 Ψ + G for (r, t) ∈ (0,∞)× (t0,∞)

Ψ(·, t0) = 0 in (0,∞)
(4.65)

where

G = G[Ψ,Φ, µ1] := Λ[Φ] + Φeη
′(4z)

2r

t
3
2

− η(4z)(1− ηR)∂tΦe +
16

t
η′′(4z)Φe +

8√
t
η′(4z)∂rΦe +

1

r

4√
t
η′(4z)Φe

+ (η(4z)− η(z))
−8µ̄−1

0 ρ̄

(ρ̄2 + 1)2
(ϕ[µ̄0](r, t) + ψ∗(r, t))

+ (1− ηR)η(z)

[(
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2

)
(ϕ[µ̄0](r, t) + ψ∗(r, t)) +

8µ−1ρ

(ρ2 + 1)
2 (ϕ[µ](r, t)− ϕ[µ̄0](r, t))

]

+ (1− ηR)η(4z)µ̄−2
0 (cos(2Qµ̄0)− cos(2Qµ)) ρ̄−2Φe + (1− ηR)

[
8µ−2

(ρ2 + 1)
2 Ψ + Ñ

]
,

(4.66)

Ñ = Ñ [Ψ,Φ, µ1] := N + Ee −
η(z)− 1

r2
cos(2Qµ)Ψ. (4.67)

• The inner problem:{
µ2∂tΦ = ∂ρρΦ +

∂ρΦ
ρ −

ρ4−6ρ2+1
ρ2(ρ2+1)2

Φ + µ̇µρ∂ρΦ +H1 +H2 for t ∈ (t0,∞), ρ ∈ (0, 2R(t))

Φ(·, t0) = 0 in (0, 2R(t0))
(4.68)

where

H1 = H1[Ψ, µ1] :=
8Ψ

(ρ2 + 1)
2 + µ2

[(
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2

)
(ϕ[µ̄0](r, t) + ψ∗(r, t))

+
8µ−1ρ

(ρ2 + 1)
2 (ϕ[µ](r, t)− ϕ[µ̄0](r, t)) + µ̄−2

0 (cos(2Qµ̄0
)− cos(2Qµ)) ρ̄−2Φe

]
,

(4.69)

H2 = H2[Ψ,Φ, µ1] := µ2

(
Ñ − ∂tΦe + µ̄−1

0 M[µ̄0]
η(ρ̄)Z(ρ̄)´ 3

0
η(x)Z2(x)xdx

)
. (4.70)

Set
Ψ := rψ(r, t), Φ := ρφ(ρ, t). (4.71)
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In order to solve (4.65) and (4.68), it suffices to solve the following system{
∂tψ = ∂rrψ + 3

r∂rψ + r−1G[rψ, ρφ, µ1] for (r, t) ∈ (0,∞)× (t0,∞)

ψ(·, t0) = 0 in (0,∞),
(4.72){

µ2∂tφ = Lin[φ] + ρ−1 (H1[µρψ, µ1] +H2[µρψ, ρφ, µ1]) for t ∈ (t0,∞), ρ ∈ (0, 2R(t))

φ(·, t0) = 0 in (0, 2R(t0))
(4.73)

where

Lin[φ] := ∂ρρφ+
3

ρ
∂ρφ+

8φ

(ρ2 + 1)2
+ µ̇µ (φ+ ρ∂ρφ) . (4.74)

For the dealing of the inner problem, it will be more convenient to use the time variable with

τ = τ(t) :=

ˆ t

t0

µ−2(s)ds+ Cτ t0µ
−2(t0), τ0 := τ(t0) = Cτ t0µ

−2(t0) (4.75)

where Cτ is a large constant. By (4.55) and (4.45), we have

τ(t) ∼ tµ−2
0 ∼


tγ−1(ln t)2, 1 < γ < 2

t, γ = 2

t(ln t)2, γ > 2,

t(τ) ∼


[τ(ln τ)−2]

1
γ−1 , 1 < γ < 2

τ, γ = 2

τ(ln τ)−2, γ > 2,

(4.76)

and thus
|µ(t)µ̇(t)| . τ−1(t). (4.77)

Under the parameter restriction (4.62), we have

R(t(τ))�
√
τ . (4.78)

We introduce the norm

‖f‖i,κ,a := sup
τ∈(τ0,∞),ρ∈(0,2R(t(τ)))

τκ〈ρ〉a (〈ρ〉|∂ρf(ρ, τ)|+ |f(ρ, τ)|) (4.79)

for some positive constants a, κ > 0 to be determined later and will solve the inner problem in the space

Bin :=
{
f(ρ, τ) is C1 in ρ for τ ∈ (τ0,∞), ρ ∈ (0, 2R(t(τ))) : ‖f‖i,κ,a ≤ 1

}
. (4.80)

The outer problem (4.72) is handled in the following proposition.

Proposition 4.2. Consider ∂tψ = ∂rrψ +
3

r
∂rψ + r−1G[rψ, ρφ, µ1] for (r, t) ∈ (0,∞)× (t0,∞)

∂rψ(0, t) = 0 for t ∈ (t0,∞), ψ(r, t0) = 0 for r ∈ (0,∞)
(4.81)

where G is given in (4.66). Suppose that φ ∈ Bin, µ1 satisfies t|µ̇1(t)|, |µ1(t)| ≤ C1t(ln t)
− 1

2ϑ(t) for a constant
C1 > 0 where

ϑ(t) :=


t−aω+ γ

2−1−κ(γ−1)(ln t)1−2κ, 1 < γ < 2

t−aω−κ, γ = 2

t−aω−κ(ln t)1−2κ, γ > 2

∼ τ−κ(t)µ−1
0 R−a (4.82)

and the parameters satisfy{
γ − 1 < κ(γ − 1) + aω < 2(γ − 1), aω < κ(γ − 1), (2 + a)ω < 2κ(γ − 1), if 1 < γ < 2

1 < κ+ aω < 2, aω < κ, (2 + a)ω < 2κ, if γ ≥ 2,
(4.83)

then there exists a solution ψ = ψ[φ, µ1] satisfying ψ = T4•[r−1G[rψ, ρφ, µ1]](r, t, t0) with the following estimates:

|ψ(r, t)| . ϑ(t)
(
1
{r≤t

1
2 }

+ tr−21
{r>t

1
2 }

)
, |∂rψ(r, t)| . ϑ(t)

(
(µ0R)−11{r≤9

√
t} + t−

1
2 tr−21{r>9

√
t}

)
, (4.84)

sup
r∈[0,∞)

sup

t1,t2∈[t−λ
2
o
4 ,t]

|ψ(r, t1)− ψ(r, t2)|
|t1 − t2|α

. λ−2α
o ϑ(t) + λ2−2α

o ϑ(t)(µ0R)−2 (4.85)

for any α ∈ (0, 1), 0 < λo ≤ t
1
2 .
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In order to solve the inner problem (4.73), it suffices to solve the following two equations.
The inner problem with orthogonality condition:{

µ2∂tφ1 = Lin[φ1] + ρ−1 (H1[µρψ, µ1] +H∗[µ1]) for t ∈ (t0,∞), ρ ∈ (0, 2R(t))

φ1(·, t0) = 0 in (0, 2R(t0));
(4.86)

and the inner problem without orthogonality condition:{
µ2∂tφ2 = Lin[φ2] + ρ−1 (H2[µρψ, ρφ, µ1]−H∗[µ1]) for t ∈ (t0,∞), ρ ∈ (0, 2R(t))

φ2(·, t0) = 0 in (0, 2R(t0))
(4.87)

where φ = φ1 + φ2 and H∗[µ1] will be given in (4.97) later.

4.4. Solving the orthogonal equation and Hölder estimate about µ̇1.

4.4.1. Solving the orthogonal equation. Hereafter, for ϑ(t) given in (4.82), we make the ansatz

t|µ̇1(t)|, |µ1(t)| ≤ t(ln t)− 1
2ϑ(t). (4.88)

Under the assumption (4.83), (4.88) implies the desired ansatz (4.54) with t0 sufficiently large.
In order to find a well-behaved solution for the orthogonal inner problem (4.86), we will use Proposition D.2

with the conditions f(τ) = Cfτ
−1 with a large constant Cf , PV = 4, d = 4, Z(ρ) = 1

ρ2+1 , β = −2,

R = (t(τ))ω, R0 = (t(τ))δ0 with 0 < δ0 < ω. (4.89)

By (4.78), we have R0 ≤ R/3�
√
τ . Given the definition (D.9) of cin in Proposition D.2, roughly speaking, we

will solve the orthogonal equation

cin
[
ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ(t)) = 0 (4.90)

with a well-chosen function H∗[µ1] to make the orthogonal equation manageable. Note that cin includes a minor
term cin,1 defined in Proposition D.2.

The effect from the outer solution is given byˆ R0

0

8µψ[φ, µ1](µρ, t)

(ρ2 + 1)
2

ρ3

ρ2 + 1
dρ = µ

ˆ R0

0

8ρ3ψ[φ, µ1](µρ, t)

(ρ2 + 1)
3 dρ.

Recall ρ̄ = r
µ̄0

. Notice that for any a, b, c ∈ R,

µc
ρa

(ρ2 + 1)
b
− µ̄c0

ρ̄a

(ρ̄2 + 1)b
= µc−1µ1

(2b− a+ c)ρa+2 + (c− a)ρa

(ρ2 + 1)b+1
+O

(
µ−1 |µ1|µc−1 |µ1| ρa〈ρ〉−2b

)
(4.91)

since for

f(θ) := µcθ
ρaθ

(ρ2
θ + 1)b

, ρθ :=
r

µθ
, µθ := θµ+ (1− θ)µ̄0 = µ+ (θ − 1)µ1

we have

f ′(θ) = µc−1
θ µ1

(2b− a+ c)ρa+2
θ + (c− a)ρaθ

(ρ2
θ + 1)b+1

.

In particular,
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2
= 8µ−2µ1

2ρ3 − 2ρ

(ρ2 + 1)
3 +O

(
µ−1 |µ1|µ−2 |µ1| ρ〈ρ〉−4

)
. (4.92)

By (4.92), (4.56) for the case µ1 ≡ 0, (4.48), and γ > 1, we have

µ2

ˆ R0

0

(
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2

)
(ϕ[µ̄0] + ψ∗) (µρ, t)

ρ2

ρ2 + 1
dρ = µO

(
|µ1| ln ln tµ−1

0 |µ̇0|
)

(4.93)

where ρ̄ = ρµ(µ̄0)−1.
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By (4.23), we have

µ2

ˆ R0

0

8µ−1ρ

(ρ2 + 1)
2 (ϕ[µ]− ϕ[µ̄0]) (µρ, t)

ρ2

ρ2 + 1
dρ

= − µ (1 + C0(R0))
(
µ1t
−1 +

ˆ t−t1−ν

t/2

µ̇1(s)

t− s
ds+ µ̇1 [(1− ν) ln t− 2 lnµ0] + Eν [µ1]

)
+ µ

ˆ R0

0

F̃ [µ̄0, µ1](µρ, t)
8ρ3

(ρ2 + 1)
3 dρ

where
0 < ν < min {γ − 1, 1} (4.94)

so that µ2
0 � t1−ν ;

C0(R0) :=

ˆ ∞
R0

−4ρ3

(ρ2 + 1)3
dρ = O(R−2

0 ), and Eν [µ1] = Eν [µ1](t) :=

ˆ t−µ2
0(t)

t−t1−ν

µ̇1(s)− µ̇1(t)

t− s
ds (4.95)

and by (4.23) and (4.52),

µ

ˆ R0

0

F̃ [µ̄0, µ1](µρ, t)
8ρ3

(ρ2 + 1)
3 dρ

= µO
(
|µ1|t−2µ2 lnR0 + sup

t1∈[t/2,t]

(
|µ̇1|+ t−1|µ1|

)
(t1) + t−2

ˆ t/2

t0/2

(s |µ̇1(s)|+ |µ1(s)|)
)
.

(4.96)

We choose

H∗[µ1] :=

(ˆ 2

0

η(x)x3

x2 + 1
dx

)−1

µ (1 + C0(R0)) Eν [µ1]ρη(ρ). (4.97)

And we have

µ2

ˆ R0

0

µ̄−2
0 (cos(2Qµ̄0)− cos(2Qµ)) ρ̄−2Φe(ρ̄, t)

ρ2

ρ2 + 1
dρ = µ2O

(
|µ1|µ−2

0

{
t−

γ
2 (ln t)−1 ln ln t, 1 < γ < 2

t−1(ln t)−2 ln ln t, γ ≥ 2

)
.

(4.98)
Formally, in order to solve (4.90) in (t0,∞), it suffices to solve the following nonlocal equation

µ̇1 = χ(t) [(1− ν) ln t− 2 lnµ0]
−1

{
− µ1t

−1 −
ˆ t−t1−ν

t/2

µ̇1(s)

t− s
ds+

ˆ R0

0

8ρ3ψ[φ, µ1](µρ, t)

(ρ2 + 1)
3 dρ

+ (1 + C0(R0))
−1

[
µ

ˆ R0

0

(
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2

)
(ϕ[µ̄0] + ψ∗) (µρ, t)

ρ2

ρ2 + 1
dρ

+ µ

ˆ R0

0

µ̄−2
0 (cos(2Qµ̄0

)− cos(2Qµ)) ρ̄−2Φe(ρ̄, t)
ρ2

ρ2 + 1
dρ+

ˆ R0

0

F̃ [µ̄0, µ1](µρ, t)
8ρ3

(ρ2 + 1)
3 dρ

+ µ−1cin,1
[
ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ(t))

]}
in [t0/4,∞)

(4.99)

where ρ̄ = ρµ(µ̄0)−1 and we set ψ, cin,1 = 0 for t < t0 and χ(t) is a smooth cut-off function such that χ(t) = 0
for t ≤ 3

4 t0 and χ(t) = 1 for t ≥ t0.
Recalling H1 given in (4.69), we have∣∣ρ−1H1

∣∣ . µ〈ρ〉−4

[
|ψ[φ, µ1](µρ, t)|+ |µ1|µ−1

{
t−

γ
2 , 1 < γ ≤ 2

(t ln t)−1, γ > 2

+ ln t sup
t1∈[t/2,t]

(
|µ̇1|+ t−1 |µ1|

)
(t1) + t−2

ˆ t/2

t0/2

(s |µ̇1(s)|+ |µ1(s)|) ds
]
.

(4.100)

Also, one has ∣∣ρ−1H∗[µ1]
∣∣ . µ ln t sup

t1∈[t/2,t]

|µ̇1(t1)|η(ρ). (4.101)

We will solve the nonlocal problem (4.99) in the following proposition.
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Proposition 4.3. Given φ ∈ Bin, under the assumptions (4.83) for parameters aω+κ(γ−1) 6= γ
2 if 1 < γ < 2;

ν ∈ (0, min{γ−1,1}
2 );

` ∈ (2, 4), 0 < δ0 < ω,

{
ω < γ−1

2 , δ0 <
γ−1

4 , κ− 2 < ω(2−`−a)
γ−1 , 1 < γ < 2

ω < 1
2 , δ0 <

1
4 , κ− 2 < ω(2− `− a), γ ≥ 2,

(4.102)

then for t0 sufficiently large, there exists a solution µ1 = µ1[φ] to (4.99) satisfying

t|µ̇1(t)|+ |µ1(t)| . ϑ(t)t(ln t)−1 (4.103)

where ϑ(t) is given in (4.82). Moreover, there exists a solution φ1 = φ1[φ] for (4.86) with the estimate

〈ρ〉|∂ρφ1|+ |φ1| . τ−κR−aR6−`
0 〈ρ〉2−`.

And ∣∣cin,1 [ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])
]

(τ(t))
∣∣ . ϑ(t)µ0R

2−`
0 ,∣∣cin,1 [ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ(t1))− cin,1

[
ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ(t2))

∣∣
. ϑ(t)µ0R

−`
0 t−ατ(t)|t1 − t2|α

(4.104)

for α ∈ (0, 1), t1, t2 ∈ [ιt, t] with a constant ι ∈ (0, 1) close to 1 sufficiently.
Under the additional assumption

(6− `)δ0 −min {a, `− 2}ω < 0, (4.105)

there exists a constant ε > 0 small such that

〈ρ〉|∂ρφ1|+ |φ1| . τ−ε0 τ−κ(t)〈ρ〉−a.

Proof. Recall µ0 in (4.45). For ν 6= γ − 1,

[(1− ν) ln t− 2 lnµ0]
−1

= Cγ,ν(ln t)−1
(
1 +O((ln t)−1 ln ln t)

)
, Cγ,ν := (min {γ − 1, 1} − ν)

−1
. (4.106)

Under the ansatz (4.88), ψ[φ, µ1] is given by Proposition 4.2 and there exists C1 ≥ 2 sufficiently large such that∣∣∣∣∣[(1− ν) ln t− 2 lnµ0]
−1

(1 + C0(R0))
−1
ˆ R0

0

8ρ3ψ[φ, µ1](µρ, t)

(ρ2 + 1)
3 dρ

∣∣∣∣∣ ≤ C1|Cγ,ν |tp(ln t)p1−1

where tp(ln t)p1 ∼ ϑ(t) and

p :=

{
−aω + γ

2 − 1− κ(γ − 1), 1 < γ < 2

−aω − κ, γ ≥ 2,
p1 :=

{
1− 2κ, γ ∈ (1,∞)\{2}
0, γ = 2.

(4.107)

For this reason, we introduce the norm

‖f‖∗ := sup
t≥t0/4

[
|Cγ,ν |tp(ln t)p1−1

]−1 |f(t)|, (4.108)

and µ̇1 will be solved in the space
Bµ̇1

:= {f : ‖f‖∗ ≤ Cµ1
C1} (4.109)

where Cµ1 ≥ 2 will be determined later and

µ1(t) = µ1[µ̇1](t) :=


ˆ t

t0

µ̇1(s)ds, p ≥ −1

−
ˆ ∞
t

µ̇1(s)ds, p < −1.

For any µ̇1 ∈ Bµ1
, since p 6= −1, we have

|µ1(t)| ≤ |Cγ,ν |C(p, p1)tp+1(ln t)p1−1‖µ̇1‖∗,
with a constant C(p, p1) ≥ 1 depending on p, p1. For any µ̇1 ∈ Bµ1

, under the assumptions{
(κ− 1)(γ − 1) + aω > 0, 1 < γ < 2

κ+ aω − 1 > 0, γ ≥ 2,
(4.110)

µ̇1, µ1 satisfies the ansatz (4.88) when t0 is sufficiently large.
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For brevity, we denote χ(t)A[ψ, µ, µ̇1] as the right hand side of (4.99). In order to solve (4.99), it suffices to
consider the following fixed point problem for µ̇1

S[µ̇1](t) := χ(t)A[ψ[φ, µ1[µ̇1]], µ1[µ̇1], µ̇1] in [t0/4,∞). (4.111)

We will estimate A[ψ[φ, µ1[µ̇1]], µ1[µ̇1], µ̇1] term by term. For simplicity, we write µ1 = µ1[µ̇1].∣∣∣ ˆ t−t1−ν

t/2

µ̇1(s)

t− s
ds
∣∣∣ ≤ |Cγ,ν |‖µ̇1‖∗

ˆ t−t1−ν

t/2

sp(ln s)p1−1

t− s
ds

= |Cγ,ν |‖µ̇1‖∗tp(ln t)p1−1

[ ˆ 1−t−ν

1/2

(xp − 1)
[
1 + (ln t)−1 lnx

]p1−1

1− x
dx+

ˆ 1−t−ν

1/2

[
1 + (ln t)−1 lnx

]p1−1 − 1

1− x
dx

+

ˆ 1−t−ν

1/2

1

1− x
dx

]
= |Cγ,ν |tp(ln t)p1ν

(
1 +O((ln t)−1)

)
‖µ̇1‖∗.

By (4.93),∣∣∣∣∣µ
ˆ R0

0

(
8µ−1ρ

(ρ2 + 1)
2 −

8µ̄−1
0 ρ̄

(ρ̄2 + 1)2

)
(ϕ[µ̄0] + ψ∗) (µρ, t)

ρ2

ρ2 + 1
dρ

∣∣∣∣∣ . tp(ln t)p1−1 ln ln t‖µ̇1‖∗.

By (4.98), ∣∣∣∣∣µ
ˆ R0

0

µ̄−2
0 (cos(2Qµ̄0)− cos(2Qµ)) ρ̄−2Φe(ρ̄, t)

ρ2

ρ2 + 1
dρ

∣∣∣∣∣ . tp(ln t)p1−1 ln ln t‖µ̇1‖∗.

By (4.96), γ > 1 and the assumptions (4.83) on parameters, we get∣∣∣∣∣
ˆ R0

0

F̃ [µ̄0, µ1](µρ, t)
8ρ3

(ρ2 + 1)
3 dρ

∣∣∣∣∣ . tp(ln t)p1−1‖µ̇1‖∗.

By (4.100) and (4.101), under the assumptions (4.83), we have∣∣ρ−1H1[µρψ[φ, µ1]]
∣∣ . µ0t

p(ln t)p1〈ρ〉−4 (1 + ‖µ̇1‖∗) ,
∣∣ρ−1H∗[µ1]

∣∣ . µ0t
p(ln t)p1η(ρ)‖µ̇1‖∗.

Under the assumption (4.102), by Proposition D.2 (for the case v(τ) = τ−κ(t(τ))−aω ∼ µ0t
p(ln t)p1), we see

that
cin,1

[
ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
is well-defined and satisfies∣∣∣µ−1cin,1

[
ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ(t))

∣∣∣ . R2−`
0 tp(ln t)p1 (1 + ‖µ̇1‖∗)

and for α ∈ (0, 1), τ1, τ2 ∈ [ 7
8τ, τ ],∣∣∣cin,1 [ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ1)− cin,1

[
ρ−1(H1[µρψ[φ, µ1]] +H∗[µ1])

]
(τ2)

∣∣∣
. τ−κR−a

[
τ−1R−`0 |τ1 − τ2|+ |τ1 − τ2|α

(
τ−αR2−`

0 + τ1−αR−`0

) ]
(1 + ‖µ̇1‖∗)

. τ−κR−aτ1−αR−`0 |τ1 − τ2|α (1 + ‖µ̇1‖∗)

(4.112)

where we have used R0 .
√
τ .

Incorporating the above estimate and using ‖µ̇1‖∗ ≤ Cµ1
C1, we obtain that there exists a large constant

C2 > 1 which is independent of Cµ1
such that for t ≥ t0

4 ,

|S[µ̇1]| ≤ χ(t)

{
C1|Cγ,ν |tp(ln t)p1−1 + ν|Cγ,ν |

(
1 +O((ln t)−1 ln ln t)

)
|Cγ,ν |tp(ln t)p1−1Cµ1C1

+ C2Cµ1
C1(ln t)−1

[
tp(ln t)p1−1 ln ln t+R2−`

0 tp(ln t)p1
]}

.

The parameters will be determined in the following order. First, we take ν|Cγ,ν | < 1, which is equivalent to

ν < min
{
γ−1

2 , 1
2

}
, and then we choose Cµ1

sufficiently large such that ν|Cγ,ν |Cµ1
+ 1 < Cµ1

. Finally, we take
t0 sufficiently large. We thus conclude that S[µ̇1] ∈ Bµ1 .
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By (4.23), (4.99), and the parabolic regularity theory, A[ψ[φ, µ1], µ1, µ̇1] enjoys the Hölder continuity in time,
which provides compactness for the mapping. Thus, we find a solution µ̇1 ∈ Bµ̇1 by the Schauder fixed-point
theorem.

Once we have solved (4.99), i.e., (4.90) holds, then by Proposition D.2, we deduce the existence and the
estimates for φ1 = φ1[φ].

For t1, t2 ∈ [ιt, t] and ι ∈ (0, 1), by (4.75), (4.76), we have τ(t1) ∼ τ(t2) ∼ τ(t) and

|τ(t1)− τ(t2)| ≤ C|t1 − t2|µ−2
0 (t) ≤ C (1− ι) min {τ(t1), τ(t2)} ≤ 1

9
min {τ(t1), τ(t2)}

for ι arbitrarily close to 1. Then combining (4.112) and (4.76), we get (4.104).
�

4.4.2. Estimate about the Hölder semi-norm of µ̇1. The pointwise estimate (4.101) for ρ−1H∗[µ1] is not sufficient
to find a solution φ2 to (4.87) in Bin. For the purpose of deriving better estimate for ρ−1H∗[µ1], we will give
the time decay estimate about the Hölder semi-norm of µ̇1.

Claim: Let µ̇1 be the solution to (4.99) given by Proposition 4.3. Under the assumptions in Proposition 4.3,
µ̇1 has the Hölder estimate

[µ̇1]Cα[ιt,t] . %(t) (4.113)

with α ∈ (0, 1), and

%(t) := ϑ(t)(ln t)−1t−α
(
t−2ω + t−δ0`

)
tγ−1(ln t)2, 1 < γ < 2

t, γ = 2

t(ln t)2, γ > 2.

(4.114)

Thus, recalling (4.97), (4.95), and by (4.113), we have∣∣ρ−1H∗[µ1]
∣∣ . µ0 |Eν [µ1]| η(ρ) . η(ρ)µ0t

α(1−ν)%(t). (4.115)

4.5. Solving the inner problem and the proof of Theorem 5. In this section, we solve the inner problem
and complete the construction of desired blow-up solution.

Recall H2 given in (4.70). We have∣∣ρ−1H2

∣∣ . ({t2−2γ(ln t)−1, 1 < γ < 2

t−2(ln t)2, γ ≥ 2
+ τ−2κ(t) + τ−3κ(t)R2

)
〈ρ〉−2. (4.116)

We will use Proposition D.1 to find a solution φ2 for the inner problem (4.87) without orthogonality condition.
Recall the upper bound of the right hand side of (4.87) in (4.115), (4.114) and (4.116). The assumption (4.62)
gives τ−1R2 lnR + |∂τR|R lnR � 1 for t0 sufficiently large. Then by Proposition D.1, there exists a solution
φ2 for (4.87) with the estimate

〈ρ〉|∂ρφ2|+ |φ2| . 〈ρ〉−2R2 lnRτ−κ(t)R−a(ln t)−1t−αν−min{2ω,δ0`}


tγ−1(ln t)2, 1 < γ < 2

t, γ = 2

t(ln t)2, γ > 2

+ 〈ρ〉−2R2 lnR
({t2−2γ(ln t)−1, 1 < γ < 2

t−2(ln t)2, γ ≥ 2
+ τ−2κ(t) + τ−3κ(t)R2

)
.

(4.117)

Under the constraints

0 < a < 2, (2− a)ω − αν −min {2ω, δ0`}+

{
γ − 1, 1 < γ < 2

1, γ ≥ 2
< 0,{

2ω + 2− 2γ + κ(γ − 1) < 0, 1 < γ < 2

2ω − 2 + κ < 0, γ ≥ 2,

{
2ω − κ(γ − 1) < 0, 1 < γ < 2

2ω − κ < 0, γ ≥ 2,

(4.118)

there exists a constant ε > 0 sufficiently small such that

〈ρ〉|∂ρφ2|+ |φ2| . t−ετ−κ(t)〈ρ〉−a.
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Recall φ1 in Proposition 4.3. Combining all the restrictions on constants in Proposition 4.3, we conclude
that

φ1 + φ2 = φ1 [φ] + φ2 [φ] ∈ Bin (4.119)

due to the small quantity provided by t−ε0 with t0 sufficiently large, where Bin is defined in (4.80). The
compactness of this mapping is provided by the parabolic regulatiy theory. Thus, by the Schauder fixed-point
theorem, we find a solution φ of (4.73) in Bin.

We now collect all the assumptions on parameters measuring the desired topologies (4.62), (4.83), those in
Proposition 4.3, (4.118) and write

fγ =
f

min {γ − 1, 1}
for f = ω, ν, δ0.

Then the system of parameters can be reformulated as

1 < κ+ aωγ < 2, (2 + a)ωγ < 2κ, α ∈ (0, 1), νγ ∈ (0,
1

2
)

aω + κ(γ − 1) 6= γ

2
if 1 < γ < 2,

` ∈ (2, 4), 0 < δ0γ < ωγ <
1

2
, δ0γ <

1

4
, κ− 2 < ωγ(2− `− a),

(6− `)δ0γ −min {a, `− 2}ωγ < 0, 0 < a < 2,

(2− a)ωγ − ανγ −min {2ωγ , δ0γ`}+ 1 < 0, 2ωγ − 2 + κ < 0, 2ωγ − κ < 0.

(4.120)

By the software Mathematica, the solutions are given by

1

4
< ωγ <

1

3
,

1

2
< aωγ < 2ωγ ,

1

4

(
1

2
− aωγ + 2ωγ

)
< δ0γ <

1

4
, 2ωγ < κ < 2− aωγ − 2ωγ ,

κ 6= γ

2(γ − 1)
− aωγ if 1 < γ < 2, 1− aωγ < ανγ , 1− aωγ < νγ <

1

2
,

1− aωγ
νγ

< α < 1,

max
{

2 + a,
2ωγ − aωγ − ανγ + 1

δ0γ
, 6− aωγ

δ0γ

}
< ` < 4.

(4.121)

One may choose a special solution as ωγ = 7
24 , aωγ = 13

24 , a = 13
7 , δ0γ = 1

6 , 14
24 < κ < 21

24 , κ 6= γ
2(γ−1) −

13
24 if

1 < γ < 2, ανγ = 23
48 , νγ = 47

96 , α = 46
47 , ` = 55

14 .

Now we have constructed the solution v of (4.2) with the form

v = η(
r√
t
)

(
π − 2 arctan(

r

µ
)

)
+ r (ϕ+ ψ∗) (r, t) + η(

4r√
t
)Φe(

r

µ̄0
, t) + rψ(r, t) + η(

r

µR
)ρφ(ρ, t)

whose initial data is given by

v0(r) = v(r, t0) = η(
r√
t0

)

(
π − 2 arctan(

r

µ(t0)
)

)
+ r (ϕ+ ψ∗) (r, t0) + η(

4r√
t0

)Φe(
r

µ̄0(t0)
, t0).

Recalling (4.50), (4.58), we have v0(0) = π and for r ≥ 2
√
t0, |v0(r)| . r1−γ if 1 < γ ≤ 2 and |v0(r)| .

r1−γ + (t0 ln t0)−1re−
r2

32t0 if γ > 2.
The estimate of v and vr are given by direct calculation.

Appendix A. Convolution estimates

Lemma A.1. Let n > 2 be an integer, t > t0 ≥ 0, b ∈ R. Suppose that v(s) ≥ 0 for s ∈ [t0, t]; 0 ≤ l1(s) ≤
l2(s) ≤ C∗s

1
2 for s ∈ [t0, t], C

−1
l li(t1) ≤ li(t2) ≤ Clli(t1), i = 1, 2, for all t2 ∈ [t1, 2t1] ∩ [t0, t], t1 ∈ [t0, t], where
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C∗ > 0, Cl ≥ 1 are constants, then

Tn •
(
v(t) (|x|+ l1(t))

−b
1{|x|≤l2(t)}

)
(x, t, t0) . t−

n
2 e−

|x|2
16t

ˆ t
2

t0

v(s)


ln−b2 (s) if b < n

〈ln( l2(s)
l1(s) )〉 if b = n

ln−b1 (s) if b > n

ds

+ sup
t1∈[t/2,t]

v(t1)




l2−b2 (t) if b < 2

〈ln( l2(t)
l1(t) )〉 if b = 2

l2−b1 (t) if b > 2

for |x| ≤ l1(t)



l2−b2 (t) if b < 2

〈ln( l2(t)
|x| )〉 if b = 2

|x|2−b if 2 < b < n

|x|2−n〈ln( |x|l1(t) )〉 if b = n

|x|2−nln−b1 (t) if b > n

for l1(t) < |x| ≤ l2(t)

|x|2−ne−
|x|2
16t


ln−b2 (t) if b < n

〈ln( l2(t)
l1(t) )〉 if b = n

ln−b1 (t) if b > n

for |x| > l2(t)

where we set v(s) = 0 if s /∈ [t0, t].

Lemma A.2. Let n be a positive integer, t > t0 ≥ 0, b ∈ R, ` > 0, c0 > 0, and suppose that v(s) ≥ 0 for
s ∈ [t0, t]. Denote

u(x, t) =

ˆ t

t0

ˆ
Rn

(t− s)−n2 e−c0
|x−y|2
t−s v(s)|y|−be−`

|y|2
s 1
{|y|≥s

1
2 }
dyds.

Then

u(x, t) .


t−

n
2

´ t/2
t0

v(s)s
n−b
2 ds+ sup

t1∈[ t2 ,t]

v(t1)t1−
b
2 , |x| ≤ t 1

2(
t−

n
2

´ t/2
t0

v(s)s
n−b
2 ds+ sup

t1∈[ t2 ,t]

v(t1)t|x|−b
)
e−

min{c0,`}
8

|x|2
t , |x| > t

1
2

where we set v(s) = 0 if s /∈ [t0, t].

Proof. The strategy is basically a verbatim repetition of the proof of [100, Lemma A.2].
�

Appendix B. Linear theory via blow-up argument

Define
‖h‖a,ν := sup

(y,τ)∈Rn×(τ0,∞)

τν〈y〉a|h(y, τ)|.

The main results are the following.

Proposition B.1. Consider{
∂τφ = ∆φ+ pUp−1(y)φ+ h(y, τ) in Rn × (τ0,∞)

φ(y, τ0) = e0Z0(y) in Rn.
(B.1)

Suppose 2 < a < n− 2, ν < 1, ‖h‖2+a,ν <∞ andˆ
Rn
h(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 1, 2, · · · , n+ 1. (B.2)

Then for τ0 ≥ 1, there exists a linear mapping (φ, e0) = (φ[h], e0[h]) satisfying (B.1) andˆ
Rn
φ(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 1, 2, · · · , n+ 1, (B.3)

〈y〉|∇φ|+ |φ| . τ−ν〈y〉−a‖h‖2+a,ν , |e0[h]| . τ−ν0 ‖h‖2+a,ν . (B.4)

Proposition B.1 is in fact a consequence of the following
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Proposition B.2. Suppose 2 < a < n− 2, ν < 1, ‖h‖2+a,ν <∞ andˆ
Rn
h(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 0, 1, · · · , n+ 1. (B.5)

Then for τ0 ≥ 1, there exists a unique solution φ of{
∂τφ = ∆φ+ pUp−1(y)φ+ h(y, τ) in Rn × (τ0,∞)

φ(y, τ0) = 0 in Rn
(B.6)

in L∞(Rn × (τ0, τ̃)) for all τ̃ > τ0 and φ satisfiesˆ
Rn
φ(y, τ)Zj(y)dy = 0 for all τ > τ0, j = 0, 1, · · · , n+ 1 (B.7)

and the estimate
〈y〉|∇φ|+ |φ| . τ−ν〈y〉−a‖h‖2+a,ν . (B.8)

We first use Proposition B.2 to deduce Proposition B.1.

Proof of Proposition B.1. First, set φ(y, τ) = φ1(y, τ) + c(τ)Z0(y). Then it suffices to consider{
∂τφ1 = ∆φ1 + pUp−1(y)φ1 + h1 in Rn × (τ0,∞)

φ1(y, τ0) = 0 in Rn.
(B.9)

with h1 := h+ c(τ)λ0Z0 − c′(τ)Z0 where we used ∆Z0 + pUp−1(y)Z0 = λ0Z0 with λ0 > 0. We take

c′(τ)− λ0c(τ) =

(ˆ
Rn
Z2

0 (y)dy

)−1 ˆ
Rn
h(y, τ)Z0(y)dy

with

c(τ) = −
(ˆ

Rn
Z2

0 (y)dy

)−1

eλ0τ

ˆ ∞
τ

e−λ0s

ˆ
Rn
h(y, s)Z0(y)dyds

so that
´
Rn h1(y, τ)Z0(y)dy = 0. Combining this with (B.2) implies (B.5). It is direct to see that

|c(τ)|+ |c′(τ)| . ‖h‖2+a,ντ
−ν , ‖h1‖2+a,ν . ‖h‖2+a,ν .

By Proposition B.2, (B.9) has a unique solution φ1 satisfyingˆ
Rn
φ1(y, τ)Zj(y)dy = 0 for all τ > τ0, j = 0, 1, · · · , n+ 1, 〈y〉|∇φ1|+ |φ1| . τ−ν〈y〉−a‖h‖2+a,ν .

Then φ = φ1 + c(τ)Z0 satisfies (B.3) and (B.4). Finally, letting e0 = c0(τ0) completes the proof. �

Next, we use blow-up argument to prove Proposition B.2. Our method does not rely on the use of maximum
principle, so we expect that this method is applicable to more general equations/systems in the absence of
maximum principle (assuming non-degeneracy of the profile in certain sense). Typical examples are parabolic
equations with complex coefficients such as

A0∂τu = ∆u+ V (u,Du) + h,

where the complex constant A0 satisfies Re(A0) > 0 (with dissipation). This kind of operator naturally arises,
for instance, in the study of Landau-Lifshitz-Gilbert equations.

Proof of Proposition B.2. The existence and uniqueness of (B.6) are given by the classical parabolic theory.
Denote

‖f‖a,ν,τ1 := sup
(y,τ)∈Rn×(τ0,τ1)

τν〈y〉a|f(y, τ)|.

For all τ > τ0, by the estimate of parabolic fundamental solution (See [38]) and convolution estimate in [100,
Lemma A.1, Lemma A.2], for 0 < a < n− 2, we have

‖φ‖a,ν,τ <∞. (B.10)

By scaling argument, we have ‖∇φ‖1+a,ν,τ <∞.
For a > 2, multiplying (B.6) by Zj , j = 0, 1, . . . , n + 1 and integrating by parts, we obtain (B.7) by (B.5)

and the initial data of (B.6).
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In order to prove (B.8), it suffices to prove the following claim.
Claim: For all τ1 > τ0 large enough, there exists C independent of τ1 such that

‖φ‖a,ν,τ1 ≤ C‖h‖2+a,ν,τ1 . (B.11)

Indeed, by taking τ1 → ∞, (B.11) implies (B.8). To prove (B.11), we argue by contradiction. Suppose that
there exist sequences τk1 →∞ and φk, hk satisfying

∂τφk = ∆φk + pUp−1(y)φk + hk in Rn × (τ0,∞)ˆ
Rn
φk(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0, τ

k
1 ), j = 0, 1, · · · , n+ 1

φk(y, τ0) = 0 in Rn

(B.12)

and
‖φk‖a,ν,τk1 = 1, ‖hk‖2s+a,ν,τk1 = o(1) where o(1)→ 0 as k →∞. (B.13)

First, we claim that for any compact subset Ω in Rn,

sup
τ0<τ<τk1

τν |φk(y, τ)| → 0 uniformly in Ω. (B.14)

Assume this is not true. Then there exist a constant M > 0 such that |yk| ≤M and τ0 < τk2 < τk1 ,

(τk2 )ν |φk(yk, τ
k
2 )| ≥ δ0 > 0, (B.15)

for a constant δ0 > 0. Since ‖hk‖2+a,ν,τk1
= o(1), we have τk2 → ∞ by the same reason for getting (B.10).

Without loss of generality, we assume τk2 ≥ 9τ0. Set

φ̃k(y, t) = (τk2 )νφk(y, τk2 + t), h̃k(y, t) = (τk2 )νhk(y, τk2 + t).

Then by (B.12), one has

∂tφ̃k = ∆φ̃k + pUp−1(y)φ̃k + h̃k in Rn × (τ0 −
τk2
2
, 0] (B.16)

with

|φ̃k(y, τ)| ≤ C(ν)〈y〉−a, |h̃k(y, τ)| ≤ o(1)C(ν)〈y〉−2−a in Rn × (τ0 −
τk2
2
, 0], (B.17)

where C(ν) is a constant only depending on ν.

By the parabolic regularity theorem, up to a subsequence, we have φ̃k → φ̃ in C1
loc, that is, φ̃k → φ̃ in C1

topology on any compact subsets of Rn × (−∞, 0]. Combining this with (B.15) yields

|φ̃(y, τ)| ≤ C(ν)〈y〉−a, φ̃ 6= 0. (B.18)

By (B.16), we have

φ̃k(y, t) =

ˆ
Rn

[4π(t− τ0 +
τk2
2

)]−
n
2 exp

(
− |y − z|2

4(t− τ0 +
τk2
2 )

)
φ̃k(z, τ0 −

τk2
2

)dz

+

ˆ t

τ0−
τk2
2

ˆ
Rn

[4π(t− s)]−n2 exp

(
−|y − z|

2

4(t− s)

)(
pUp−1(z)φ̃k(z, s) + h̃k(z, s)

)
dzds.

Then for any fixed (y, t) ∈ Rn × (−∞, 0], by a > 0, (B.17), (B.18), [91, Corollary B.4, Lemma B.5] (used for

time integral
´ t1
t2
· · · for some t1 ≤ −1), [100, Lemma A.3] (used for Cauchy integral) and φ̃k → φ̃ in C1

loc, we

have

φ̃(y, t) =

ˆ t

−∞

ˆ
Rn

[4π(t− s)]−n2 e−
|y−z|2
4(t−s) pUp−1(z)φ̃(z, s)dzds. (B.19)

Then the limiting equation reads
∂τ φ̃ = ∆φ̃+ pUp−1(y)φ̃ in Rn × (−∞, 0]ˆ

Rn
φ̃(y, τ)Zj(y)dy = 0 for all τ ∈ (−∞, 0], j = 0, 1, · · ·n+ 1

|φ̃(y, τ)| ≤ C(ν)〈y〉−a in Rn × (−∞, 0]

(B.20)

where we have used a > 2 in the orthogonality by dominated convergence theorem.
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Using (B.19), [91, Corollary B.4, Lemma B.5] finitely many times for τ ∈ (−∞,−M0) with M0 large and
then applying [100, Lemmas A.1, A.2, A.3] in [M0, 0], we have

|φ̃| . 〈y〉2−n,
and φ̃ is smooth by the parabolic regularity theory. By scaling argument, one has

〈y〉−1|Dφ̃|+ |φ̃τ |+ |D2φ̃| . 〈y〉−n.
Differentiating (B.20), we get

∂τ φ̃τ = ∆φ̃τ + pUp−1(y)φ̃τ , (B.21)

and then scaling argument gives

〈y〉−1|Dφ̃τ |+ |φ̃ττ |+ |D2φ̃τ | . 〈y〉−n−2.

Moreover, multiplying (B.21) by φ̃τ and integrating by parts, we get

1

2
∂τ

ˆ
Rn
|φ̃τ |2dy +B(φ̃τ , φ̃τ ) = 0,

where

B(f, f) :=

ˆ
Rn

(
|∇f |2 − pUp−1(y)|f |2

)
dy.

By orthogonality in (B.20), we have
´
Rn ∂τ φ̃(y, τ)Zj(y)dy = 0 for all τ ∈ (−∞, 0], j = 0, 1, · · · , n + 1. Then

B(φ̃τ , φ̃τ ) ≥ 0 by
´
Rn ∂τ φ̃(y, τ)Z0(y)dy = 0 since Z0 is the only eigenfucntion corresponding to the positive

eigenvalue. Thus, ∂τ
´
Rn |φ̃τ |

2dy ≤ 0.

Multiplying (B.20) by φ̃τ and integrating by parts, we haveˆ
Rn
|φ̃τ |2dy = −1

2
∂τB(φ̃, φ̃).

From these relations, one has

∂τ

ˆ
Rn
|φ̃τ |2dy ≤ 0,

ˆ 0

−∞
dτ

ˆ
Rn
|φ̃τ |2dy <∞.

Hence φ̃τ = 0. So φ̃ is independent of τ and ∆φ̃+ pUp−1(y)φ̃ = 0. By the nondegeneracy of ∆ + pUp−1(y) (see

[2, Lemma 5.2]), φ̃ is a linear combination of Zj , j = 1, · · · , n+ 1. Due to the orthogonal conditions in (B.20),

we must have φ̃ ≡ 0, which contradicts (B.18). Thus (B.14) holds.

By (B.13) and (B.14), there exists a sequence yk with |yk| → ∞ such that

(τk2 )ν〈yk〉a|φk(yk, τ
k
2 )| ≥ 1

2
.

Set
φ̃k(z, t) := (τk2 )ν〈yk〉aφk(yk + |yk|z, |yk|2t+ τk2 ).

Then

|φ̃k(0, 0)| ≥ 1

2
. (B.22)

We reformulate (B.12) as∂tφ̃k = ∆zφ̃k + p|yk|2Up−1(yk + |yk|z)φ̃k + h̃k(z, t) in Rn × (
τ0−τk2
|yk|2 ,∞)

φ̃k(·, τ0−τ
k
2

|yk|2 ) = 0 in Rn
(B.23)

where
h̃k(z, t) = (τk2 )ν〈yk〉a|yk|2hk(yk + |yk|z, |yk|2t+ τk2 ).

By (B.13), one has

|h̃k(z, t)| . o(1)(τk2 )ν〈yk〉a|yk|2〈yk + |yk|z〉−2−a (|yk|2t+ τk2
)−ν

∼ o(1)
(
|yk|−1 + |ŷk + z|

)−2−a (
(τk2 )−1|yk|2t+ 1

)−ν
, for (z, t) ∈ Rn × (

τ0 − τk2
|yk|2

,
τk1 − τk2
|yk|2

),



GLUING METHOD 83∣∣∣|yk|2Up−1(yk + |yk|z)φ̃k
∣∣∣ . |yk|2〈yk + |yk|z〉−4(τk2 )ν〈yk〉a〈yk + |yk|z〉−a

(
|yk|2t+ τk2

)−ν
∼ |yk|−2

(
|yk|−1 + |ŷk + z|

)−4−a (
(τk2 )−1|yk|2t+ 1

)−ν
, for (z, t) ∈ Rn × (

τ0 − τk2
|yk|2

,
τk1 − τk2
|yk|2

)

where ŷk = yk|yk|−1. By (B.23), we have

φ̃k(z, t) =

ˆ t

τ0−τk2
|yk|2

ˆ
Rn

[4π(t− s)]−
n
2 e−

|z−w|2
4(t−s)

(
p|yk|2Up−1(yk + |yk|w)φ̃k(w, s) + h̃k(w, s)

)
dwds.

Then ∣∣∣φ̃k(0, 0)
∣∣∣ . ˆ 0

τ0−τk2
|yk|2

ˆ
Rn

(−s)−n2 e
|w|2
4s

[
|yk|−2

(
|yk|−1 + |ŷk + w|

)−4−a (
(τk2 )−1|yk|2s+ 1

)−ν
+ o(1)

(
|yk|−1 + |ŷk + w|

)−2−a (
(τk2 )−1|yk|2s+ 1

)−ν ]
dwds.

Claim: Suppose that τk2 ≥ 2τ0, |yk| ≥ 2, m > 2, n > 2, ν < 1, then

ˆ 0

τ0−τk2
|yk|2

ˆ
Rn

(−s)−n2 e
|w|2
4s

(
|yk|−1 + |ŷk + w|

)−m (
(τk2 )−1|yk|2s+ 1

)−ν
dwds .


1, if m < n

〈ln |yk|〉, if m = n

|yk|m−n, if m > n.

(B.24)

Assuming (B.24), for 0 < a < n− 2, one then has

∣∣∣φ̃k(0, 0)
∣∣∣ . o(1) +


|yk|−2, if 4 + a < n

|yk|−2〈ln |yk|〉, if 4 + a = n

|yk|2+a−n, if 4 + a > n

→ 0 as k →∞

which contradicts (B.22).
Finally, we prove (B.24).

Proof of (B.24):ˆ 0

τ0−τk2
|yk|2

ˆ
Rn

(−s)−n2 e
|w|2
4s

(
|yk|−1 + |ŷk + w|

)−m (
(τk2 )−1|yk|2s+ 1

)−ν
dwds

=

ˆ 0

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν
(−s)−m2

ˆ
Rn
e−
|x|2
4

(
(−s)− 1

2 |yk|−1 + |(−s)− 1
2 ŷk + x|

)−m
dxds.
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Notice for 0 < 2c0 ≤ |~v|, we estimate the spatial integral as
ˆ
Rn
e−
|x|2
4 (c0 + |~v + x|)−m dx =

(ˆ
|x|≤ |~v|2

+

ˆ
|~v|
2 <|x|≤2|~v|

+

ˆ
|x|>2|~v|

)
e−
|x|2
4 (c0 + |~v + x|)−m dx

∼
ˆ
|x|≤ |~v|2

e−
|x|2
4 (c0 + |~v|)−m dx+

ˆ
|~v|
2 <|x|≤2|~v|

e−
|x|2
4 (c0 + |~v + x|)−m dx+

ˆ
|x|>2|~v|

e−
|x|2
4 (c0 + |x|)−m dx

. |~v|−m
ˆ
|x|≤ |~v|2

e−
|x|2
4 dx+ e−

|~v|2
16

ˆ
|x+~v|≤3|~v|

(c0 + |~v + x|)−m dx+

ˆ
|x|>2|~v|

e−
|x|2
4 |x|−mdx

. 1{|~v|≤1}|~v|n−m + 1{|~v|>1}|~v|−m + e−
|~v|2
16

(ˆ c0

0

+

ˆ 3|~v|

c0

)
(c0 + r)−mrn−1dr

+ 1{|~v|≤1}


1, if m < n

〈ln |~v|〉, if m = n

|~v|n−m, if m > n

+ 1{|~v|>1}e
− |~v|

2

2

. e−
|~v|2
16


|~v|n−m, if m < n

〈ln( |~v|c0 )〉, if m = n

cn−m0 , if m > n

+ 1{|~v|≤1}


1, if m < n

〈ln |~v|〉, if m = n

|~v|n−m, if m > n

+ 1{|~v|>1}|~v|−m

∼ 1{|~v|≤1}


1, if m < n

〈ln |~v|〉+ 〈ln( |~v|c0 )〉, if m = n

cn−m0 , if m > n

+ 1{|~v|>1}


|~v|−m, if m < n

|~v|−m + e−
|~v|2
16 〈ln( |~v|c0 )〉, if m = n

|~v|−m + e−
|~v|2
16 cn−m0 , if m > n.

Thus, we obtainˆ 0

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν
(−s)−m2

ˆ
Rn
e−
|x|2
4

(
(−s)− 1

2 |yk|−1 + |(−s)− 1
2 ŷk + x|

)−m
dxds

.
ˆ 0

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν
(−s)−m2

(
1{s≤−1}


1, if m < n

〈ln(−s)〉+ 〈ln |yk|〉, if m = n(
(−s)− 1

2 |yk|−1
)n−m

, if m > n

+ 1{s>−1}


(−s)m2 , if m < n

(−s)m2 + e
1

16s 〈ln |yk|〉, if m = n

(−s)m2 + e
1

16s

(
(−s)− 1

2 |yk|−1
)n−m

, if m > n

)
ds

=

ˆ 0

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν (
1{s≤−1}


(−s)−m2 , if m < n

(−s)−n2 (〈ln(−s)〉+ 〈ln |yk|〉) , if m = n

(−s)−n2 |yk|m−n, if m > n

+ 1{s>−1}


1, if m < n

1 + (−s)−n2 e 1
16s 〈ln |yk|〉, if m = n

1 + (−s)−n2 e 1
16s |yk|m−n, if m > n

)
ds := A.

If
τ0−τk2
|yk|2 ≥ −2, for |yk| ≥ 2, we estimate

A .
ˆ 0

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν
1, if m < n

〈ln |yk|〉, if m = n

|yk|m−n, if m > n

ds .


1, if m < n

〈ln |yk|〉, if m = n

|yk|m−n, if m > n

where we have usedˆ 0

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν
ds = τk2 |yk|−2(1− ν)−1

[
1− (τ0(τk2 )−1)1−ν] . 1
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for ν < 1.

If
τ0−τk2
|yk|2 < −2, we have

A =

ˆ 0

−1

(
(τk2 )−1|yk|2s+ 1

)−ν
1, if m < n

1 + (−s)−n2 e 1
16s 〈ln |yk|〉, if m = n

1 + (−s)−n2 e 1
16s |yk|m−n, if m > n

ds

+

ˆ −1

τ0−τk2
2|yk|2

+

ˆ τ0−τ
k
2

2|yk|2

τ0−τk2
|yk|2

((τk2 )−1|yk|2s+ 1
)−ν

(−s)−m2 , if m < n

(−s)−n2 (〈ln(−s)〉+ 〈ln |yk|〉) , if m = n

(−s)−n2 |yk|m−n, if m > n

ds

. (1− ν)−1τk2 |yk|−2
[
1−

(
1− (τk2 )−1|yk|2

)1−ν]
1, if m < n

〈ln |yk|〉, if m = n

|yk|m−n, if m > n

ds

+

ˆ −1

τ0−τk2
2|yk|2


(−s)−m2 , if m < n

(−s)−n2 (〈ln(−s)〉+ 〈ln |yk|〉) , if m = n

(−s)−n2 |yk|m−n, if m > n

ds

+

ˆ τ0−τ
k
2

2|yk|2

τ0−τk2
|yk|2

(
(τk2 )−1|yk|2s+ 1

)−ν


(
τk2−τ0
|yk|2 )−

m
2 , if m < n

(
τk2−τ0
|yk|2 )−

n
2

(
〈ln(

τk2−τ0
|yk|2 )〉+ 〈ln |yk|〉

)
, if m = n

(
τk2−τ0
|yk|2 )−

n
2 |yk|m−n, if m > n

ds

.


1, if m < n

〈ln |yk|〉, if m = n

|yk|m−n, if m > n

+ τk2 |yk|−2(1− ν)−1

[(
τ0(τk2 )−1

2
+

1

2

)1−ν

− (τ0(τk2 )−1)1−ν

]

×


(
τk2−τ0
|yk|2 )−

m
2 , if m < n

(
τk2−τ0
|yk|2 )−

n
2

(
〈ln(

τk2−τ0
|yk|2 )〉+ 〈ln |yk|〉

)
, if m = n

(
τk2−τ0
|yk|2 )−

n
2 |yk|m−n, if m > n

.


1, if m < n

〈ln |yk|〉, if m = n

|yk|m−n, if m > n

where we have used τk2 ≥ 2τ0, |yk| ≥ 2, m > 2 , n > 2, ν < 1. Therefore, we conclude the validity of (B.24).
�

Appendix C. Linear theory via distorted Fourier transform

Consider the LLG equation in critical dimension{
ut = a(∆u+ |∇u|2u)− bu ∧∆u in R2 × (0, T ),

u(·, 0) = u0 ∈ S2 in R2,

where a2 + b2 = 1, a > 0, b ∈ R. The inner linearization around degree 1 harmonic map, in self-similar
variables, looks like

(a+ ib)∂τ −
(
∂ρρ +

1

ρ
∂ρ −

(n+ 1)2ρ4 + (2n2 − 6)ρ2 + (n− 1)2

(ρ2 + 1)2

1

ρ2

)
.

We utilize distorted Fourier transform at mode n = −1 in [99, Section 9.6]. The use of aforementioned techniques
does imply a solution. However, such solution is not sufficient for the gluing to work as it loses too many R’s and
makes the nonlinear terms non-controllable. So we use distorted Fourier transform (DFT) instead to get desired
estimates. The reason behind this is that formally the worst mode is −1 as it corresponds to 2-dimensional
heat operator, and usually estimates in 2D come with a logarithmic loss.
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The derivation of desired estimates for mode −1 is done by first deducing the Duhamel’s representation via
DFT and then estimating pointwisely. For ` ∈ R and v(τ) > 0 and vectorial complex-valued function f , the
weighted topology are defined by

‖f‖v,` := sup
(y,τ)∈R2×(τ0,∞)

v−1(τ)〈y〉`|f(y, τ)|.

Consider {
(a+ ib)∂τφn(ρ, τ) = Lnφn(ρ, τ),

φn(ρ, τ0) = g(ρ),

where τ0 ≥ 1,

Ln = ∂ρρ +
1

ρ
∂ρ −

(n− 1)2

ρ2
− 4n

ρ2 + 1
+

8

(ρ2 + 1)2
.

Assume g is a Schwartz function. Set φn(ρ, τ) = ρ−
1
2An(ρ, τ), then{

(a+ ib)∂τAn(ρ, τ) = L̃nAn(ρ, τ),

An(ρ, τ0) = ρ
1
2 g(ρ).

where L̃n = ∂ρρ + 1
4ρ
−2 − (n−1)2

ρ2 − 4n
ρ2+1 + 8

(ρ2+1)2 .

Recall the generalized eigenfunctions Φn(ρ, ξ) with respect to −L̃n is given by

−L̃nΦn(ρ, ξ) = ξΦn(ρ, ξ).

We multiply it by Φn(ρ, ξ) and integrate by parts and get{
(a+ ib)∂τ Ân(ξ, τ) = −ξÂn(ξ, τ),

Ân(ξ, τ0) =
´∞

0
ρ

1
2 g(ρ)Φn(ρ, ξ)dρ,

where Ân(ξ, τ) =
´∞

0
A−1(ρ, τ)Φn(ρ, ξ)dρ. Thus

Ân(ξ, τ) = e−(a−ib)ξτ Ân(ξ, τ0).

Taking inverse DFT, one has

An(ρ, τ) =

ˆ ∞
0

Ân(ξ, τ)Φn(ρ, ξ)ρn(dξ) =

ˆ ∞
0

e−(a−ib)ξτ Ân(ξ, 0)Φn(ρ, ξ)ρn(dξ)

=

ˆ ∞
0

e−(a−ib)ξτΦn(ρ, ξ)

ˆ ∞
0

x
1
2 g(x)Φn(x, ξ)dxρn(dξ)

=

ˆ ∞
0

ˆ ∞
0

e−(a−ib)ξτΦn(ρ, ξ)Φn(x, ξ)ρn(dξ)x
1
2 g(x)dx.

By Duhamel’s principle, it holds that

φn(ρ, τ) =

ˆ τ

τ0

ˆ ∞
0

ˆ ∞
0

e−(a−ib)ξ(τ−s)ρ−
1
2 Φn(ρ, ξ)Φn(x, ξ)x

1
2hn(x, s)ρn(dξ)dxds (C.1)

gives a solution to the non-homogeneous equation with RHS hn and zero initial data.
To estimate solution in above formulation, one needs precise estimates of generalized eigenfunctions and

density of spectral measure. For n = −1, we summarize the results in [60, Section 4.3.2] as follows.

Proposition C.1 ( [60]). For all ρ ≥ 0, ξ ≥ 0, we have∣∣Φ−1(ρ, ξ)
∣∣ . {ρ 5

2 〈ρ〉−2 if ρ2ξ ≤ 1

ξ−
1
4 〈ξ〉−1 if ρ2ξ > 1

.

Φ−1(ρ, ξ) has the following expansion:

Φ−1(ρ, ξ) = Φ−1
0 (ρ) + ρ

1
2

∞∑
j=1

(−ρ2ξ)jΦj(ρ
2),
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which converges absolutely, where Φ−1
0 (ρ) = ρ

5
2

1+ρ2 . It converges uniformly if ρξ
1
2 remains bounded. Here

Φj(u) ≥ 0 are smooth functions of u ≥ 0 satisfying

Φj(u) ≤ 1

j!

u

1 + u
, for all u ≥ 0, j ≥ 1,

and Φ1(u) ≥ c1 u
1+u for all u ≥ 0 with some absolute constant c1 > 0.

The spectrum measure ρ−1(dξ) of −L̃−1 is absolutely continuous on ξ ≥ 0 with density

dρ−1(ξ)

dξ
∼ 〈ξ〉2.

Our linear theory for LLG mode −1 without orthogonality condition is stated as follows.

Proposition C.2. ([99, Proposition 9.8]) Consider{
(a+ ib)∂τφ−1(ρ, τ) = L−1φ−1(ρ, τ) + h(ρ, τ) in (0,∞)× (τ0,∞),

φ−1(ρ, τ0) = 0 in (0,∞).

where τ0 ≥ 2, ‖h‖v,` < ∞, where v(τ) ≥ 0, ` > 3
2 . Then the solution φ−1 = T−1[h], where T−1[h] is given by

the linear mapping (C.1) with k = −1, satisfies the following estimate

|φ−1(ρ, τ)| . ‖h‖v,`1{ρ≤τ 1
2 }



τ1− `2 sup
s∈[τ/2,τ ]

v(s) + τ−
`
2

´ τ
2
τ0
2

v(s)ds if ` < 2

(ln τ)2 sup
s∈[τ/2,τ ]

v(s) + τ−1 ln τ
´ τ

2
τ0
2

v(s)ds if ` = 2

ln τ sup
s∈[τ/2,τ ]

v(s) + τ−1
´ τ

2
τ0
2

v(s)ds if ` > 2

+ ‖h‖v,`1{ρ>τ 1
2 }
ρ−

1
2



τ
5
4−

`
2 sup
s∈[τ/2,τ ]

v(s) + τ
1
4−

`
2

´ τ
2
τ0
2

v(s)ds if ` < 2

τ
1
4 〈ln τ〉 sup

s∈[τ/2,τ ]

v(s) + τ−
3
4 〈ln τ〉

´ τ
2
τ0
2

v(s)ds if ` = 2

τ
1
4 sup
s∈[τ/2,τ ]

v(s) + τ−
3
4

´ τ
2
τ0
2

v(s)ds if ` > 2.

Inside the self-similar region, better estimates with orthogonality condition imposed can be obtained, see [99,
Section 9.6]. Indeed, we have:

Proposition C.3. ([99, Proposition 9.8]) Under the assumptions in Proposition C.2, assuming 2 < ` < 5
2 and

the orthogonality condition ˆ
R2

h(y, τ)Z−1,1(y)dy = 0 for all τ > τ0, (C.2)

we have the following estimate

|φ−1(ρ, τ)| . ‖h‖∞v,`


〈ρ〉2−` sup

s∈[τ/2,τ ]

v(s) + τ−
`
2

´ τ
2
τ0
2

v(s)ds if ρ ≤ τ 1
2

ρ−
1
2

(
τ

5
4−

`
2 sup
s∈[τ/2,τ ]

v(s) + τ
1
4−

`
2

´ τ
2
τ0
2

v(s)ds
)

if ρ > τ
1
2 .

The proof of Proposition C.2 and Proposition C.3 is done by directly estimating the Duhamel’s formula.

Appendix D. Linear theory via re-gluing

General linear theory, which can be applied to the inner problem, will be developed in this section. Technical
ingredients include energy estimates, orthogonality conditions, maximum principle, spectral gap, and a re-gluing
process.

This section is pretty independent of the other parts in this note. Some symbols which appear in other
sections are abused, but there is no relationship between them. Consider{

∂τφ = Lφ+A(y, τ) · ∇φ+B(y, τ)φ+ h, in DR,
φ(·, τ0) = 0, in BR(τ0)

(D.1)
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where A = (A1, A2, · · · , Ad) is a vector-valued function and B is a scalar function,

L := ∆ + V (y), BR(τ) :=
{
y ∈ Rd | |y| < R(τ)

}
, DR = {(y, τ)

∣∣ y ∈ BR(τ), τ ∈ (τ0,∞)}.
We always assume V (y) = V (|y|) is radial in space satisfying |V (y)| . 〈y〉−2; L has a radial positive kernel Z(ρ)
with the asymptotic behavior

Z(ρ) ∼ 〈ρ〉β , |∂ρZ(ρ)| . 〈ρ〉β−1.

We shall write v = v(τ), R = R(τ) for simplicity.
Our aim is to find well-behaved φ for right hand side h in the weighted space with the norm

‖h‖v,` := sup
(y,τ)∈DR

(v(τ))
−1 〈y〉`|h(y, τ)|

for ` ∈ R, v(τ) ≥ 0. The non-orthogonal linear theory is given as follows.

Proposition D.1. Consider{
∂τφ = Lφ+A(y, τ) · ∇φ+B(y, τ)φ+ h in DR,
φ = 0 on ∂DR, φ(·, τ0) = 0 in BR(τ0).

Suppose ‖h‖v,` < ∞, R ≥ 2, v,R ∈ C1(τ0,∞), 〈y〉−1|A(y, τ)| + |B(y, τ)| ≤ f(τ),
(
f(τ) + |v′|v−1

)
θR,`,1 +

θR,`,2 � 1, where

θR,`,1 :=




R2+max{0,−β−`}, ` < β + d

R2+max{0,−d−2β} lnR, ` = β + d

R2+max{0+,−d−2β}, ` > β + d

if β < 1− d
2

R2+max{0,−β−`}, ` < β + d

R2(lnR)2, ` = β + d

R2+ lnR, ` > β + d

if β = 1− d
2

R2+max{0,−β−`}, ` < 2− β
R2 lnR, ` = 2− β
R2, 2− β < ` < β + d

R2 lnR, ` = β + d

R2+, ` > β + d

if β > 1− d
2 ,

θR,`,2 :=


|R′|R1+max{0,−β−`}, ` < β + d

|R′|R1+max{0,−d−2β} lnR, ` = β + d

|R′|R1+max{0+,−d−2β}, ` > β + d,

then there exists a unique solution with the pointwise upper bound

〈y〉|∇φ(y, τ)|+ |φ(y, τ)| . v(τ)〈y〉βΘR,`(|y|)‖h‖v,`
where

ΘR,`(ρ) :=




R2−β−`, ` < β + d

R2−d−2β lnR, ` = β + d

R2−d−2β , ` > β + d

if β < 1− d
2

R2−β−`, ` < β + d

(lnR)2, ` = β + d

lnR, ` > β + d

if β = 1− d
2

R2−β−`, ` < 2− β
lnR, ` = 2− β
〈ρ〉2−β−`, 2− β < ` < β + d

〈ρ〉2−d−2β ln(ρ+ 2), ` = β + d

〈ρ〉2−d−2β , ` > β + d

if β > 1− d
2 .

(D.2)
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Proof. The existence and uniqueness are given by the classical parabolic theory and we will give pointwise
estimate by the comparison theorem. Set ρ = |y| and a barrier function with the form φ̄(ρ, τ) = Cvg(ρ,R),
where

Lg(ρ,R) = −〈ρ〉−¯̀
, g(ρ,R) = Z(ρ)

ˆ R

ρ

dx

Z2(x)xd−1

ˆ x

0

Z(s)sd−1〈s〉−¯̀
ds

and C, ¯̀ will be determined later. It is easy to get

∂ρg(ρ,R) = Z ′(ρ)

ˆ R

ρ

dx

Z2(x)xd−1

ˆ x

0

Z(s)sd−1〈s〉−¯̀
ds− 1

Z(ρ)ρd−1

ˆ ρ

0

Z(s)sd−1〈s〉−¯̀
ds.

Direct calculation yields

ˆ x

0

Z(s)sd−1〈s〉−¯̀
ds ∼


xd, x ≤ 1

xβ+d−¯̀
, x > 1, ¯̀< β + d

1 + lnx, x > 1, ¯̀= β + d

1, x > 1, ¯̀> β + d,

1

Z2(x)xd−1
∼

{
x1−d, x ≤ 1

x1−d−2β , x > 1,

1

Z2(x)xd−1

ˆ x

0

Z(s)sd−1〈s〉−¯̀
ds ∼


x, x ≤ 1

x1−β−¯̀
, x > 1, ¯̀< β + d

x1−d−2β (1 + lnx) , x > 1, ¯̀= β + d

x1−d−2β , x > 1, ¯̀> β + d.

Considering three cases 1− d− 2β > (=, <)− 1, namely, β < (=, >)1− d
2 , we haveˆ R

ρ

dx

Z2(x)xd−1

ˆ x

0

Z(s)sd−1〈s〉−¯̀
ds . ΘR,¯̀(ρ).

Then
g . 〈ρ〉βΘR,¯̀(ρ).

For ∂ρg, since

1

Z(ρ)ρd−1

ˆ ρ

0

Z(s)sd−1〈s〉−¯̀
ds ∼


ρ, ρ ≤ 1

ρ1−¯̀
, ρ > 1, ¯̀< β + d

ρ1−d−β (1 + ln ρ) , ρ > 1, ¯̀= β + d

ρ1−d−β , ρ > 1, ¯̀> β + d,

then
|∂ρg| . 〈ρ〉β−1ΘR,¯̀(ρ).

A closer look at ΘR,¯̀(ρ), when ¯̀> β + d, tells that the increase in ¯̀ will not improve the estiamte of g. Thus,
we take

¯̀ :=

{
`, ` ≤ β + d

(β + d)+ < `, ` > β + d.

Then ΘR,¯̀(ρ) = ΘR,`(ρ), which implies

g + 〈ρ〉|∂ρg| . 〈ρ〉βΘR,`(ρ).

From the choice of g, we have

P [φ̄] := L(Cvg) + h+ Cv (A · ∇g +Bg)− ∂τ (Cvg)

= − Cv〈y〉−¯̀
+ h+ Cv (A · ∇g +Bg)− Cv′g − CvR′Z(|y|)

Z2(R)Rd−1

ˆ R

0

Z(s)sd−1〈s〉−¯̀
ds

≤ Cv〈y〉−¯̀
[
− 1 + 〈y〉¯̀(A · ∇g +Bg)− v′v−1〈y〉¯̀g − R′〈y〉¯̀Z(|y|)

Z2(R)Rd−1

ˆ R

0

Z(s)sd−1〈s〉−¯̀
ds
]

+ v〈y〉−`‖h‖v,`

≤ − 3

4
Cv〈y〉−¯̀

+ v〈y〉−`‖h‖v,`

where we have used∣∣∣〈y〉¯̀(A · ∇g +Bg)
∣∣∣+
∣∣∣v′v−1〈y〉¯̀g

∣∣∣ . (f(τ) + |v′|v−1
)
〈y〉¯̀+βΘR,`(|y|) .

(
f(τ) + |v′|v−1

)
θR,`,1 � 1
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∣∣∣R′〈y〉¯̀Z(|y|)
Z2(R)Rd−1

ˆ R

0

Z(s)sd−1〈s〉−¯̀
ds
∣∣∣ . 〈y〉¯̀+β


|R′|R1−β−¯̀

, ¯̀< β + d

|R′|R1−d−2β lnR, ¯̀= β + d

|R′|R1−d−2β , ¯̀> β + d

. θR,`,2 � 1.

Set C = 2‖h‖v,`, then P [φ̄] ≤ 0, which implies |φ(y, τ)| . v(τ)〈y〉βΘR,`(|y|). Since θR,`,1 ≥ R2, then f(τ) �
(θR,`,1)−1 ≤ R−2. Additionally, from the presumption, |V (y)| . 〈y〉−2. Then using scaling argument, we get
the gradient estimate.

�

Lemma D.1. Consider {
∂τφ = Lφ+A(y, τ) · ∇φ+B(y, τ)φ+ h in DR,
φ(·, τ0) = 0 in BR(τ0).

Suppose ‖h‖v,` <∞, h is radial in space and if ` > β + d, h satisfies the orthogonal conditionˆ R

0

h(u, τ)Z(u)ud−1du = 0 for all τ > τ0; (D.3)

and 〈y〉−1|A(y, τ)|+ |B(y, τ)| ≤ f(τ),

R ≥ 2, v, R ∈ C1(τ0,∞),
(
f(τ) + |v′|v−1

)
θR,¯̀−2,1 + θR,¯̀−2,2 � 1,

f(τ)v(τ)θR,`,3 ∈ C1(τ0,∞),
[
f(τ) + |(f(τ)v(τ)θR,`,3)′|(f(τ)v(τ)θR,`,3)−1

]
θR,p`,1 + θR,p`,2 � 1,

(D.4)

where θR,c,1, θR,c,2 for c ∈ R are defined in Propostion D.1,

¯̀ :=

{
`, ` 6= β + d, 2− β
`−, ` = β + d or ` = 2− β,

p` :=



2− β if β ≤ 1− d
2

2− β, ¯̀≤ 4− β
¯̀− 2, 4− β < ¯̀< β + d+ 2

(d+ β)−, ¯̀= β + d+ 2

d+ β, ¯̀> β + d+ 2

if β > 1− d
2 ,

(D.5)

θR,`,3 :=




R4−β−¯̀

, ¯̀< β + d+ 2

R2−d−2β lnR, ¯̀= β + d+ 2

R2−d−2β , ¯̀> β + d+ 2

if β < 1− d
2

R4−β−¯̀
, ¯̀< β + d+ 2

(lnR)2, ¯̀= β + d+ 2

lnR, ¯̀> β + d+ 2

if β = 1− d
2

R4−β−¯̀
, ¯̀< 4− β

lnR, ¯̀= 4− β
1, ¯̀> 4− β

if β > 1− d
2 .

Then there exists a solution φ = φ[h] as a linear mapping about h with the estimate

〈y〉|∇φ|+ |φ| . v(τ)θR,`,3
(
〈y〉−p` + f(τ)〈y〉βΘR,p`(|y|)

)
‖h‖v,`
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where

θR,`,3〈y〉−p` =



〈y〉β−2


R4−β−¯̀

, ¯̀< β + d+ 2

R2−d−2β lnR, ¯̀= β + d+ 2

R2−d−2β , ¯̀> β + d+ 2

if β < 1− d
2

〈y〉β−2


R4−β−¯̀

, ¯̀< β + d+ 2

(lnR)2, ¯̀= β + d+ 2

lnR, ¯̀> β + d+ 2

if β = 1− d
2

〈y〉β−2R4−β−¯̀
, ¯̀< 4− β

〈y〉β−2 lnR, ¯̀= 4− β
〈y〉2−¯̀

, 4− β < ¯̀< β + d+ 2

〈y〉−[(d+β)−], ¯̀= β + d+ 2

〈y〉−d−β , ¯̀> β + d+ 2

if β > 1− d
2 .

(D.6)

Remark D.1. By direct calculation, for ` ≤ β + d, we have 〈y〉βΘR,`(|y|) . 〈y〉−p`θR,`,3. Thus for ` ≤ β + d,
the estimate in Proposition D.1 is better than Lemma D.1.

Proof. Let us first consider an elliptic problem LH = h̃ where h̃ is the extension of h as zero outside DR. H is
given by

H(ρ, τ) =


Z(ρ)

ˆ ρ

0

1

Z2(s)sd−1

ˆ s

0

Z(u)ud−1h̃(u, τ)duds, if ` = β + d, β ≤ 1− d
2 or ` 6= β + d, ` ≤ 2− β

−Z(ρ)

ˆ ∞
ρ

1

Z2(s)sd−1

ˆ s

0

Z(u)ud−1h̃(u, τ)duds, if ` = β + d, β > 1− d
2 or ` 6= β + d, ` > 2− β.

The intuition behind the choice of H is to make H behave like integration twice in space about h and keep the
information of `. By direct calculation, H has the following estimate

‖H‖v,¯̀−2 . ‖h‖v,` (D.7)

for ¯̀ given in (D.5). Indeed,

∣∣∣∣ˆ s

0

Z(u)ud−1h̃(u, τ)du

∣∣∣∣ . ‖h‖v,`v

sd, s ≤ 1

sβ+d−`, s > 1, ` < β + d

1 + ln s, s > 1, ` = β + d

sβ+d−`, s > 1, ` > β + d,

where we require the orthogonal condition (D.3) when s > 1, ` > β + d.

1

Z2(s)sd−1
∼

{
s1−d, s ≤ 1

s1−d−2β , s > 1.

Then ∣∣∣∣ 1

Z2(s)sd−1

ˆ s

0

Z(u)ud−1h̃(u, τ)du

∣∣∣∣ . ‖h‖v,`v

s, s ≤ 1

s1−d−2β (1 + ln s) , s > 1, ` = β + d

s1−β−`, s > 1, ` 6= β + d.

When ` = β + d, β ≤ 1− d
2 or ` 6= β + d, ` ≤ 2− β,

∣∣∣∣ˆ ρ

0

1

Z2(s)sd−1

ˆ s

0

Z(u)ud−1h̃(u, τ)duds

∣∣∣∣ . ‖h‖v,`v


ρ2, ρ ≤ 1

ρ2−d−2β (1 + ln ρ) , ρ > 1, ` = β + d, β < 1− d
2

1 + (ln ρ)
2
, ρ > 1, ` = β + d, β = 1− d

2

ρ2−β−`, ρ > 1, ` 6= β + d, ` < 2− β
1 + ln ρ, ρ > 1, ` 6= β + d, ` = 2− β.
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For the cases ` = β + d, β > 1 − d
2 or ` 6= β + d, ` > 2 − β, this formula cannot recover the information of `.

Then

|H| . ‖h‖v,`v



ρ2, ρ ≤ 1

ρ2−`〈ln ρ〉, ρ > 1, ` = β + d, β < 1− d
2

ρ2−`〈ln ρ〉2, ρ > 1, ` = β + d, β = 1− d
2

ρ2−`, ρ > 1, ` 6= β + d, ` < 2− β
ρ2−`〈ln ρ〉, ρ > 1, ` 6= β + d, ` = 2− β.

When ` = β + d, β > 1− d
2 or ` 6= β + d, ` > 2− β,∣∣∣∣ˆ ∞

ρ

1

Z2(s)sd−1

ˆ s

0

Z(u)ud−1h̃(u, τ)duds

∣∣∣∣ . ‖h‖v,`v
{
〈ρ〉2−d−2β ln(ρ+ 2), ` = β + d, β > 1− d

2

〈ρ〉2−β−`, ` 6= β + d, ` > 2− β
which implies

|H| . ‖h‖v,`v

{
〈ρ〉2−` ln(ρ+ 2), ` = β + d, β > 1− d

2

〈ρ〉2−`, ` 6= β + d, ` > 2− β.
Thus we complete the proof of (D.7). Next, consider{

∂τΦ = LΦ +H in D2R,

Φ = 0 on ∂D2R Φ(·, τ0) = 0 in B2R(τ0).

Under the assumption R ≥ 2, v,R ∈ C1(τ0,∞),
(
f(τ) + |v′|v−1

)
θR,¯̀−2,1 + θR,¯̀−2,2 � 1, by Proposition D.1,

we have a unique solution Φ with the estimate

|Φ| . v(τ)〈y〉βΘR,¯̀−2(|y|)‖h‖v,`.

Set φ1 = LΦ. By |V (|y|)| . 〈y〉−2, scaling argument and the defintion of ΘR,¯̀−2 in Proposition D.1, we have

〈y〉|∇φ1|+ |φ1| . v(τ)〈y〉β−2ΘR,¯̀−2(|y|)‖h‖v,`

. v(τ)‖h‖v,`



〈y〉β−2


R4−β−¯̀

, ¯̀< β + d+ 2

R2−d−2β lnR, ¯̀= β + d+ 2

R2−d−2β , ¯̀> β + d+ 2

if β < 1− d
2

〈y〉β−2


R4−β−¯̀

, ¯̀< β + d+ 2

(lnR)2, ¯̀= β + d+ 2

lnR, ¯̀> β + d+ 2

if β = 1− d
2

〈y〉β−2R4−β−¯̀
, ¯̀< 4− β

〈y〉β−2 lnR, ¯̀= 4− β
〈y〉2−¯̀

, 4− β < ¯̀< β + d+ 2

〈y〉−d−β ln(|y|+ 2), ¯̀= β + d+ 2

〈y〉−d−β , ¯̀> β + d+ 2

if β > 1− d
2

. v(τ)θR,`,3〈y〉−p`‖h‖v,`.
In order to retrieve the term A · ∇φ+Bφ, we consider{

∂τφ2 = Lφ2 +A · ∇φ2 +Bφ2 +A · ∇φ1 +Bφ1 in DR,
φ2 = 0 on ∂DR, φ2(ρ, τ0) = 0 in BR(τ0)

where
|A · ∇φ1 +Bφ1| . f(τ) (〈y〉|∇φ1|+ |φ1|) . f(τ)v(τ)θR,`,3〈y〉−p`‖h‖v,`.

Under the assumption R ≥ 2, f(τ)v(τ)θR,`,3, R ∈ C1(τ0,∞),[
f(τ) + |(f(τ)v(τ)θR,`,3)′|(f(τ)v(τ)θR,`,3)−1

]
θR,p`,1 + θR,p`,2 � 1, by Proposition D.1, we get φ2 with the

estimate
〈y〉|∇φ2|+ |φ2| . f(τ)v(τ)θR,`,3〈y〉βΘR,p`(|y|)‖h‖v,`.

Set φ[h] = φ1 + φ2. We complete the proof.
�
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Next we perform the re-gluing procedure to further improve the linear theory. In the process of re-gluing,
since the outer solution will enter the right hand side of the inner problem, in order to make the term involving
the outer solution radial in space, we take A(y, τ) = Ã(ρ, τ)y, B(y, τ) = B(ρ, τ) where ρ = |y| and Ã(ρ, τ) is a
scalar function.

Proposition D.2. Consider{
∂τφ = Lφ+ Ã(ρ, τ)ρ∂ρφ+B(ρ, τ)φ+ h+ cin(τ)η(ρ)Z(ρ) in DR,
φ(·, τ0) = 0 in BR(τ0)

where |Ã(ρ, τ)| + |B(ρ, τ)| ≤ f(τ), ‖h‖v,` < ∞. Suppose that R0 ≤ R/3 .
√
τ , |V (|y|)| . 〈y〉−PV , PV > 2,

d > 2, −d < β < 0, ` ∈ (β+d, β+d+ 2)∩ (2, d), f(τ)R
max{4−d−2β,2+}
0 . 1; there exists a constant C∗ > 1 such

that C−1
∗ F (τ) ≤ F (s) ≤ C∗F (τ) with F = v,R,R0 for all τ ≤ s ≤ 2τ , τ−

d
2

´ τ
τ0
v(s)Rd−

¯̀∗(s)ds . vR2−¯̀∗ , where

¯̀∗ :=

{
¯̀−, β > 1− d

2 and ¯̀= 4− β
¯̀, otherwise

for ¯̀ given in (D.5);

v,R0 ∈ C1(τ0,∞),
(
f(τ) + |v′|v−1

)
θR0,¯̀−2,1 + |R′0|R

1+max{0,2−β−¯̀}
0 � 1,

f(τ)v(τ)θR0,`,3 ∈ C1(τ0,∞),
[
f(τ) + |(f(τ)v(τ)θR0,`,3)′|(f(τ)v(τ)θR0,`,3)−1

]
θR0,p`,1 + θR0,p`,2 � 1,

where

θR0,¯̀−2,1 =


R

2+max{0,2−β−¯̀}
0 if β ≤ 1− d

2
R

2+max{0,2−β−¯̀}
0 , ¯̀< 4− β

R2
0 lnR0, ¯̀= 4− β

R2
0, 4− β < ¯̀< β + d+ 2

if β > 1− d
2 ,

θR0,`,3 =


R4−β−¯̀

0 if β ≤ 1− d
2

R4−β−¯̀

0 , ¯̀< 4− β
lnR0, ¯̀= 4− β
1, ¯̀> 4− β

if β > 1− d
2 ,

θR0,p`,1 =


R

2+max{0+,−d−2β}
0 , if β < 1− d

2

R2
0(lnR0)2, if β = 1− d

2{
R2

0 lnR0, ¯̀≤ 4− β
R2

0, 4− β < ¯̀< β + d+ 2
if β > 1− d

2 ,

θR0,p`,2 =


|R′0|R

1+max{0+,−d−2β}
0 , if β < 1− d

2

|R′0|R0 lnR0, if β = 1− d
2

|R′0|R0, if β > 1− d
2 ,

for inf
τ≥τ0

R0(τ) sufficiently large and sup
τ≥τ0

f(τ)R2(τ) sufficiently small. Then there exists a solution (φ, cin) =

(φ[h], cin[h]) which is a linear mapping about h with the properties

〈ρ〉|∂ρφ|+ |φ| . v‖h‖v,`


〈ρ〉2−¯̀

R4−β−¯̀

0 if β ≤ 1− d
2

〈ρ〉2−¯̀
R4−β−¯̀

0 , ¯̀< 4− β
〈ρ〉(2−¯̀)+ lnR0, ¯̀= 4− β
〈ρ〉2−¯̀

, 4− β < ¯̀< β + d+ 2

if β > 1− d
2 ,

(D.8)

cin(τ) = cin[h](τ) = −
(ˆ 2

0

η(x)Z2(x)xd−1dx
)−1

(ˆ 2R0

0

h(x, τ)Z(x)xd−1dx+ cin,1[h](τ)

)
, (D.9)
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and cin,1[h] depends linearly on h with the following estimate.

|cin,1[h](τ)| . v‖h‖v,`R2−¯̀∗
0


1, β + d− PV < 0

lnR0, β + d− PV = 0

Rβ+d−PV
0 , β + d− PV > 0;

(D.10)

for α ∈ (0, 1), τ1, τ2 ∈ [τ − λ2
1, τ ] with 0 < λ1 ≤

√
τ/8,

|cin,1[h](τ1)− cin,1[h](τ2)| . v‖h‖v,`

[
R1−¯̀∗+β+d−PV

0 |R0(τ1)−R0(τ2)|

+ |τ1 − τ2|α
(
λ−2α

1 R2−¯̀∗
0 + λ2−2α

1 R−
¯̀∗

0

)
1, β + d− PV < 0

lnR0, β + d− PV = 0

Rβ+d−PV
0 , β + d− PV > 0

]
.

(D.11)

Proof of Proposition D.2. Set φ(ρ, τ) = ηR0
(ρ)φi(ρ, τ) + φo(ρ, τ), where ηR0

(ρ) = η( ρ
R0

). In order to find a

solution φ, it suffices to solve the following inner–outer gluing system for (φi, φo).
The outer problem: {

∂τφo = ∆φo + J [φo, φi]η2R(ρ) in Rd × (τ0,∞),

φo(·, τ0) = 0 in Rd,
(D.12)

the inner problem:{
∂τφi = Lφi + Ãρ∂ρφi +Bφi + V φo + h+ cin(τ)η(ρ)Z(ρ) in D2R0

,

φi(·, τ0) = 0 in B2R(τ0),
(D.13)

where η2R(ρ) = η( ρ
2R ),

J [φo, φi] := V φo(1− ηR0) + Ãρ∂ρφo +Bφo + Λ[φi] + h(1− ηR0),

Λ[φi] := φi∆ηR0
+ 2∂ρηR0

∂ρφi + Ãφiρ∂ρηR0
− φi∂τηR0

.

Here cin(τ) is given by

cin(τ) = cin[φo](τ) = C1

ˆ 2R0

0

(V (x, τ)φo(x, τ) + h(x, τ))Z(x)xd−1dx, C1 = −
(ˆ 2

0

η(x)Z2(x)xd−1dx

)−1

to achieve the orthogonal conditionˆ 2R0

0

(V (x)φo(x, τ) + h(x, τ) + cin(τ)η(x)Z(x))Z(x)xd−1dx = 0.

We reformulate (D.12) and (D.13) into the following form

φo(y, τ) = Td • [J [φo, φi]η2R](y, τ, τ0), φi(y, τ) = Ti [V φo + h+ cinη(ρ)Z(ρ)] (D.14)

where Ti is the linear mappings given by Lemma D.1. We will solve the system (D.14) by the contraction
mapping theorem.

Denote the leading term of the right hand side of (D.13) as H1 := h+ C1η(ρ)Z(ρ)
´ 2R0

0
h(x, τ)Z(x)xd−1dx.

It is easy to check ‖H1‖v,` . ‖h‖v,` under the assumption β + d < `. If H1 satisfies the orthogonal condition in
D2R0

, under the assumption

R0 ≥ 2, v, R0 ∈ C1(τ0,∞),
(
f(τ) + |v′|v−1

)
θR0,¯̀−2,1 + θR0,¯̀−2,2 � 1,

f(τ)v(τ)θR0,`,3 ∈ C1(τ0,∞),
[
f(τ) + |(f(τ)v(τ)θR0,`,3)′|(f(τ)v(τ)θR0,`,3)−1

]
θR0,p`,1 + θR0,p`,2 � 1,

Lemma D.1 gives the following a priori estimate

〈ρ〉|∂ρTi[H1]|+ |Ti[H1]| ≤ Diwi(ρ, τ)

where Di ≥ 1 is a constant and
wi(ρ, τ) := v(τ)θR0,`,3〈ρ〉−p`‖h‖v,`



GLUING METHOD 95

where we have used f(τ)〈ρ〉βΘR0,p`(ρ) . 〈ρ〉−p` under the assumption f(τ)R
max{4−d−2β,2+}
0 . 1. Indeed, by

the definition of p` in (D.5) and ΘR0,p` in (D.2),

f(τ)〈ρ〉β+p`ΘR0,p`(ρ) . 1⇐⇒ f(τ)



〈ρ〉2R2−d−2β
0 , if β < 1− d

2

〈ρ〉2(lnR0)2 if β = 1− d
2

〈ρ〉2 lnR0, p` = 2− β
〈ρ〉2, 2− β < p` < β + d

〈ρ〉2 ln(ρ+ 2), p` = β + d

if β > 1− d
2

. 1.

For this reason, we will solve the inner problem (D.13) in the space

Bi = {g(ρ, τ) : 〈ρ〉|∂ρg(ρ, τ)|+ |g(ρ, τ)| ≤ 2Diwi(ρ, τ)} .

For any fixed φ̃i ∈ Bi, we will find a solution φo = φo[φ̃i] of the outer problem (D.12) by the contraction

mapping theorem. Let us first estimate J [0, φ̃i] term by term. Under the assumption |R′0|R−1
0 + f(τ) . R−2

0 ,
using (D.6), we have

|Λ[φ̃i]| .
(
R−2

0 + |R′0|R−1
0 + f(τ)

)
1{R0≤ρ≤2R0}Diwi(R0, τ) ∼ R−2

0 1{R0≤ρ≤2R0}Diwi(R0, τ)

= DiR
−2
0 1{R0≤ρ≤2R0}v‖h‖v,`θR0,`,3〈R0〉−p`

∼ Di1{R0≤ρ≤2R0}v‖h‖v,`




R−

¯̀

0 , ¯̀< β + d+ 2

R−
¯̀

0 lnR0, ¯̀= β + d+ 2

R−2−d−β
0 , ¯̀> β + d+ 2

if β < 1− d
2

R−
¯̀

0 , ¯̀< β + d+ 2

R−
¯̀

0 (lnR0)2, ¯̀= β + d+ 2

R−2−d−β
0 lnR0, ¯̀> β + d+ 2

if β = 1− d
2

R−
¯̀

0 , ¯̀< 4− β
R−

¯̀

0 lnR0, ¯̀= 4− β
R−

¯̀

0 , 4− β < ¯̀< β + d+ 2

R
−2−[(d+β)−]
0 , ¯̀= β + d+ 2

R−2−d−β
0 , ¯̀> β + d+ 2

if β > 1− d
2 .

Since the information of ` is lost in |Λ[φ̃i]| when ¯̀ > β + d + 2, we restrict it to the case ` < β + d + 2.
Additionally,

|h(1− ηR0
)| . 1{ρ≥R0}v〈ρ〉

−`‖h‖v,`.
Thus,

|J [0, φ̃i]|η2R . Di1{R0≤ρ≤4R}v‖h‖v,`

{
〈ρ〉−¯̀

ln(ρ+ 2), β > 1− d
2 and ¯̀= 4− β

〈ρ〉−¯̀
, otherwise

. Div‖h‖v,`
(
1{ρ<R0}R

−¯̀∗
0 + 1{R0≤ρ≤4R}ρ

−¯̀∗
) (D.15)

where

¯̀∗ :=

{
¯̀−, β > 1− d

2 and ¯̀= 4− β
¯̀, otherwise.

Consider (D.12) with the right hand side J [0, φ̃i]η2R. In order to retrieve the information of ` and avoid
losing time decay, we restrict it to the case d > 2, 2 < ` < d.
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By [100, Lemma A.1] and the scaling argument, under the assumption that C−1
∗ F (τ) ≤ F (s) ≤ C∗F (τ) with

F = v,R,R0 and a costant C∗ > 1 for all τ ≤ s ≤ 2τ , τ−
d
2

´ τ
τ0
v(s)Rd−

¯̀∗(s)ds . vR2−¯̀∗ , R .
√
τ , we have

〈ρ〉
∣∣∣∂ρTd • [J [0, φ̃i]η2R]

∣∣∣+
∣∣∣Td • [J [0, φ̃i]η2R]

∣∣∣ ≤ CDi‖h‖v,`
∣∣∣Td • [v(1{ρ<R0}R

−¯̀∗
0 + 1{R0≤ρ≤4R}ρ

−¯̀∗
)]∣∣∣

≤ CDi‖h‖v,`
(
τ−

d
2 e−

ρ2

16τ

ˆ τ

τ0

v(s)Rd−
¯̀∗(s)ds+ v(τ)


R2−¯̀∗

0 , ρ ≤ R0

ρ2−¯̀∗ , R0 < ρ ≤ R
ρ2−de−

ρ2

16τ Rd−
¯̀∗ , ρ > R

)

≤ wo(ρ, τ) := DoDi‖h‖v,`
(

1{ρ>8R}τ
− d2 e−

ρ2

16τ

ˆ τ

τ0

v(s)Rd−
¯̀∗(s)ds+ v(τ)

{
R2−¯̀∗

0 , ρ ≤ R0

ρ2−¯̀∗ , ρ > R0

)
with a large constant Do ≥ 1. This suggests that we solve φo in the following space:

Bo = {g(ρ, τ) : 〈ρ〉|∂ρg(ρ, τ)|+ |g(ρ, τ)| ≤ 2wo(ρ, τ)} . (D.16)

For any φ̃o ∈ Bo, since |V (ρ)| . 〈ρ〉−PV with PV > 2, we have

|V φ̃o(1− ηR0
)|η2R .

(
inf
τ≥τ0

R0(τ)
)2−PV

1{R0≤ρ≤4R}DoDi‖h‖v,`vρ−
¯̀∗ ,∣∣∣Ãρ∂ρφo +Bφo

∣∣∣ η2R . f(τ)DoDi‖h‖v,`v
(
R2−¯̀∗

0 1{ρ≤R0} + ρ2−¯̀∗1{R0<ρ≤4R}
)

.
(

sup
τ≥τ0

f(τ)R2(τ)
)
DoDi‖h‖v,`v

(
R−

¯̀∗
0 1{ρ≤R0} + ρ−

¯̀∗1{R0<ρ≤4R}
)
.

(D.17)

Taking inf
τ≥τ0

R0(τ) sufficiently large and sup
τ≥τ0

f(τ)R2(τ) sufficiently small, we have

To[J [φ̃o, φ̃i]η2R] ∈ Bo.
The contraction mapping property can be deduced in the same way. Indeed, denote

‖g‖o := sup
Rd×(τ0,∞)

[
(wo(ρ, τ))−1|g(ρ, τ)|

]
.

Then for any φ̃
(1)
o , φ̃

(2)
o ∈ Bo,∣∣∣V (φ̃(1)

o − φ̃(2)
o )(1− ηR0

)
∣∣∣ η2R +

∣∣∣Ãρ∂ρ(φ̃(1)
o − φ̃(2)

o ) +B(φ̃(1)
o − φ̃(2)

o )
∣∣∣ η2R

.
((

inf
τ≥τ0

R0(τ)
)2−PV

+ sup
τ≥τ0

f(τ)R2(τ)
)
DoDi‖h‖v,`v

(
R−

¯̀∗
0 1{ρ≤R0} + ρ−

¯̀∗1{R0<ρ≤4R}
)
‖φ̃(1)

o − φ̃(2)
o ‖o

where
(

inf
τ≥τ0

R0(τ)
)2−PV

+ sup
τ≥τ0

f(τ)R2(τ) provides small quantity for the contraction mapping.

Now we have found a solution φo = φo[φ̃i] ∈ Bo. It follows that in the domain ρ ≤ 2R0,∣∣∣V φo + η(ρ)Z(ρ)C1

ˆ 2R0

0

V (x, τ)φo(x, τ)Z(x)xd−1dx
∣∣∣

. DoDi‖h‖v,`vR2−¯̀∗
0

(
〈ρ〉−PV + η(ρ)


1, β + d− PV < 0

lnR0, β + d− PV = 0

Rβ+d−PV
0 , β + d− PV > 0

)
.
(

inf
τ≥τ0

R0(τ)
)−ε

DoDi‖h‖v,`v〈ρ〉−`

for a small constant ε > 0 provided PV > max
{

2, 2− ¯̀∗ + β + d
}

.

Due to the choice of cin(τ), H2 := V φo[φ̃i] + h+ cin[φo[φ̃i]](τ)η(ρ)Z(ρ) satisfies the orthogonal condition in

D2R0 . By Lemma D.1, since
(

inf
τ≥τ0

R0(τ)
)−ε

provides smallness, we have

Ti[H2] ∈ Bi.
The contraction property can be deduced in the same way. Thus we find a solution

φi = φi[h] ∈ Bi. (D.18)

Finally we obtain a solution (φo, φi) for (D.12) and (D.13).
By the same argument in the proof of [100, Proposition 7.1], φ = φ[h] is a linear mapping about h.
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We will regard Do, Di as general constants hereafter. Set

cin,1[h](τ) :=

ˆ 2R0

0

V (x)φo[h](x, τ)Z(x)xd−1dx.

Since φo[h] ∈ Bo, then the estimate (D.10) follows.
Combining (D.18), (D.16), (D.6) and then using the scaling argument, we get (D.8).

Combining (D.15) and (D.17), we have |J [φo, φi]η2R| . v‖h‖v,`R−
¯̀∗

0 . By (D.16), then |φo| . v‖h‖v,`R2−¯̀∗
0 .

Applying again the scaling argument to (D.12), we have

sup
y∈Rd

sup
τ1,τ2∈[τ−λ2

1,τ ]

|φo(y, τ1)− φo(y, τ2)|
|τ1 − τ2|α

. v‖h‖v,`
(
λ−2α

1 R2−¯̀∗
0 + λ2−2α

1 R−
¯̀∗

0

)
for α ∈ (0, 1), 0 < λ1 ≤

√
τ/8, which yields (D.11).

�

Remark D.2. The reason why we consider (D.12) in Rd is to make the scaling argument applicable for a wider
range of λ1.
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[14] Charles Collot, Frank Merle, and Pierre Raphaël. Dynamics near the ground state for the energy critical
nonlinear heat equation in large dimensions. Comm. Math. Phys., 352(1):215–285, 2017.
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