LECTURE NOTES ON THE PARABOLIC GLUING METHOD
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ABSTRACT. Singularity formation for evolution equations has attracted much attention in recent years. In
this lecture note, we will introduce some recent progress on the parabolic gluing method and its applications
in investigating the mechanism of singularity formation for parabolic flows. Several model problems will be
revisited to illustrate the ideas.
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1. INTRODUCTION

Singularity formation for evolution equations has attracted much attention in recent years, probably because
of the connection to the possible singularity or global regularity for the incompressible Navier-Stokes equation
in R3, a Clay Millennium Problem, as well as the motivations from geometric flows (Ricci flow and mean
curvature flow). As a matter of fact, the resolution of Poincare’s conjecture (another Clay Millennium problem)
by G. Perelman [78, 79] is a manifesto of the importance of the analysis of singularity formulation in evolution
equations. Many equations, such as Fujita equations and harmonic map heat flows, which certainly have their
own interest and significance, might be regarded as testing fields for the analysis of singularity formation in
evolution equations. In this survey, we shall report some recent development on the parabolic gluing method
and its applications in constructing finite- and infinite-time blow-up solutions to various evolution equations.
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In the elliptic context, the inner—outer gluing method was developed by del Pino, Kowalczyk, and Wei [23, 24]
to investigate concentration on higher dimensional sets such as curves and surfaces. The climax of this method
is the resolution of De Giorgi’s Conjecture in dimensions greater than 8 [24]. Since then, many new phenomena
and features have been found in the Allen-Cahn equations, critical or supercritical elliptic problems, and other
settings. Its parabolic analogue, motivated by a recent surge of interests in the singularity formation in evolution
settings, was developed by Davila, del Pino, Musso, and Wei to investigate finite- and infinite-time blow-up
solutions for energy critical heat equations and heat flow of harmonic maps [17, 22]. Later, the gluing method
was generalized and applied to a wider class of evolution equations. Without being exhaustive, these include
Euler equations and related fluid equations, geometric flows, parabolic equations, and systems arising from
mathematical biology and physics such as Keller-Segel systems, nematic liquid crystal flow, the LLG equation,
and others. We refer the reader to [19, 20, 21, 26, 27, 63, 88, 99] and the references therein.

Let us first explain some of the ideas and recent progress in the development of the gluing method in
an abstract fashion and then give two specific examples to better illustrate the ideas. Roughly speaking, the
parabolic gluing method is a refined type of perturbative argument. Our aim is to construct solutions exhibiting
singular asymptotic behavior near some concentration points as ¢t — T or ¢ — +o0o. The construction starts
with a well-chosen blow-up profile, usually driven by energy concentration. Then one looks for a perturbation
that consists of inner and outer parts, where the inner part captures the heart of the singularity formation and
the outer part handles all the external noises. This leads to a coupled inner—outer gluing system involving the
inner and outer solutions and the (typically scaling and translation) parameter functions. The full system is
then solved by a fixed point argument provided that one can obtain suitable linear theories for inner and outer
problems as well as the reduced problems that determine the dynamics of parameters. The linear theories are
designed such that the full system is decoupled or less coupled, namely the gluing procedure can be implemented,
and it usually involves careful and rather precise choices of weighted topologies in a pointwise sense for solution
spaces. On the other hand, the linearization for the inner problem is surely not invertible in the presence
of an infinitesimal generator of rigid motions, and thus for an inner solution with sufficient decay to exist,
orthogonality conditions are required ensuring the development of the linear theory. These orthogonalities in
turn determine the dynamics of parameters, yielding the desired blow-up speed and location.

A typical first approximate solution is the steady state invariant under rescaling and translation. These
invariances naturally imply kernels in the linearized operator. We call the case where all the kernels decay
sufficiently fast the L? case, while the case with slowly decaying kernels (¢ L?(R")) is called the non-L? case.
Usually the non-L? case happens in lower dimensions, and under such circumstances, well chosen nonlocal
corrections are needed in order to improve the spatial decay. The new error terms introduced by nonlocal
corrections enter the orthogonality condition (at the corresponding mode) as leading order, leading to a certain
integro-differential operator in the reduced equation. This global feature has been observed, for instance, in
[18, 22, 26, ]. Techniques such as the Laplace transform and Riemann-Liouville type can be applied for
certain cases, but for the other threshold cases, one has to take advantage of the Holder regularity inherited
from the outer problem to control the nonlocal operator.

In general, the development of the linear theory for the outer problem is more straightforward compared to
the one for the inner problem. In parabolic settings, the maximum principle, or the direct and careful use of
Duhamel’s formula, can be employed. However, the design of the weighted space can be more delicate in the
absence of the maximum principle. The gluing method in such set-ups has been developed and applied equally
well. See [19, 20, 21, 99] for recent progress on the incompressible Euler equations and LLG equation.

For the inner problem, solutions with sufficient decay in space-time can only be expected with orthogonality
conditions imposed, and careful choice of initial data might be needed if instability is present for the correspond-
ing linearized operator, resulting in codimension stability. There are various techniques and tools available, and
the spectral information plays a key role. A refined version, that gets less deteriorated in the innermost region,
can be achieved by the re-gluing process, namely another inner—outer gluing procedure. The distorted Fourier
transform also turns out to be a powerful tool in the gluing method and is present in [99]. This is motivated
by [42] on the spectral analysis of the Schrodinger operator and [59, 60, 61, 62] on the singularity formation for
wave equations and wave maps.

In the rest of this lecture note, to illustrate the ideas and techniques in the parabolic gluing method, we plan
to revisit several models
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2 case) and in R* (non-L?

e finite time blow-up for the Fujita equation with critical exponent in R (L
case);

e finite time blow-up for the harmonic map heat flow and the Landau-Lifshitz-Gilbert equation in R?;

e long-term dynamics for the l-equivariant harmonic map heat flow, Fujita equation in R?*, and the
Keller-Segel system in R2.

In the appendices, different methods for linear theories will be presented.

2. FUJITA EQUATION: A BRIEF INTRODUCTION

Let us start with a brief introduction to singularity formation for the Fujita equation,
uy = Au+ |[ulP"tu in Q x (0,7T), (2.1)

where (Q is the entire space R™ or a smooth domain in R™ and 0 < T' < 4o00. This semilinear heat equation
with p > 1 has been widely studied since Fujita’s celebrated work [39]. The Fujita equation might be the one
of the most simple-looking semilinear parabolic equations. However, rich and sophisticated phenomena arise,
and those are intimately related to the power nonlinearity in a rather precise manner. Much literature has
been devoted to studying this problem concerning the singularity formation. For a comprehensive survey in the
literature, we refer the readers to the book of Quittner and Souplet [32].

For the finite time blow-up, the solution « is said to be type I if

limsup, p(T = )77 |u(, 1)]]oc < +00,

and type II if
1

limsup, (T — )77 ||u(-, t)]| 0o = +00.
Type I blow-up is more generic and similar to that of the ODE w; = u?, while type II blow-up, where the
Laplacian dominates, is much more difficult to detect. In particular, two different types of blow-up phenomena
in problem (4.6) depend sensitively on the power nonlinearity. For instance, it is known after a series of works,

including [43, 44], that type I is the only way possible if p < ps in the case that Q is R or a convex domain,
where p; is the critical Sobolev exponent

2 ifn >3,
P = Y s itn=1,2.

The critical exponent p; is special in various ways. For the energy critical case p = pg, in the positive radial and
monotonically decreasing class, Filippas, Herrero and Veldzquez [36] excluded the possibility of type II blow-up
for n > 3, and Matano and Merle [70, Theorem 1.7] removed the monotone assumption and obtained the same
result. Wang and Wei [98] generalized the result to the non-radial positive class in higher dimensions n > 7.
For p < ps, finite time type I blow-up solution was found and its stability was studied in [74]. For the critical
case p = ps in R™ with n > 7, classification results were proved near the ground state of the energy critical
heat equation in [14]. In the aspect of type II blow-ups, the first example was discovered by Herrero-Veldzquez
[54, 55], for p > pyr, where pyy, is the Joseph-Lundgren exponent [57]

4 .
oy = A Ty iinz 1L,
oo, if n < 10.

See, for instance, [12, 15, 28, 75, 87] and references therein for more results on existence and construction of type
IT blow-ups. For the critical case p = ps in dimensions n = 3,4, 5,6, sign-changing type II blow-up solutions
were conjectured to exist, via formal matched asymptotic analysis, by Filippas, Herrero and Velazquez [36] and
have been rigorously constructed recently in [25, 29, 31, 51, 52, 65, 86].

In view of the results mentioned above, regarding finite-time blow-up for positive solutions to the Fujita
equation (4.6), we mention three interesting open questions/Conjectures.

n+2

Conjecture 1. For 3 <n <6 and p = =5,

all positive finite time blow-ups to (4.6) are Type L.

Conjecture 2. Forn > 7 and p = Z—J_rg, all (sign-changing) finite time blow-ups to (4.6) are Type L.

Conjecture 3. For "2 < p < p;r(n) and p #

n—2

n—m+2
n—m—2’

all finite time blow-ups to (4.6) are Type L.
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On the other hand, infinite time blow-ups for p = p, have also received some attention recently. In dimensions
n > 3, Galaktionov and King [40] investigated positive, radially symmetric, infinite time blow-up solutions for
problem (4.6) in the case of the unit ball with Dirichlet boundary condition. See also [92, Theorem 1.4] for
the case that the domain is convex and symmetric. In the non-radial setting, the positive infinite time blow-up
solutions for problem (4.6) with zero Dirichlet boundary condition and n > 5 was constructed in [17], where the
role of the Green’s function in the bubbling phenomenon was studied, in parallel to the seminal works [3] and [4]
in elliptic settings. See also [30] for the construction based on non-degenerate sign-changing profile and [27, 91]
for the bubble towers in higher dimensions at forward and backward time infinity. Infinite time blow-ups for
the lower dimensions n = 3,4 have been constructed in [26, 100] confirming a conjecture by Fila and King [35].

2.1. L? case: critical Fujita equation in R®. The first example is the type II singularity for Fujita equation
with critical exponent in R>.

The first step is to find a suitable blow-up profile whose natural choice is the steady state. We recall that all
positive entire solutions of the equation

Au—|—|uﬁu=0 in R"
are given by the family of Aubin-Talenti bubbles
Unele) =70 (225) (2.)
where )
- 1\ T net
= n —_— B n = - 2 i .
=an (1) o an=lan-2)

The solutions we construct do change sign, and look at main order near the blow-up points as one of the bubbles
(2.2) with time dependent parameters and p(t) — 0 as ¢ — 7. Thus we consider the equation

{ w = Autfu[72u i Qx (0,7), (2.3)

u(-,0) =wug in Q
in the case n = 5, p = 7/3. Let us fix arbitrary points ¢1,qs,...qx € Q. We consider a smooth function
Z§ € L*°(Q) with the property that
Z3(gj) <0 forall j=1,... k.
The sign condition is required to ensure the existence of desired blow-up dynamics.

Theorem 1 ([25]). Let n = 5. For each T > 0 sufficiently small there exists an initial condition ug such that
the solution of problem (2.3) blows up at time T exactly at the k points qi,...,qk. It looks at main order as

k
w(@,t) = U6, (@) + Z5 (x) + 0(x, 1)
j=1

where
pi(t) =0, &) —q as t—T,
and ||0]|p < T* for some a > 0. More precisely, for numbers 3; > 0 we have
pi(t) = Bi(T —)*(1+o(1)),
We observe that in particular, the solution constructed in Theorem 7 is type II since
(s )| oo sy ~ (T = )72 > (T — )7/,

For notational simplicity we shall only sketch the proof in the single-bubble case k = 1. The general case
requires relatively minor changes.
e Ansatzes and error estimates.

We fix a point ¢ € Q. Let us consider a function Z; smooth in Q with Z§ = 0 on 9. We assume in addition
that
Z5(q) <0. (2.4)
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We let Z*(x,t) be the unique solution of the initial-boundary value problem
{atz* =AZ* in Qx(0,00), 25)

Z*=0 ondx(0,00), Z*(-,0)=2; in.
We consider functions £(t) — ¢, and parameters p(t) — 0 as t — 7. We look for a solution of the form
u(x,t) = Upyyeo) () + Z7 (2, t) + p(a,t) (2.6)

with a remainder ¢ consisting of inner and outer parts

p(e,t) = p~ T ¢ (y, 1) nr(y) +¥(z,t), y= (2.7)

nr(Y) = 1o ('é)

and 7o(s) is a smooth cut-off function with 79(s) =1 for s <1 and =0 for s > 1.

where

Let us define the error of u as
S(u) = —up + Au + uP.

then S(Uxe+Z"+p) = —pr +Ap erUgEl(cp + 7%+ u*¥E + N(Z* + )
= nrp T F [ = 12+ Dyd +pUW)P o+ 1T (27 + )] + B
— b+ A+ pp (1 = nr)U ()P~ (2" + ) + Al
+Blg] + pF B —qr) + N(Z* + )
where

Bly,t) = pily - VU() + 52U+ ué - VU(), (28)
Nug(2) = Upe + 2P Uy + 2) — U . — pUP ' 2,
Alg] = u~ % { Aynro + 2V, RV, 0},
Blg] :=p" 2 {/l[y - Vyo + nT_2</>]nR +&-Vydnr+ [ Vynr + & Vyng] ¢}

and we have used Uﬁglcp = u2U(y)?~1p. Thus, we will have a solution if the pair (¢(y,t), 1 (x,t)) solves the
following inner—outer gluing system

Wror = Dyo+pUW)P o+ H(y,p,€)  in Bag(0) x (0,7) (2.9)

Y = D) + G(, 9, 1, §)  in Qx(0,7T)
Y =—U,e on 0Q x (0,T), (2.10)
¥(-,0) =0 in
where )
H(p, 1, &)y, 1) = p" 2 pUy)P~ (2" + py,t) + 0§ + py, 1)) + E(y, 1),
G(d, 0, 1, E) (1) = pu (1= nr)U(y)*~(Z* +¢) + Al¢] + B[g] (2.11)

_nt2 * r —
+u T E(l=nr) + N(Z" +¢), y= ug

e Formal derivation of ;1 and &.

Next we do a formal consideration that allows us to identify the parameters p(t) and £(¢) at main order.
Leaving aside smaller order terms, the inner problem (2.9) is approximately an equation of the form

1oy = Ayd+pU(y)P '+ h(y,t) in R" x (0,7)

Py, t) >0 as |yl — oo (2.12)
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With n—2
My, t) = pi(U(y) +y-VUY) +pp 2 Uy Z5(q)

+ ué-VU(y) +ppfUWY)P'VZ5(9) -y
The condition of spatial decay in y for the inner problem solution ¢ mitigates the effect of ¢ in the outer problem
(2.10), making at main order (2.9) and (2.10) decoupled.

(2.13)

Roughly speaking, for n > 5, the elliptic equation
Llg] == Ayp +pU(y)’ ' =g(y) inR"
¢(y) =0 as [yl = oo,
with g(y) = O((1 + |y|)~279) and 0 < a < 1, is solved by ¢ = O((1 + |y|)~?) provided that

/ 9(y)Zi(y)dy = 0 forall i=1,...,n+1,
where 5
. n—
Zily) =0U(y), i=1l,...on, Znly) = —5=Uly) +y-VU(y).

These are in fact all bounded solutions of the linearized equation L[Z] = 0.
It seems reasonable to get an approximation to a solution of equation (2.12) (valid up to large |y|) by solving
the elliptic equation
Ayp+pU(y)" "¢+ h(y,t) =0 in R™ x (0,T)
¢y, 1) =0 as [yl = oo,
which we can indeed do under the orthogonality conditions

/ hy,t)Zi(y)dy = 0 forall i=1,...,n+1, te0,T). (2.14)
These orthogonalities imply the dynamics of the parameters. Indeed, integrating against Z,,11(y) we get

: 2
[ r0Zunt s = i) [ Zady="5200F Zit) [ Uy

n —

Clearly, one sees from above that integrability issues arise for lower dimensional cases, yielding nonlocal/global
features, which we shall discuss in next Section for the case n = 4. This quantity is zero if and only if for a
certain explicit constant 3, > 0

n—4

fit) = =Bnl Z5(@)u(t) =", u(T) =0,
and thus for n =5 1
ph) = a0, =18z (2.15)
In a similar way, the remaining n relations in (2.14) lead us to £(t) = u(t)"=" b for a certain vector b. Hence
£(t) = O(T — t)3 and
() =q+O0(T —t)%
To solve the actual inner problem (2.12), even assuming orthogonalities (2.14) is not sufficient, and further

constraints are needed. Indeed, let us recall that the operator L has a positive radially symmetric bounded
eigenfunction Z associated to the only positive eigenvalue Ag to the problem

Llg] = Mg, ¢ € LZ(R").
It is known that \g is a simple eigenvalue and
Zo(y) ~ [yl =T e VW as Jy] — oo,
Let us write
w0 = [ owZawdy )= [ )zt dy

One expects instability produced by Zy along the flow without restriction on the initial data. Then we compute
p()*p(t) — Aop(t) = q(t).
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Since u(t) ~ (T — t)~2, then p(t) will have exponential growth in time p(t) ~ eT—% unless

t _dr T _ s _dr
p(t) = eh u’-’m/ e 0 ju(s) 2 gls) ds
t

This relation imposes a linear constraint on the initial data ¢(y,0) to the desired solution ¢(y,t) to (2.9)

dT

T E)
oy, 0)Zoly) dy = / I e sy / Wy, 5) Zo(y) dy ds. (2.16)
R™ 0 n

For this reason, we impose an initial data for the inner problem along Zy-direction to get rid of such instability.

e The linear theories.

The outer problem (2.10) in linear version is actually simpler than its counterpart (2.19), corresponding just
to the standard heat equation with nearly singular right hand sides and zero initial and boundary conditions.
Thus we consider the problem

Yy = Agtp+g(z,t) inQx(0,7)
v =0 ondQx(0,T), (2.17)
¥(-,0) =0 in Q.
The class of right hand sides g that we want to take are naturally controlled by the following norms. Let

0<a<l, qgeQand ug(t) = (T —t)2. We define the norms ||g|/,« and [|2||, to be respectively the least
numbers K; and K such that for all (x,t) € Q x [0,T),

1 1
zt) < Ky | —s——F——+1
el < Ko | e
) - n .
(1) < Ko |:1+|y|a+T§a} polt)

Then the following estimate holds.

Lemma 2.1. ([25, Lemma 4.2]) There exists a constant C such that for all sufficiently small T > 0 and any g
with ||gllo < +00, the unique solution 1 = T°“[g] of problem (5.54) satisfies the estimate

[%]lox < Cligllo- (2.18)

The proof can be carried out either by barriers or Duhamel’s representation.

The inner problem (2.19) in linear version is actually harder and more delicate than its counterpart (2.10). In
order to deal with the inner problem (2.9), we need to solve a linear problem like (2.12) restricted to a large ball
Bsi where orthogonality conditions like (2.14) are assumed and the initial condition of the solution depends
on a scalar parameter which is part of the unknown, connected with constraint (2.16). We construct a solution
(¢, ¢) which defines a linear operator of functions h(y,t) defined on

D2R = BQR X (O,T)
to the initial value problem
ﬂ2¢t = Ay¢ + PU(y)p71¢ + h(y, t) n D?R

. (2.19)
#(y,0) = £Zy(y) in Bag,
for some constant ¢, under the orthogonality conditions
My, t) Zi(y)dy =0 forall i=1,...,Z,41, t €[0,7T). (2.20)

Bagr
We impose on the parameter function p the following constraints, which are motivated on the discussion earlier:
let us write

o(t) = (T — )2,
For some positive constants « and 3 (to be fixed later), we impose

apo(t) < p(t) < Buo(t) forall tel[0,T]
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Let us fix numbers 0 < @ < 1 and v > 0. We will consider functions h satisfying
pio(t)”
h(y,t)| S ———5—
| S T
The formal analysis of the previous section would make us hope to find a solution to (2.19) such that
pio(t)”
DS
6@y, )| S 1 T

We will find a solution so that a somewhat worse bound for ¢(y,t) in space variable is found but coinciding
with the expected behavior in the gluing regime |y| ~ R. Let us define the following norms. We let ||h||24q,.
be the least number K such that

in DQR.

in DQR.

po(t)”
Wyl < K1+|(3,)+ u Do (2.21)
and let ||¢]|«q,, be the least number K with
Rn+1—a )
\¢(y7t)| < Kuo(t)VW mn D2R~ (222)

We observe that ||¢]l.a, < [|@]la,v-

The following is the key linear result associated to the inner problem.

Lemma 2.2. ([17, Proposition 7.1],[25, Lemma 4.1]) There is a C > 0 such For all sufficiently large R > 0
and any h with ||h||24q,, < +00 that satisfies relations (2.20) there exist linear operators

¢="T,"[h], €= 1([h]
which solve Problem (2.19) and define linear operators of h with
LR+ 11X+ [yDVy@llsar + 10llaw < Cllhllv2+a-

The proof is by using the self-similar variables (y, 7) with

t
T=1+ / u(s) " 2ds.
0
Expressing ¢ = ¢(y, 7), problem (2.19) becomes
¢r = Nyd+pUy)P "¢+ h(y,7) in Bag x (7o,00),
#(y,0) = €Zy(y) in Bag.

Then finding solution with sufficient decay in space-time consisting of three steps:

Step 1: solving an elliptic equation by orthogonality;

Step 2: solving a parabolic equation with slower decay by a spectrum gap estimate (see Lemma 2.3) and energy
estimates, then improving the pointwise estimate;

Step 3: acting the linearized operator on both sides of the parabolic equation in Step 2 yields a desired solution.

In fact, for the higher dimensional case n > 5, blow-up argument can be employed to show a more refined
version of the linear theory for the inner problem. The result obtained via blow-up argument turns out to be
exactly what we have discussed formally before, and there is no loss of R’s in the innermost region. We give a
detailed proof in Appendix B. Since we do not use maximum principle in the blow-up argument, this argument
is rather general and flexible and can be applied to a larger class of equations.

e Proof of Theorem 7: fixed point argument.

With the above preliminaries we are now ready to carry out the proof of Theorem 7 for the case k = 1. We
want to find a tuple p'= (¢, ), i, §) solving the inner—outer gluing system (2.9)-(2.10) so that a desired blow-up
solution w is constructed. This is achieved by formulating the problem as a fixed point problem for p'in a small
region of a suitable Banach space.

We first set up inner problem. For a function h(y,t) defined in Dyg, we write

I, 1y, t) Z;(y) dy
cj[h](t) = BIBM Z,(y)2dy
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so that the function

+

n+1

h(y,t) = h(y,t) = ) c;[hl(t) Z;(y)

<.
Il

satisfies
h(y,t) Zj(y)dy = 0 forall j=1,....,n+1, te0,7T)
Bar
which makes the result of Lemma 2.2 applicable to the equation

{ o = Ay¢+pU(y)P o+ H(p,p, &) in Dap (229
¢(-,0) =4Zy in Bagp
where it
H(tp, p1,8) = H(Y, 1,€) = Y ¢;[H(h, 1,6)] Z;
j=1

and H (1, u, §) is defined in (2.11). Using Lemma 2.2, we find a solution to (2.23) if the following equation is
satisfied

¢ =T [H@, 18] = Fi(d, 9, 1, 6). (2.24)
Then the inner equation (2.9) is satisfied if in addition we have
GH@W,p, )] =0 forall j=1,...,n+1. (2.25)
In addition, the outer equation (2.10) is satisfied provided
b =T G(b ¥, 1,€)] = Fald, ¥, 11, ). (2.26)

where the operator G(¢, v, i, &) is defined in (2.11). We will solve system (2.23)-(2.25)-(2.26) using a degree-
theoretical argument.

For A € [0, 1], we define the homotopy
n=2 — % . o
Hy (4, 1,8)(y,t) = 2 pUW)" ' Z5(q) + pfeZnia (y) + 1Y _ & Z5(y)
j=1

+ AT pU )P (2 €+ pyst) — Z5(a) + (€ + i t)),
and consider the system of equations
n+1
¢ = T [ HA(, 1,€) = D es[HA(W, 1,€)] Z;]

=1 (2.27)
¢ H (Y, p, &) = 0 forall j=1,...,n+1,

b = TAG(9, 9, 1, 6) |-

We observe that for A = 1 this problem precisely corresponds to the system (2.23)-(2.25)-(2.26) that we want
to solve.

It is convenient to write
plt) = pa(t) +p0(@), &) =g +EW@), tel0,T]
where j,(t) is defined in (2.15), and M (T) =0, €M) (t) = 0.
We assume that we have a solution (¢,4, u(™, M) to system (2.27) with
O @)+ 1€V @) < do
{ [@llca, + 1¥llco < 01

where Jg, 61 are small positive constants to be adjusted later. We will also assume that Z* is sufficiently small
but fixed independently of T, i.e., | Z*||s < 1.

(2.28)

The function p.(t) solves the equation

. noa _
o (£) /RN Zniady + (1) ZO(Q)/ pUP™ Zy1dy = 0. (2:29)

n
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The equation
Cnt (HA(, s + p1,€))(t) =0, ¢ €[0,T) (2.30)
which corresponds to

. n—d _
0= W[ Zds) + w0 Tz [ 0 Zundy
BQR BZR

+Aut)T / pU )P~ (Z* (1) + n(t)y, t) — Z5(q) + (&) + p(t)y, 1) ) Znia (y) dy

can be written as » »
f1(t) + Bu(t) = = pu(t) = (Or + A(¥, &, p1))
for a suitable number 3 > 0, g = O(R~?) and the operator 6 satisfies
10, & )] < C(T+ |[¥]ls)

for some constant C. From (2.29), the equation for u; can then be written, in the “linearized” form, as

M1 = (T - t)go(%ﬂaf)

. Y
B+ T4
for a suitable v > 0, where
90, &, 1Y V(D] < C([Wllow +T +R73).
The linear problem
. gl
ft = (T —t)g(t), m(T)=0

can be uniquely solved by the following operator in g

T
(e = TOlg)(0)i= ~(T = )7 [ (1= 7 () ds.
t
It defines a linear operator on g with estimates

T =) flloo + (T = 1) plle < Cligolloo-
Equation (2.30) then becomes
pD () = TOLgo(w, & M N)](t) for all te[0,T)
and we get

1T =)~ Voo + (T =) 2Pl < C(I[lloo +T +R7?). (2.31)

Similarly, equations
GlHNY, 1, &) = 0 forall j=1,...,n,

can be written in vector form as

D (1) = TW g1 (¥, i1, &)](t) for all ¢ € [0,T), (2.32)
where

T
TOlg)i= [ (1 = 9)9(s)ds
¢
and
1919, & 1N ()] < C ([l o +T).

From equation (2.32), we thus find

T =) W oo + 1T =) 2Wlee < C(l[9]lc +T). (2.33)
On the other hand, we have

n—2
p(t) 2
L+ [yl*

(1lloo + 12 ]lo) + —PE 4 plé]

H(, 1,6)(y,1)] < C
|H (4, 1, &) (y, )] L+[y[n=2 " 14 [y[»!

and thus

n—2

H(m)(w.1)] < 2ol 2

W(Wllme 12"l
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for 0 < a < 1. From the first equation in (2.27) and Lemma 2.2, we obtain

N n—2
6lvar < Cllloo +1127]l00)s v =—7—

with the || - ||4q,,-norm defined in (2.22). Next we consider the last equation in (2.27). We recall that
G, v, 1, &) (w,t) = pu™>(1 = nr)U ()"~ (Z* + ) + Alg] + Bl9]
+p " E(L = ng) + N(Z* + 07T npo+ 27 + 4),

E(y,t) = pply-VU(y) + nT_QU(y)] + pé - VU(y),
Alp) = 15 { Aynrd + 2V rV, 6},

Blg]=p~? {u[y~vy¢+ "T‘%}nmé-vmm iy - Vi + € Vyng] ¢>}.

(2.34)

Let us consider for example the error terms

gl(xat) = u72(1 - nR)Upil(Z* + w)v gz(’l,‘,t) = uinTHE(l - 77R)~

We see that ) o
t < -2 zZ* oo 0o
‘gl(xv )| = Rg_olj‘ 1+|y|2+a(H H +||1/1H )
and
90,0 < [ (] + ) <
A ML S CE A TV

Let us now estimate the term A[¢]. Let us choose o = §, where a is the number in the definition of |||+, -
We have

! ! g (16| + V4]
5 —5— w2 sup Y
R?1+4 R™277|y[?te R<|y|<2R

L RS
T+ lyPe

|Alg)(x,t)| < p?

<p

||¢H*a,";2

and similarly,
n+l—a S pntl-a
o2
[ oo < (C 2B
1+ [y[m+! 19]l.a, 252 < Cn 1+ |y[>*te

|Bg](z,t)| < Cp2[pin+ plé]] 8]l nz2-

2
Now for some o > 0 we have
* —”sz * —2 :u’a n+l—a 2
|N(Z +:u’ 773¢+Z +1/1)| S C:u’ 1+|y|2+o-(||¢H*a,"T_2R +||Z*HOO+||¢||OO)
+ C([[Zelloe + [[lloc)?
According to the above estimates, it follows by Lemma 2.1 that
elloe < CT | Zullow + B 161, 2oz (2.35)
Combining (2.34) and (2.35) and then using (2.31)-(2.33), we finally get
[¥V]le = CT7 || Zs]|oo
[0ll.q,252 < CllZulloo
—1¢4(1 —2+(1 ! -2 (2.36)
1T =)Wl + (T = )2Vl < C(T7 (| Zu]|o0 + 1) + R7?)
T =) 4D oo + (T = )0 Vloe < CT7 (| Zello0 + 1)
We write System (2.27) in the form

¢ = Tu"[HA(T*" [AG(d, 0, 1,€), 1, 6]
¥ = TG, 1,€)]

p® = TOlgo(e, €M, 1M, 1))

¢V = TOgi (0, u™,6D,N)).

(2.37)
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Here, we can write

Go(1, €M, M \) =k, ; Hy (TG0, 0, 1, E))s 18, €) Znt1 (y)dy

g1, €M, N =c% ; Hy (T [ AG (6,0, 1, €)), 1, ) VU (y)dy

for suitable positive constants c%, ¢ =0,1. We fix an arbitrarily small € > 0 and consider the problem defined
only up to time t =T — €.

¢ = T HA(T [ AG(6, 0, 11,€),1.6)],  (y,1) € Bag x [0,T — €]
Y =TNG(d, 9, 1,6)],  (2,8) €Qx[0,T —¢]

p =T O go(y, €M, M N)], te[0,T—¢]

€W = TG, uD, D N), te[0,T -]

(2.38)

where
TOl(t) == —(T — 1) / (T — s/ igo(s)ds, TV[g] = / (T — 5)g(s) ds.

The key is that the operators in the right hand side of (2.38) are compact when we regard them as defined in
the space of functions
(6,0, uM, M) € X1 x Xy x X3 x Xy

with their respective norms defined as
X'={¢ /¢ €C(Brx[0,T~¢]), Vyo € C(Bar x [0, =]}, lI¢llx, = 19lloc + [Vl
X?2={y /o€ C@x[0,T —ve)}, [[Vllx. = [¥]oo
X2 ={pD ) uW e . T ey, NpMlxs = 16D oo + 140 oo
Xt ={eW /W ec0,T—<l}, 1€V x, = 1€ oo + 1€V o
Compactness on bounded sets of all the operators involved in the above expression is a direct consequence of the

Holder estimate for the operator 7°% and Arzela-Ascoli’s theorem. On the other hand, the a priori estimate
we obtained for € = 0 holds equally well, uniformly on arbitrary small € > 0.

Leray Schauder degree applies in a suitable ball B that contains the origin in this space: essentially one
slightly bigger than that defined by relations (2.36), which amounts to a choice of the parameters dg and d; in
(2.28). In fact, the homotopy connects with the identity at A = 0, and hence the total degree in the region
defined by relations (2.36) is equal to 1. The existence of a solution to the approximate problem satisfying
bounds (2.36) then follows. Finally, a standard diagonal argument yields a solution to the original problem
with the desired asymptotics. The proof of Theorem 7 for the case k£ = 1 is concluded.

The general case of k distinct points q1,...,qs is actually identical: in that case we have k inner problems
and one outer problem with analogous properties. We look for a solution of the form
k
« _n=2 xr — 5
u(@ ) = 3 Uy (@) + 27 (@t + a1y 7 6y, ne(yy) + (@), vy = — =, (2:39)
Jj=1 J

where Z* solves heat equation with initial condition Z; which is chosen so that (2.4) holds at all concentration
points, namely Z;(¢;) < 0, and §;(T) = ¢;, p;(T) = 0.

A string of fixed point problems (with essentially decoupled equations associated at each point) then appears
and can be solved in the same way. We omit the details. (]
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2.2. Non-L? case: critical Fujita equation in R*. In this section, we consider the finite time blow-up for
case n = 4 and p = 3. In what follows we let  be a smooth bounded domain in R* or Q = R* and consider
the equation
u = Au+u® in Qx(0,7),
u=0 ondQx(0,T), (2.40)
u(-,0) =wup in Q.
Let us fix arbitrary points g1, go, . . . qx € . We consider a smooth function Z§ € L*(§2) with the property that
Z3(g;) <0 forall j=1,... k.

Theorem 2 ([31]). For each T > 0 sufficiently small, there exists an initial condition ug such that the solution
to problem (4.3) blows up at time T exactly at the k points q1,...,qx. The solution is of the sharply scaled form

k
u(z,t) =Y U, (@) + Z5 (x) + 0(x, 1)
j=1

where
)\](t) — 0, fj(t) —q; as t— T,
and ||0||p~ < T for some a > 0. More precisely,
T—1
Ai(t) ~ ————
10 g 1P

We observe that the solution constructed in Theorem 2 is type II. The result in Theorem 2 is the exact analog
of Theorem 7 in dimension 5. We follow the same general approach of the parabolic gluing method. However,
substantial differences and difficulties arise, due to the fact that the equation that determines A(¢) involves a
delicate nonlocal integro-differential operator. In dimension 5, the dynamics of A(¢) is found in a much more
direct way by just solving an ODE. This nonlocal effect is related to the slower decay of the linear generator
of dilations of the Aubin-Talenti bubbles in lower dimensions, i.e., Z5 ¢ L?(R*) (see (2.43)). A very similar
difficulty was already encountered in the work [22] on blow-up in the harmonic map flow, where such nonlocal
operator appeared in the reduced complex system at mode 0. The similarity between these problems in the
presence of symmetries had already been noticed in [83, 86].

as t—T.

e Approximation and correction.

We first choose a proper approximate solution to (4.3) and compute its error. We consider the case k = 1 for
simplicity and mention the minor changes for the general multi-bubble case when needed. We define the error
operator

S(u) = —uy + Au + u.
Recall that the Aubin-Talenti bubble

Qg
Uly) = ——— 2.41
) =111 (241)
solves the Yamabe problem
AU +U? =0 in RY,
where ag = 2v/2. It is well-known that the linearized operator around the bubble
Lo(¢) == Ap + 3U%¢ (2.42)
is non-degenerate in the sense that all bounded solutions to Lo(¢) = 0 are the linear combination of
Zi(y) =0y, U(y), i=1,2,3,4, Zs(y) :=U(y) + VU(y) - y. (2.43)

Our first approximation is chosen as

Unipyer) = A (U (W) ;

where A(t) and &(t) are scaling and translation parameter functions to be adjusted later. Direct computations
yield

_ : (%)) 2040
$(Chrc0) = =000 =300 (575 + 7 ) (2,40

A2V, U(y) - £(1),
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where y = Z;(ft()t). Observe that the slow decaying error in (4.9) is

Oé())'\(t) ~ CYQ)\( )
MO+ P
where p := |z — £(t)|. In order to improve the approximation, we consider

Owuy = Aup + & in R* x (0,7T).

By similar computations as in [22]', a solution to (2.45) is given explicitly by

t
up = —040/ A(s)k(p,t — 5)ds,
-7

E = — ¢ L*(RY),

where )
l—e T
k(p,t) i = ————

02

We regularize the above u; and choose a correction ¥y to be

t

Uo(z,t) = —ao/ A(s)E(C(p,t),t — s)ds,

-T

where
Cp,t) = VPP T 00).
Then the new error produced by ¥, is given by
8t\IJO — A‘I’o — 50

e\
li+|y|“/2]/ MoJke(¢,t = 5)ds

Qo
A@)(1+ Jy[2)3/2
=R\
It is thus reasonable to choose the corrected approximation as

u = Uxwye) + VYo

+ / A(8) [=Chec(Cot — 8) + koGt — )] ds
-7

and its error is . 3 3
S(u*) = SUrw.ery) — o + Unwy.ey +Y0)* = Uiy )

= K\ &+ Ua.e) + o)’ = Uy oy
where K[, €] is defined as
200\ 2 (1) A(t)

Atz T OVUW) &) =R

KA €] =
with R[] given in (2.48).

e Formulating the inner—outer gluing system.

We look for solution of the following form
u=1u"+w,
where w is a small perturbation consisting of inner and outer parts
W = @in + Pout, Pin = Ail(t)nR(;s(yv t)a Pout = 1/1(%15) +Z" (l’, t)
Here the cut-off function is defined by

Nr = Nr@)(T,t) =1 (W)

1See Section 17 in the full version available at https://personal.math.ubc.ca/~jcwei/hmf-2018-08-16.pdf

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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where the smooth cut-off function 7(s) = 1 for s < 1 and 7n(s) = 0 for s > 2, and Z* satisfies
=AZ* in Q x (0,7),
Z*(-,t) =0 on 90 x (0,T),
Z*(-,0) =25 in Q.
Denote
Bogp = {J) cQ: |.13 — f(t)l < 2/\R}, Dor = Bog X (0,11)7
and U* = ¢ 4+ Z*. Then u is a solution to the original problem (4.3) if
e ¢ solves the inner problem
N = Dy +3U%(y)d + H(d,1, X, €) in Dog (2.50)
where )
H(D,1, A )y, 1) := 3AU"(y)[Wo + ¥ + Z7](A\y + £, 1)
FA MV y+0) + Vyo- & (2.51)
+ NN (w) + N3\, €]
with K[\, £] defined in (2.49), and
N(w) = (Une + Yo +w)* — U3 ¢ — 3U3 (Vo +w). (2.52)
e 1) solves the outer problem
Ve =AY +G(g,9,A,€) inQx(0,T) (2.53)

with
G(d, 0, A, ) == 3A"2(1 = nr)U? (y) (o + ¢ + Z7)

+ A7 [(Aynr)d + 2Vynr - Vyd — N¢0,nR] (2.54)
+ (L=nr)K[N, &+ (1 = nr)N(w).
e The choices of parameters.

We choose the leading orders A, (t), £.(t) of the parameter functions A(¢) and £(¢). As mentioned earlier, a
good inner solution can be found provided approximately the following orthogonality conditions

/ H(p, Y, N\, &)Zj(y)dy =0 forall j=1,---,5, te(0,T) (2.55)
R4

are satisfied. Here Z; are the kernel functions (c.f. (2.43)) of the linearized operator L defined in (2.42). Basi-
cally, the scaling and translation parameters A(t) and £(¢) at main order will be derived from the orthogonality
conditions (2.55).

Singling out the leading term . of H and computing

Ha N E U Zo(y)dy =0 for £=1,---,4
R4

with
H N € U] = 3AUP (y)[Wo + U] (Ay + &, 1) + KA. €]
_ a2 . 200 A ()A(1) -
= 3\U=(y)[¥o + U] (\y + &, 1) + T+ )2 A)VU(y) - £(t)
A2 (t
1(10|y2))3/2 / )\ Ck‘c( ¢, t—S)—ch(C t—S)]d
y- €=M | [
imply that )
& =o(1),
where ¥* =4 + Z* and o(1) — 0 as t /' T. So the choice of £(¢) at main order is
£(t) =g,

where ¢ is a prescribed point in €.
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The dynamics for A\(¢) from

H*[)‘v 5’ \P*}Z5(y)dy =0
R4
turns out to be more involved due to the non-local/global correction, and the reduced problem involves the
following integro-differential operator

t=A%(t) 3
C* /_T)\ :Eslds = —3c0[Z;(q) + (g, 0)] + o(1), (2.56)

where
o= [ U Zal)dy <.
R

Here careful calculations are needed for nonlocal terms, and detailed derivation can be found in [31, Section 4].
Since A(t) decreases to 0 as t /T, we impose

ax = Zi(q) +v(q,0) <O0.
Now we claim that a good choice of A(t) at main order is
C

O P
O = oo
where ¢ > 0 is a constant to be determined later. Indeed, we get by substituting

/t)\z(t) }\(5) ds—/-t(Tt) )'\(S) d$+/t)\2(t) }\(t) ds_/t/\Q(t) Mds
t t

T t—s T t—s —(T—t) t—s —(T—t) t—s

(2.57)

- / . j(s)ds (1) (log(T — 1) — 2log A(1)
r -8
/t/\Q(t) At = M)

—(T—t) t—s

P
Y .

z/T T(_S)sds — M) log(T — 1) = B(t).

By (2.57), we then get

dp d 2 '
log(T —t t)=— (-1 T—At)) =
og(T' = 1) (1) = = (~1og”(T —H)A(D)) =0,
which means () is a constant. Thus, equation (2.56) can be approximately solved for
M) = -
~ [log(T —t)[?

with the constant ¢ chosen as

/T ds

—c = K«,
—7 (T = s)[log(T — s)|?
where Ky := —?’CCO%. At main order, we obtain

A1) = RaAa()

with g T|

. Og

A(t) = ———r——.

O= " Toe@ — P
By imposing \.(T') = 0, we obtain
|log TI(T — 1)
M(t) = ———(1 1 t NT.
() = T L +o1) as 1/

e Linear theories.
We start from the the outer problem (2.53) and consider
=AY+ f, inQx(0,T),
=0, on 90 x (0,T), (2.58)
P(x,0)=0,  inQ
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where the non-homogeneous term f in (2.58) is assumed to be bounded with respect to the weights appearing
in the outer problem (2.53). Define the weights
01 := AP () R27(t) X {ja—e(t)| <22 B}
vo
02 = EEmE Xle—e()22 R) (2.59)
03 ‘= 1
where we choose R(t) = A;”(t) for B € (0,1/2). We define the norms
3 —1
[fllss :=  sup (Z Qi(@ﬂ) [f (2, 1)l (2.60)
(z,t)eQx(0,T) \ ;=1

~ AY(0)RY(0) A2V (0) R (0)

||7f1||* = W”¢HL‘”(QX(QT}) + W”vw”Lx(QX(O,T))
1-v
" (m,t):;ZlE(O,T) [W [¥(z,t) - ¥(z, T)|] o
2—v 14+« .
i (z,t)esgzllx)(o,T) [W V() — Vz/}(x,T)q
ol A%l(:z(ti)i;w(”) [ (a, t2) — ()],

where v, a,y € (0,1), and the last supremum is taken over
1
QAx Ir = {(l‘,tl,tg)i SCGQ, 0<t1 <tao <T, to—1 < w(Ttg)}
For problem (2.58), we have the following estimates.

Proposition 2.1. ([22, Appendix A],[31, Proposition 1]) Let ¢ be the solution to problem (2.58) with || f|. <
+00. Then it holds that

[Pl S 11 s

Proposition 2.1 is established by estimating carefully Duhamel’s formula with different right hand sides.

To solve the inner problem (2.50), we consider the associated linear problem
Moy = Ayo+3U%(y)d + h(y,t) in Dag. (2.62)
Recall that the linearized operator Ly = A 4 3U? has only one positive eigenvalue po such that
Lo(Zo) = poZo, Zo € L™(RY),
where the corresponding eigenfunction Zj is radially symmetric with the asymptotic behavior
Zo(y) ~ [yl > e VIl as |y| — 4oc.

Similar to the discussion in previous section, such instability reflects in a careful choice of the initial data
to ensure a well-behaved solution. Therefore, we consider the associated linear Cauchy problem of the inner
problem (2.50)

{)\2@ =Ayb+ 3U%(y)¢ + h(y,t), in Dag, (2.63)

¢(y7 0) = eOZO(y)7 in BZR(O)’

where R = R(t) = A ?(t) for 8 € (0,1/2). On the other hand, the parabolic operator —A2d; + Ly is certainly not
invertible since all the time independent elements in the 5 dimensional kernel of Ly (see (2.43)) also belong to
the kernel of —\29; + Ly. In order to construct solution to (2.63) with suitable space-time decay, we expect some
orthogonality conditions to hold. We shall construct a solution (¢, eg) to problem (2.63) under the orthogonality
conditions

/ hy,t)Zi(y)dy =0 for £=1,---,5, t € (0,T). (2.64)
Bar

Define

[Bllv2ra == sup AT+ [yl*T) [|h(y, )] + (1 + [y[)[VAy, 8)]] - (2.65)
(y,t)ED2Rr
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The construction of such solution is achieved by decomposing the equation into different bpherical harmonic
modes. Consider an orthonormal basis {0}, made up of spherical harmonics in L?(S?), i

AgO; + 1,0, =0 in S3
with 0 =X < A; ==X =3 < A5 <---. More precisely, Oy(y) = ag, 0;(y) = a1y;, i =1,--- ,4 for two
constants ag, a; and
(3+1)!
67!

Ai = 4(2+4) with multiplicity for ¢ > 0.

For h € L?(DaR), we decompose
Zh )0, (y/r)s v = lyl, hy(rat) = /S h(r, )0, (8)d
and write h = h® + h! 4+ ht with
h® = ho(r,t), ih] (r,t)0;, ht = ihj(r,t)@]
Jj=1 ]

Also, we decompose ¢ = ¢° + ¢! + ¢ in a similar form. Then looking for a solution to problem (2.63) is
equivalent to finding the pairs (¢°, %), (¢*,h'), (¢+, ht) in each mode.
The key linear result for the inner problem is stated as follows.

Proposition 2.2. Let the constants a,v,v1 € (0,1), a1 € (1,2). For T > 0 sufficiently small and any h(y,t)
satisfying ||h||v.2+a < +00, [|hY]s; 244, < +00 and the orthogonality conditions (2.64), there exists a pair (¢, eq)
solving (2.63), and (¢,eq) = (P[h], eo[h]) defines a linear operator of h(y,t) that satisfies the estimates

oy, )+ (1 + [y))[Vo(y, 1)

NBR o AE) ML) o
v a + 1% a + . h v a
~ T4 |y|a || || 2+ 1 +| ‘al || || 1,2+a1 1+ ‘y|a|| || 2+
and
leo[h]| <

where 0 < 6 < 1 1s small.

In the proof of Proposition 2.2, mode 0 and higher modes can be carried out in a similar manner as in [100,
Proposition 7.1] via a careful re-gluing process. The rougher version can be found in [17, Proposition 7.1]. Mode
1 is obainted by blow-up argument. The restriction a; € (1,2) is required to guarantee the integrability in the
blow up argument at translation mode 1.

If we define the norm

1614 05 = sup  ATV(ORT (L4 [y*) [16°(y, O] + (L + [y)IVe° (v, 1)] 4 (2.66)
(y,t)€D2r
then Proposition 2.2 implies that
16°11 0.6 S B0, 24a-
We shall use the norm (2.66) when we solve the inner—outer gluing system.
The following spectrum gap plays a crucial role in the proof of the above Proposition, In fact, we have

Lemma 2.3. For all sufficiently large R and all radially symmetric ¢ € H}(Bgr) with me wZy = 0, there
exists a positive constant vy independent of R such that

1/ 9
— »°, for n =23,
R? Bar
1
Vol? — pUP~1p?) > 7/ 0%, for n=4,
/J:%R“ o|* —pUP %) > v log R/,

1 / 9
— v, for n >5.
Rn2 Bar




GLUING METHOD 19

Similar estimates for the linearization of harmonic map equation around degree 1 bubble are derived in [99,
Lemma 9.2].

e Solving the inner—outer gluing system.

Our aim now is to find a solution (¢, %, A, §) to the inner—outer gluing system such that the desired blow-up
solution is constructed. We shall solve the inner—outer gluing system in the function space X’ defined in (2.97).
We first make some assumptions about the parameter functions. Write

logT|(T —t
(o) s TIT =1

| log(T" = t)[?

and assume that for some numbers ¢y, cy > 0,
c1| A ()] < [A(1)] < eo)Ai(t)| for all t e (0,T).

For given 6%0a.s: 116 un.ans 165 las 16l1ss 127 llos [\, [I€ll; bounded, we fixst estimate right hand
sides G(o, ¥, A, &) and H(¢p, 1, A, €) in the inner and outer problems. Here the above norms are defined in (2.66),
(2.65), (2.61), (2.95) and (2.96).

The outer problem: estimates of G.

Consider the outer problem
’l/}t = Aw + g(¢»¢» )‘ag) in O x (OvT)

where
G, 1, A, &) == 3A"2(1 —nr)U?(y) (Yo + 0 + Z*)

+ A [(Aynr)d + 2Vyng - Vyé — N60mg]
+ (L= nr)KA €] + (1 = nr)N(w)
with K[\, €] and N (w) defined in (2.49) and (2.52) respectively.
In order to apply the linear theory Proposition 2.1, we estimate all the terms in G(, ¥, A, ) in the ||+ ||.x-norm,
defined in (2.60). Direct computations imply that for a fixed number ¢, > 0

1G] S T (19l + 127 lloo + 16° e as + 19" b0 + 167 [l
+ 1Al + Iélle +1)
if the parameters are chosen in the following range
v=1482+a)—1y>0, 28—1n>0, 0<a+d<a<l,
BHv—vy >0, 20y —v+pB(2a—a)>0, <, (2.68)
2w—vg—14+2a8 >0, v—P(a+2)—2a)>0.

(2.67)

The inner problem: Estimate of H.
Consider the inner problem
Ny = Ayg +3U%(y)p + H(¢, ¥, A\, €) in Dag

where
H(p, ¥, X, €)(y,t) := 3NU?(y)[Wo + ¥ + Z*](My + £, 1)

A AVyd y+0)+ Vo€
+ NN (w) + X3, €]

with NV (w) and K[, £] defined in (2.52) and (2.49).
From the linear theory, we know that for H = H° + H' + H' satisfying

|‘H0||V,2+av ||H1||V1,2+a1» ||Hl||v,2+a < +o0,

there exists a solution (¢°, ¢!, ¢+, % c’) (¢ =1,--- ,4) solving the projected inner problems

)‘2¢t0 = Ay¢0 + 3U2(y)¢0 + 7_[0(¢7 1/)7 )‘v 6) + COZ5 in D2Ra (2 69)
¢0(',0> =0 n BQR7 '
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4
Nol = Ayo' + 30U (y)¢! + H (9,0, X,€) + X 'Z  in Dag,
(=1

(2.70)
¢'(-,0) =0 in Bag,
Noi = Ayot +3U%(y)o" + HE (9,4, A,€)  in Dag, @.11)
¢*(,0)=0 in Bopg, '

and the inner solution ¢[H] = ¢°[H°] + ¢ [H] + ¢ [HL] with proper space-time decay can be obtained for the
inner—outer gluing to be carried out. We have the following estimate for some fixed ¢y > 0

[Hllv24a ST ((bo s + 16 v + 167 e + 191 + 127l

(2.72)
# Il + el +1)
provided
0<v<l, 1*5(“%) >0, 14w —v—B2+a—a) >0,
1-28>0, v—p4—a)>0, 2v;—v>0, (2.73)
2—v—af>0, v—pFa—2a)>0, 2—v—0F(1+a)>0,
1-B(6+2)>0, v—23>0.
Similar computations give that for some fixed €y > 0
[H s 2401 ST (16 or,00 + 190 + 12700 + (Moo + €]l +1) (2.74)
provided
O<in<l, v—u1r1+af>0 2—v;—a1>0,
2w—v1+2af—a18>0, 1—v3—B(ag—1)>0.
e The parameter problems.
From (2.69)—(2.71), it remains to adjust the parameter functions A(t), £(t) such that
COP‘7§)‘I’*] = 07 CZ[)\7§7 \Ij*] = 07 L= 17' o a4a Vite (OvT)v
where I HZsd
I\ €, W] = —xlen 20 (2.75)
fBgR | Z5[2dy
HZd
[N € 07 :—M for £=1,--- 4. (2.76)
fBQR |Z€| dy

It turns out that we can easily achieve at the translation mode (2.76), but the scaling mode (2.75) is more
delicate.
We first consider the reduced equation for £(t). Observe that (2.76) is equivalent to

H((ba 1% Avg)(yat)zé(y)dy =0, for all t € <0vT)7 l= 1, a4~
Bar

Write ¥* = + Z* and £(t) = (§&1(¢), -+ ,€a(t)). Then for £=1,--- 4,

Bar
give that '
52 = bl[>\a Ea ¢a \I]*L (277)
where
bé [>\7 {7 (rbv ‘IJ*] = /B (H[Aa 57 ¢a \II*](y) t) - A(]yl (y)§€> Ze (y)dy

Furthermore, the size of by[\, €, ¢, ¥*] can be controlled by similarly estimating . Next, we analyze the reduced
problem (2.77), which defines operators Z, (¢ = 1,--- ,4) that return the solutions & (¢ = 1,- - - , 4) respectively.
Here we write

(1]

= (21,52, 53,54) (2.78)
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and £(t) = g + £(t) where ¢ = (q1,- -+ ,q4) is a prescribed point in 2. We shall solve £!(¢) under the norm
I€lle = 1€l o) + sup A;U()IEE)]
te(0,T)

for some fixed v € (0,1). From (2.77), we have
[€e()] < lgel + 11be[A; & &, O[] oo 0,1y (T = 1),

Therefore, we obtain
1Zelle < lgel + (T = )77 [[be[A, & &, V|| oo (0.77) - (2.79)

Since the reduced problem of A(t) is essentially the same as the real part of the reduced problem at mode 0
in [22], we shall follow the strategy and logic in [22, Section 8§].
Direct computations show that (2.75) gives a non-local integro-differential equation

/ A (”(t)) ds + coh = alX, £, W7]() + a, [\, €, 6, V(1) (2.80)
_rt—s t—s
where co = 2aq 5. %d%

ah &V == [ 30y) ¥+ 9) Zs(o)d, (2:81)

and the remainder term a,[\, £, ¢, U*](¢) turns out to be of smaller order and is controlled by
lar[X, €, ¢, 7] (2)]
S MR (A 10g(T = 1)) + 1€1) 16”1+
£ (1A B2 1) 10H a0 + A (AR + R 6% o
FNTROSN g+ NG,
+ATERETR G o A Al AP log(T = ) + Al log(T = 1)[[127|%
+ A () log(T = 1)|AZ72(0)R™2(0) | log T'* 3.

To solve A(t), we introduce the following norms

* || [l -norm

| log(T" —t)|!
flleg == sup ————1f()],
I £1] i |f ()]

where f € C([-T,T];R) with f(T) =0, and © € (0,1), [ € R.

o [ -]y m,i-seminorm
_ |log(T —¢)/"
[g]'Y,m,l T S}';p (T - t)m(t . S)’Y |g(t) g(s)|7
where Ir = {-T <s<t<T:t—-s< (T -1}, g€ C([-T,T;R) with g(T) =0 and 0 < y < 1,
m>0,leR.
Also, we define
toy 2 .
Bo[\J(1) ::/ A®) <W> ds + coh (2.82)
_rt—s t—s

and write
BO[)‘] B (a’[)‘v 6, \II*] + aT[)‘a €a (ba \II*]) ]

JBar, 1Z5(y)[2dy
We invoke a key proposition proved in [22, Proposition 6.5] concerning the solvability of A(t).

Proposition 2.3. Let w,0 € (0,1), v € (0,1), m < © —y and | € R. If a(t) satisfies a(T) < 0 with
1/C < |a(T)| < C for some constant C > 1, and

TNog T+ la() — a(T)llo.1-1 + [alymi1-1 < C1 (2.84)
for some ¢ > 0, then there exist two operators P and Rg such that A = Pla] : [-T,T] — R satisfies

BolN(t) = a(t) + Rofa] (1) (2.85)

FAH] = (2.83)
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with

(T o t)m+(1+w)w
|log(T" —t)[!

When applying Proposition 2.3, the Holder property is essentially inherited from regularity of the outer
solution, and this is one of the reasons that we work in the weighted space (2.61).

1., ol logT
Rolal(t)] < (Tz+ 4 To%uao (T oo + [a]v,m,u)

e The fixed point formulation.

We first transform the inner—outer problems (2.50), (2.53) into the problems of finding solutions (¢, ¢°, ¢*, ¢+, A, €)
solving the following inner—outer gluing system

U =AY+ G+ o' + o, 0+ 2%, N,€), inQx(0,T),

P =0, on 09 x (0,7, (2.86)
¢($,0) = 07 n Q7
A2¢) = Ayd® +3U2(y)o® + HO(d, 90, A, &) + [H°]Zs  in Dag, (2.87)
¢°(-,0) =0 in Bag, '
N2} = Ay 43U ()8 + H G, M) + 3 MY Z, i Do,
=1 (2.88)
¢'(-,0)=0 in Bapg,
2ok = Ayt +3U%(y) o +HE (4,0, 0, €) + [N, €, V] Zs  in Dag, (2.89)
¢*(-,0)=0 in Bag, '
C[H](t) — PN, €, T%)(t) =0 for all t € (0,T), (2.90)
cH](t) =0 for all t € (0,T), (2.91)

where G is defined in (2.54), H°, H!, H* are the projections of H (see (2.51)) on different modes. It is direct
to see that if (1, @0, @1, ¢, ), €) satisfies the system (2.86)—(2.91), then
U=+ 2" o=¢"+ ¢ +o
solve the inner—outer problems (2.50), (2.53) and thus the desired blow-up solution is obtained.
The inner—outer gluing system (2.86)—(2.91) can be then formulated as a fixed point problem for operators
we will describe below.
We first define the following function spaces

Xgo :={¢" € L®(Dar) : Vy¢° € L®(D2r), [|6°|lp,a5 < +00},
Xy = {¢' € L®(Dap) : Vy¢' € L®(Dag), |6 l1,a, < +00},

Xyo = {¢" € L™(D2r) : Vy¢" € L=(D2g), |¢"[l1.a < +00},

Xy = {9 € L®(Q x (0,T)) : [[¢]l« < +o0}.

In order to introduce the space for the parameter function A(¢), we recall from (2.82) that the integral
operator By takes the following approximate form

t—X2(t) A(s )

O ]
T — S

Proposition 2.3 defines an approximate inverse operator P of the integral operator By such that for a satisfying

(2.84), X := Pla] satisfies

(2.92)

Bo[)\] =a-+ Ro[a] in [—T, T],
where Rg[a] is a small remainder. Also, the proof as in [22, Proposition 6.6] implies a refined decomposition
Pla] = Xo,x + Pila] (2.93)
with
T 1
Ao,k = k|logT / ——ds, t < T,
Tl o =P

k = kla] € R, and the function \; = P;[a] satisfies

I\ills—s S log 71"~ log?(|log 1) (2.94)
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for 0 < ¢ < 1, where the || - ||+ 3—,-norm is defined by
£l = sup_[log(T —t)[*|f(1)].

te[—T,T)

Therefore, we define
Xy = {\ € CH[~T,T)) : M(T) =0, | Mi][w3_. < 00}
Here by (k, A1) we represent A in the form
A= Aok + A1,
and from [22, Proposition 6.6], one can write the norm
[AlE = |5l + (Al 3 (2.95)

For the translation parameter function £(t), we write £(t) = ¢+ £1(t) and define the following space for £!(t)
Xe = {€ € CH(0, T)iRY), &T) =0, [¢lla < +o0}

with .
I€lle = gl zoe 0.y + sup A (@)[E@)] (2.96)
te(0,T)
for some fixed v € (0, 1).
Define
X:X¢0XX¢1 XX¢LXX¢XRXX)\XX§. (297)
We will solve the inner—outer gluing system in a closed ball B in which
(6% 0", 0%, 0,5, A1, 6Y) € X
satisfies
H¢0||*,V,a,5 + ||¢1||u1,a1 + HQSJ‘H,,@ <1
¥l <1
|k — kol < |log T|71/2 (2.98)

Ml 3—0 < Cllog T|'~* log?(|1log T')
1€lle <1

for some large and fixed constant C, where ko = Z§(0). The inner-outer gluing system (2.86)—(2.91) can be

formulated as the following fixed point problem. We define an operator F which returns the solution from B to

X
F:BCcX - X

v = F(v) = (Fpo(v), Fr (v), Far (v), Fy(v), Fr(v), Fa, (v), Fe(v))

with
Foo (97, 0%, 0,0, m, M1, €)= To(HON, €, 7))
For (0%, 0", ¢, 0, 1, M, €") = Ta(H' [N, €, 07))
For (8%, 0", ¢ 0,5, M0, 61) = T (M [N E U] + QN €, 0% Z5)
Fu(0%, 0", 00,0, 5,00, 6Y) = Ty (G(0° + ¢ + 64,07, 1,€)) (2.99)
Fu(@°, 0 00 0,5, A1, €Y) =k [a[A, €, 0]
Fan (@, 0", 0,00, 5, A1, €1) = Py [a%[N, €, 0]

f&(d)ov ¢17 QSJ_v ’l/), R, A17 61) = E(¢O7 ¢17 ¢J—7 1/17 )‘a 5)
Here Ty, 71 and T, are the operators given in Proposition 2.2 which solve different modes of the inner problems
(2.87)—(2.89). The operator T, defined by Proposition 2.1 deals with the outer problem (2.86). Operators x[a],
P, and E handle the equations for A and £ which are defined in Proposition 2.3, (2.93) and (2.78), respectively.

e Choices of constants.

We list all the constraints of the constants 5, «, a, a1, v, v1, v, § which are sufficient for the inner—outer
gluing scheme to work.
First, we indicate all the parameters used in different norms.

o R(t) = A\;7(t) with 8 € (0,1/2).
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e The norm for ¢° solving mode 0 of the inner problem (2.87) is || - ||l,,a,s Which is defined in (2.66),
where we require that v,a € (0,1) and 6 > 0 small enough.

e The norm for ¢! solving modes 1 to 4 of the inner problem (2.88) is || - ||,,,4, Which is defined in (2.65),
where we require that v; € (0,1) and a; € (1, 2).

e The norm for ¢ solving higher modes (j > 5) of the inner problem (2.89) is || - ||, which is defined in
(2.65), where v,a € (0,1).

e The norm for ¢ solving the outer problem (2.86) is || - || which is defined in (2.61), while the || - ||s-
norm for the right hand side of the outer problem (2.86) is defined in (2.60). Here we require that
v,a,ve,y € (0,1) .

e In Proposition 2.3, we have the parameters w,©,m,l,y. Here w is the parameter used to describe the
remainder R, and w € (0,1/2). To apply Proposition 2.3 in our setting, we let

O=v—-1+af, m=v—-2—v+802+a), [ <1+2m,
and require that 5 > 1_7“ such that m + (1 + w)y > O is guaranteed.
In order to get the desired estimates for the outer problem (2.86), we need
v—14+824+a)—12>0, 20—-—12>0, 0<a<a<l,
B+v—1vy>0, 21y —v+2a —a)>0, v<l,
2w—vy—142a8>0, v—pFa+20—2a)>0.

In order to get the desired estimates for the inner problems at different modes (2.87)—(2.89), we require
0<v<l, 1—5(2+%) >0, 14v—v—B2+a—al)>0,
1-28>0, v—BA—a)>0, 2u —v>0,
2—v—af>0, v—pFa—2a)>0, 2—v—pF(1+a)>0,
1-806+2)>0, v—208>0,

O<mn<l, v—u1r1+af>0 2—v;—a>0,
w—v1+2af—a18>0, 1—v3—B(a;—1)>0.

It turns out that suitable choices of the parameters satisfying all the restrictions in this section can be found.
Here we give a specific example:

1 1
ﬁzi ('B>i)’ axa~ca~]l, vyl rnx0, d=0.
e Proof of Theorem 2.
Consider the operator
f:(f¢07f¢1af¢L7]:Ilia]:ma]:/\la]:f) (2100)

given in (2.99). To prove Theorem 2, our strategy is to show the existence of a fixed point for the operator F in
B by the Schauder fixed point theorem, where the closed ball B is defined in (2.98). By collecting the estimates
(2.67), (2.72), (2.74), (2.79), (2.94), and using Proposition 2.1, Proposition 2.2, Proposition 2.3, we conclude
that for (¢%, ¢, ¢, 9, k,A1,&Y) € B

[ Fg0 (4%, 0%, o, 40, 1, Ar, €|l a6 < CT

| F g1 (8%, &, s, 46, A1, € [l 00 < CTE

[For (8%, 0", ¢, iy Aty €1 [l < CTC

[ Fp(0°, 0" o, 5, A, €Yl < OT (2.101)
| Fi(0, 0", ¢, 00,5, A1, €1) — ko | < Cllog T| 7!

[ Fx, (¢°, 01, & 0, 5, Ar, €Y)
[ Fe (0%, 0", 9", 005, A1, €Yl < CT¢

53— < Cllog T|*~*log®(|log T'|)
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where C > 0 is a constant independent of T', and € > 0 is a small fixed number. On the other hand, compactness
of the operator F defined in (2.100) can be proved by proper variants of (2.101). Therefore, the existence of
the desired blow-up solution for k£ = 1 is concluded from the Schauder fixed point theorem.

The proof of multi-bubble case follows similarly by taking the ansatz (2.39) with nonlocal corrections sup-
ported around each concentration zone added. (I

3. HARMONIC MAP HEAT FLOW AND LANDAU-LIFSHITZ-GILBERT EQUATION

In this section, we are going to revisit the finite-time singularity formation for the harmonic map heat flow
(HMF) and the Landau-Lifshitz-Gilbert equation (LLG). We now briefly introduce the models and background.

Let M be a m-dimensional Riemannian manifold of the metric g and S? be the 2-sphere embedded in R3.
The Landau-Lifshitz-Gilbert equation (LLG) on M is given by

up = —au A (u AN Apu) —bu ANApu in M x (0,7T)
u(-,0) =ug € S? in M,
where a2+ =1,a >0, b € R, Apu = ﬁ@w (g“ﬁ\/gawau) is the Laplace-Beltrami operator and u =
[u1,uz2, us)™ is a 3-vector with normalized length which is a mapping u(z,t) : M x (0,T) — S2. First formulated
by Landau and Lifshitz [64] in 1935, LLG (3.1) is an important system modeling the effects of a magnetic
field on ferromagnetic materials in micromagnetics, and it describes the evolution of spin fields in continuum
ferromagnetism. See also Gilbert [45]. LLG (3.1) can be viewed as a bridge between the harmonic map flow
(HMF) when a = 1,b = 0 and the Schrédinger map flow (SMF) when a = 0,b = —1.

In the context of HMF, Struwe [39] proved the existence and uniqueness of weak solution with at most finitely
many singular points when M is a Riemann surface. See [37] for further generalizations and [11, 90] for higher
dimensional cases. Chang, Ding and Ye [9] first proved the existence of finite time blow-up solutions for HMF
from disk into S2. See also [10, 16, 33, 66, 80, 81, 93, 96] and the references therein. In [94], van den Berg,
Hulshof and King used formal analysis to predict the existence of blow-up solutions with quantized rates

T —t*
|In(T — t)| 71

for the two-dimensional HMF into S?. For the case M = R? and the target manifold is a revolution surface,
using degree 1 harmonic map @7 as the building block, Raphaél and Schweyer [83, 84] constructed finite time
blow-up solutions with rates (3.2) for all £ > 1 in the equivariant class, where the initial data can be taken
arbitrarily close to @ in the energy-critical topology. For the case that M C R? is a general bounded domain,
Daévila, del Pino and Wei [22] constructed solutions which blow up at finite many points with the type II rate
(3.2) for k = 1, and they further investigated the stability and reverse bubbling phenomena. The construction
in [22] can be generalized to the case M = R2.

On the other hand, for SMF with M = R?, Merle, Raphaél and Rodnianski [73] constructed the finite time
blow-up solution with the rate (3.2) for £k = 1 in the l-equivariant class. Analogous to the results in Krieger-
Schlag-Tataru [59] for wave maps, Perelman [77] constructed finite time blow-up solutions with continuous rates.
See also [5, 6, 7, 8, 56] and the references therein for the global well-posedness results and the dynamics of SMF
near ground state.

(3.1)

, keNT (3.2)

For LLG, in the case M = R3,a > 0, Alouges and Soyeur [I] proved the existence of weak solutions for
(3.1) and constructed infinitely many weak solutions. The existence for the weak solution to LLG has been
established by Guo and Hong [46, Theorem 4.2] when M is a closed Riemannian manifold with m > 3, while for
the case that M is a closed Riemannian surface, the weak solution was shown to be unique and regular except
for at most finitely many points [16, Theorem 3.13]. When M = R? and the target manifold is a smooth closed
surface embedded in R3, approximation by discretization was used in [55] to construct a solution of LLG which
is smooth away from a two-dimensional locally finite Hausdorff measure. In general, one cannot expect good
partial regularity results for weak solutions in the higher dimensional case m > 3 without further regularity or
energy minimizing assumptions. See the famous example by Riviére [35], where weakly harmonic maps from
the ball B> ¢ R3 into S? were constructed for which the singular set Sing w is the closed ball B3, and this
result can be generalized to higher dimensions. In a similar spirit to the existence results for partially regular
solution for HMF in higher dimensions of Chen and Struwe [11], Melcher [71] proved that for M = R™ (m = 3)
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there exists a global weak solution whose singular set has finite 3-dimensional parabolic Hausdorff measure.
Later, this result was generalized to m < 4 by Wang [97]. With the additional stability assumption for the weak
solution, for m < 4, Moser [76] proved better estimate for the singular set. The partial regularity of LLG (3.1)
for m > 5 still remains open.

For M = R™, the global existence, uniqueness and decay properties for the solution of (3.1) were established
by Melcher [72] for m > 3 with initial data ug close to a fixed point in S? in the L™ norm. Lin, Lai and
Wang [67] generalized the result to Morrey space and m > 2. For ug away from a fixed point in S? with BMO
semi-norm sufficiently small, Gutiérrez and de Laire [50] proved the global existence, uniqueness and regularity
results for LLG.

The study of the dynamics for LLG with initial data close to harmonic maps is of special significance and can
provide hints on the mechanism of singularity formation. A series of works by Gustafson, Kang, Nakanishi and
Tsai [17, 48, 49] are devoted to the behavior of the solutions to LLG with M = R? with initial data ug close
to the harmonic map in the n-equivariant class. They found, among other things, that there is no finite time
blow-up for LLG and HMF with ug close to n-equivariant harmonic maps for n > 3 and n = 2, respectively.
See [19, Theorem 1.1], [49, Theorem 1.2].

The singularity formation for LLG is an important and challenging topic. For the case that M is a compact
manifold with or without boundary in dimensions m = 3,4, Ding and Wang [32] obtained the existence of a
smooth finite time blow-up solution for LLG. For M C R?, as an analogue of Qing [30] for HMF, Harpes [53]
gave descriptions of solutions to LLG (3.1) near the singular points. For the energy critical case that M is
a disk in R?, in an interesting paper [05], van den Berg and Williams predicted the existence of finite time
blow-up by formal asymptotic analysis supported with numerical simulations. For M = R? Xu and Zhao [101]
rigorously constructed a finite time blow-up solution to (3.1) in the l-equivariant class.

One of the versatilities of the systematic gluing method is that it does not rely on any symmetry assumptions,
and thus the construction can be done in a general non-radially symmetric setting. Our main theorems for
multi-bubble blow-ups for HMF and LLG are given as below.

Theorem 3. Given points ¢ = (q1,...,q1) € QF and any sufficiently small T > 0, there exist ug such the
solution ug(x,t) of problem

ug = Au+ |Vul*u in Qx (0,T) (3.3)
u=1[0,0,1]" on 9Q x (0,7) (3.4)
u(-,0) =ug in Q (3.5)

blows-up at exactly those k points as t T T. More precisely, there exist numbers ki > 0, o and a function
ue € HY(Q) N C(Q) such that

k
uq(x,t)—u*(m)—Ze‘]ai*[W(x;.%)—W(oo)] — 0 as t—=1T, (3.6)
i=1 i

in the H' and uniform senses in Q0 where

T—t
i) =K —— 5 (1 1 t—T. )
Ai(t) K'|10g(T—t)|2( + o )) as t— (3.7)
In particular, we have
k
Vu(,t)]> = |[Vu,* + 87> &, as t—T
j=1

as a weak-star convergence of Radon measure.
Remark 3.1. The same construction works for the Cauchy problem in the entire space R? as well.

We consider the LLG equation with target manifold S? and domain M = R?, and positive damping parameter
a>0

{u = a(Au+ |Vul?u) —bu A Au  in R? x (0,7), (3.8)

t
u(-,0) = ug € S? in R2.
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We are interested in the case of multiple bubbles to LLG (3.8) in the general non-radially symmetric setting.
Our construction is based on the following degree 1 profile

1 2y1 )
Wy)=——1 2 , = (y1, e R%,
[l
and clearly
r—¢&
w
Q’Y < by >
solves the stationary equation of LLG (3.8) for any £ € R%, X\ > 0, and any y-rotation matrix around z-axis
cosy —siny 0
Qy = |siny cosy 0
0 0 1

Let us define Uy, = [0,0, 1], and Uy, = W (oo). Our main result is stated as follows.

Theorem 4. For any prescribed N distinct points ¢V € R?, j =1,2,...,N, N € Z, and T sufficiently small,
there exists a smooth initial data ug such that the gradient of the solution u to LLG (3.8) with a > 0 blows up
at these N points at finite time t = T'. More precisely, the solution u takes the sharply scaled degree 1 profile
around each point gl

N j
ue,t) = ~(N = Dl + - QW (m —)\f[ ]> + Dper
with "~
A0 = KA+ o) M) = T s €0 = o1 25(8) =2} (1+ o)

where o(1) = 0 ast — T; k7 >0, 77 € R; the leading part of k} is determined by Vug and independent of a, b;
the leading part of 5 is determined by Vug and a,b; || ®per|| Lo ®2x(0,1)) K 1, and A\(t) [V Pper (-, )| Lo ®2) S
AS(t) for € > 0 small. Moreover,

w(z,t) — us(z) — i_V;Q” [W (z Afm) - W(oo)} 50 as t =T

in HE (R?) N L>®(R?) for some u,(x) € H}

loc

(R%) N L*>°(R?), and in particular,

N
[Vu(-,t)|* dz — |Vu,|* do + 8ﬂZ§q[j] as t—T
j=1

as weak-star convergence of Radon measure.

Remark 3.2.

e The positivity of the damping term (a) plays a crucial role in our construction.

e In fact, due to the method employed, the construction works equally well for the case of smooth, bounded
domain Q C R? as long as the technical ingredient in [7]] can be generalized to general domains with
proper boundary conditions.

3.1. Harmonic map heat flow. We sketch the construction of Theorem 7.

e The 1-corrotational harmonic maps and their linearized operator.
The harmonic map equation for functions U : R2 — S? is the elliptic problem

AU +|VUPU inR?, |U|=1. (3.9)

For £ € R?, w € R, A > 0, we consider the family of solutions of (3.9) given by the following 1-corrotational
harmonic maps

Urew(x) = Qu W(x ; é),
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where W is the canonical least energy harmonic map

1 2y 9
W(y)_l—i—yP<y|2—1)’ y € R7,
and @), is the w-rotation matrix
cosw —sinw 0
Q. = |sinw cosw 0
0 0 1

The linearized operator for (3.9) around U = Uy ¢,., is the elliptic operator
Lylpl = Ap + |[VUPo +2(Ve - VU)U.

Differentiating U with respect to each of its parameters we obtain functions that annihilate this operator,
o

namely solutions of Ly[p] = 0. Setting y = Tf, these functions are

AU eus(t) =5 QuIW(y)
3wU,\7§,w (517) :(anw)W(y)
agj UA,E,w (x) :iQwayj W(Z/)

We observe that
-1

(anw) = QwJO7 Jo = 0
0

o = O
o O O

We can represent W (y) in polar coordinates,

et sinw(p) »
W(y) = ( COSw(p) > w(p) =T — Qarctan(p), y = pe’”.
‘We notice that
= nw= — — 7 _rFr -~
Wp 1+ p2’ sinw pw, 142 Ccos w 152
and derive the alternative expressions
1
a)\UA{’w(,I) = XQwZOI (y)v Z01 (y) = pwp(p) E'1 (y)
OuUrgw(@) = QuZoz(y), Zo2(y) = pw,(p) Ea(y)
1 .
O, Ung.o(1) = 3 QuZ1 (v), Z11(y) = w,(p) [cos 0 E (y) + sin 0 By (y)]
1 .
O, U e(2) = 1 QuZ12(y), Z12(y) = wy(p) [sin 6 Ex (y) — cos 0 Ex(y)], (3.10)

where _
' cosw(p)

Ei(y) = <_Sinw(p) ) - Bly) = (i%w) '

The relation |Uj ¢ | = 1 implies that all the functions Z;; are pointwise orthogonal to Uy ¢ .,. In fact the vectors
E1(y), E2(y) constitute an orthonormal basis of the tangent space to S? at the point W (y).
We have Ly [Z;;] = 0 where for a function ¢(y) we define

Lw[d] = Ay + [VW ()6 + 2(VW (y) - Vo)W ().

In addition to the elements (3.10) in the kernel of Ly there are also two other relevant functions in the kernel,
namely

Z_11 = p*w,(p)(cos 0B — sinOEy)
Z_ 19 = ppr(p)(sinGEl + cosOE,). (3.11)

It is worth noticing the connection between this operator and Ly which is given by

Lule] = %QWLWM o(z) = 6y), y= :c;é.
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e The linearized operator at functions orthogonal to U. It will be especially significant to compute the
action of Ly on functions with values pointwise orthogonal to U. In what remains of this section we will derive
various formulas that will be very useful later on.

For an arbitrary function ®(z) with values in R® we denote
My ®:=®—(®-U)U
A direct computation shows the validity following:
Lyl ®) = Ty A® + Ly (@)
where R
Ly[®] := |[VU|*II;.® — 2V(® - U)VU,
and
V(®-U)VU = 0,,(®-U)0,,U.
A very convenient expression for Li7[®] is obtained if we use polar coordinates. Writing in complex notation
d(z) = ®(r,0), x=¢E+re?,

we find

Lof@) = ~2uy (o) (@, - V)QuEr — L (@) 1)QuES]. p= (3.12)

r
3

We single out two consequences of formula (3.12) which will be crucial for later purposes. Let us assume
that ®(z) is a C* function ® : 2 — C x R, which we express in the form

1(x) + 1p9(x
O(z) = (‘P ( 203(;; ( )) : (3.13)
We also denote
P =p1tip, @©=p1—ip
and define the operators
divp = 0z, 01 + Oz, 02, curlp = 0y, 02 — Ouy 1.

We have the validity of the following formula

Ly[®] = Ly[®]o + Ly [®]1 + Ly [®]2 | (3.14)

where

h
=
2
o

|

)flpwf, [ div(e*i“go) QuE1 + curl(e*i“’go) QWEQ}
Ly[®]1 = —2X " w, cosw [ 0z, 3) cos 0 + (O p3) sin b | Qu By
— 2X" w, cosw [ (Dz, p3) sinf — (9p,¢3) cos 0| QuEs (3.15)
Ly[®]2 = )ﬁlpw?, [ div(e™@) cos 20 — curl(e™@) sin20 | Q,, Er
+ )flpw?, [ div(e™ @) sin 26 + curl(e™ @) cos26 | Q, Es.

Another corollary of formula (3.12) that we single out is the following: assume that

i0 _ ”
P(x) = <¢(r36 > , x=&+re? p= Y

where ¢(r) is complex valued. Then

Ly[®] = gwp(p)2 [Re(e‘i‘“argb(r))QwEl + %Im (e“p(r)QuEs| . (3.16)

A final result in this section is a computation (in polar coordinates) of the operator Ly acting on a function
of the form

D(z) = 1(p, 0)QuEr + ¢2(p. 0)QuEa, x =&+ Ape®.
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We have:
_ 0 02 1 2
Ly[®] =X 2 <3§<p1 + pT% + ‘;72901 + (2w/23 — ?)gol — ?89@ cos w) QuE,

_ ) oz 1 2
+ 72 (5?,@2 + thpz + 2202 + (2w} — ;)Wz + ?59901 cos w) QuEs.

e The ansatz for a blowing-up solution.
In what follows we shall closely follow notation and computational formulas derived in the previous sections,
here applied in a time-dependent framework. Thus we consider the semilinear parabolic equation

up = Au+ |Vul*u  in Q x (0,T) (3.17)
u=ugn on I x (0,T) (3.18)
u(-,0) =up in (3.19)
for a function u : Q x [0,T) — S2. Here ug : Q@ — 52 is a given smooth map and
UgQ = uo|89 =ez on 0. (3.20)
Here and in what follows we denote
1 0 0
e; = |0, ex=|1|, e3=10 (3.21)
0 0 1

The constant boundary value es precisely corresponds to W (oo) where W is the standard degree 1 harmonic
map. This choice of ugn as a constant is made for convenience, in fact sufficiently small non-constant pertur-
bations of it are also admissible in all arguments below.

In order to keep the notation to a minimum, we shall do this in the case k¥ = 1 of a single bubbling point.
We will later indicate the necessary changes in the general case. Given a fixed point ¢ € 2, and any sufficiently
small number T > 0 we look for a solution u(x,t) of problem (3.17)-(3.19) which at main order looks like

x —&(t)
Uz, t) == Ung)e(t),0t) (2) = Que W( A(t)( )
for certain functions £(¢), A(¢) and w(t) of class C1([0,T]) such that

§(T)=q, MT)=0,

so that u(z,t) blows-up at time T" and the point g. We shall find values for these functions so that for a small
remainder v(x,t) we have that u = U + v solves (3.17)-(3.19) for up(x) = U(z,0) + v(z,0). Let us denote

S(u) := —us + Au+ |Vul*u

A useful observation that we make is that as long as the constraint |u| = 1 is kept at all times and v = U + v
with |v] < & uniformly, then for u to solve equation (3.17) it suffices that

S(U +v) = bz, t)U (3.22)
for some scalar function b. Indeed, we observe that since |u| = 1 we have
1d, o 1
. — = — — ZAlul? =
b(U-u)=5u)- u 5 dt'u‘ + 5 lu|* =0,

and since U - u > %, we find that b = 0.
We can parametrize all small functions v(z,t) such that |[U 4+ v| =1 in the form
v=Iyro+a(lyLp)U, (3.23)
where ¢ is an arbitrary small function with values into R3, and
Hyrg:=¢—(p-U)U, a(():=1-[( -1
Using that
AU +|VU|?U =0
we find the following expansion for S(U + v) with v given by (3.23):

SU+Myro+al)=-U; — 0o+ Ly(Myre) + Nu(Myre) + cMyro)U
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where for ( =y, a = a((),

Ly(¢) = AC+|VUPC+2(VU - QU

Ny(¢) = [2V(al) - V(U 4 ¢) +2VU - V¢ + [VC* + [V (aU)|? ¢ — al;

+2VaVU,
c(Q)=Aa—a;+ (VU + ¢ +alU)|> = VU (1 +a) —2VU - V¢
Since we just need to have an equation of the form (3.22) satisfied, we find that
u=U+Tyro+ a(llyp)U
solves (3.17) if and only if ¢ satisfies
0=—-U;—0Ilyrp+ Ly(Ilyr) + Nuy(Iyre) + b(x, t)U, (3.24)

for some scalar function b. The logic of the construction goes like this: We decompose ¢ into the sum of two
functions ¢ = ¢* + ¢°, the “inner” and “outer” solutions and reduce equation (3.24) to solving a system of two
equations in (', ©°) that we call the inner and outer problems.

The inner function ¢'(x,t) will be assumed supported only near z = £(t) and better read as a function of

the scaled space variable y = x;(i()t) with zero initial condition and such that ¢’ - U = 0, so that [T " = .

The outer function ¢°(x,t) will be made out of several pieces and its role is essentially to satisfy (3.24) far away
from the concentration point z = £(t).
We write equation (3.24) in the following way:
0= —0y0" + Ly[p'] + Ly[e°®] — Hye[0:0° — Ap® + Uy (3.25)
+ Ny (¢ +y1¢°) + (¢° - U)U; + bU.
For the outer problem, we consider a function ®° that depends explicitly on the parameter functions chosen in

such a way that ;. [0,®° — A®C + U;] gets concentrated near z = £(¢) by elimination of the terms in the first
error U; associated to dilation and rotation. Then we write

©°(x,t) = ®Y(x,t) + U*(,t). (3.26)

For the inner solution, we consider a smooth smooth cut-off function 7 (s) with n9(s) =1 for s < 1 and = 0 for
5> % We also consider a positive, large smooth function R(t) — 400 as t — T that we will later specify. We

define t
et i=m (RO )y =55

and let
@)

O (2,1) = (@, D) Quo(y,t), y= —

for a function ¢(y,t) with initial condition ¢(-,0) = 0 that satisfies ¢(-,t) - W = 0, defined for |y| < 2R(¢) and
that vanishes as t — T". Then we have

Q-wLul¢'] = A72nLw [d] + (Aun)¢ + 22" ' Van Vo
Q-wipf = (¢t = A" Ay - Vyd = A7 Vo + 0Q-00.Qud) + 1.
Equation (3.25) then becomes
0= A29Qul~\26 + Lw[d] + \Q_oLu[V7] (3.27)
+7Qu(A Ay - Vyd + ATV, — w0 I )
+ Ly[®°) + Ty [0,0° — A, 0° + U]
— 00" + AU + (1 — ) Lo U] + Qu[(Aen)d + 2V Ve — ni¢)]
+ Ny (nQud + Ty (0 4+ T*)) + ((U* + %) - U)U,; + bU.
Next we will define precisely the operator ®° and estimate the quantity
Ly [@°) + Ty [0,0° — A, 0° + U] (3.28)

The idea is to choose ®° such that 0,$° — A, ®° + U, ~ 0 whenever |z — &| > A, so that in particular the last
error term in the outer equation (3.26) is of smaller order.
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Invoking formulas (3.10) to compute Uy we get
U, = /.\aAU)\@w + @awU)\@w + 8§U>\7§7w . 5 =& + &,
where, setting y = 3% = pe'’, we have
A .
€o(@,t) = —Qulypwolp) Ex(y) + wpw,(p) E2(y)]

Ei(z,t) = _& wy(p) Qul cosb Ey(y) + sinb Ea(y)]

A
20, (0) Qusin O By (y) — cost Baly)].
Since &; has faster space decay in p than & we will choose ®° to be an approximate solution of
Y — A0+ & =0. (3.29)

For x = ¢ + 7€' and r > X we have

2 . 2 [+ id)eltte)
50($,t) - _7’2 I A2 |:/\QUJE1 + AWQwE2:| ~ —’I"2 + 22 l: 0 .
Here and in what follows we let
p(t) = A(t)e™ .
Then
2r  [(A+idw)el@+)] 2r  [pt)e?] &
2 A2 [ 0 = —wgaz| o | &

With the aid of Duhamel’s formula for the standard heat equation, we find that the following function is a good
approximate solution of ®) — A, ®° + & = 0 and hence of (3.29). We define

ng o [P0

©O(r,t) = —/ p(s)rk(z(r),t — s)ds

-T
e
Ar) = VP E N, k(2 t) =2

where for technical reasons that will be made clear later on, p(t) is also assumed to be defined for negative
values of .
A direct computations yields

s s R X R
(I)?+AI®O+£O:RO+R13 R0:(00>7 R1:<01)

where
A2t
Ry := —re’9—4/ p(s)(zk, — 2%k..)(2(r),t — s) ds
25 Jor

and
Rui= —e"Re (e E0) [ 9 ka(r),t = 5)ds
+ ;ew (AA(t) — Re (re?é(t))) / p(s) 2ks(2(r),t — ) ds.

-T
We observe that R; is actually a term of smaller order. Using formulas (3.14), (3.16) and the facts
A2 1

_ 9 T 1 9
= P 2—2(1 —cosw) = o3P
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we derive an expression for the quantity (3.28):
Ly [®°] + Ty . [~ U; + AD° — Y]
= Ly[®°] — & + My [Eo] — Eo + My [Ro] + e [Ry]
= Kolp, €] + K1 lp, €] + Tyrs [Ry]

where
’CO[pa f] = KOl [pa g] + ’CO2 [pa g]
with
Koalp. € = —3pu? [ [Re((s)e™“O)QuEr + Im (B(s)e ™) Qu x|
-7
‘k(z,t —s)ds (3.30)
1 . t )
Koz[p, &] == XPwi {)\ - / Re (p(s)e ™ O)rk,(2,t — s)2, ds] QuE:
-7
- ﬁpwi CoS W [/t Re (p(s)e™“®) (zk, — 2%k..) (2,1 — 5) ds} QuEr
-7
- ﬁpwi [/t Im (p(s)e”“®) (zk, — 2%k..)(2,t — s) ds] Q. FEo, (3.31)
-7
Kilp, €] :== %wp [(R((&1 —i6)e”)QuBr + 3((&1 — i€2)e) QuEs]. (3.32)

We insert this decomposition in equation (3.27) and see that we will have a solution to the equation if the pair
(¢, ¥*) solves the inner-outer gluing system

Moy = L [¢] + N Q—., [iU[‘I’*] + Kolp, &) + K4 751} in Dar

¢-W =0 in Dsyp (3.33)
¢(>O> =0= ¢(7T)a
U = A, 0% 4+ g[p, &, ¥*, ¢] in Qx(0,T) (3.34)
where
glp, &, 0, ¢] := (1 = n)Ly[¥*] + (¥* - U)U; (3.35)

+ Qu ((Aam)¢ + 2V enVaed — 1:0)
+1Qu (0 + A" Ay - Vo + A1 - V)
+ (1 =) [Kolp, &] + Kalp, ] + yyo [Ry] + (20 - U)U
+ Ny(nQuo + My (97 + %)),
and we denote

Dyr = {(y,t) € R* x (0,T) / [yl < vR(?)}.
Indeed if (¢, ¥*) solves this system, then we have that

w(z,t) = U + My [8° + U +1Qua] + a(Tly s [8° + T* + 1Q.,0])U (3.36)
solves equation (3.17). The boundary condition (3.20) v = e3 amounts to
My [@° + U] + a(ITy o [U + @° + U*))U = (e3 — U)
and then it suffices that we take the boundary condition for (3.34)
U, =es— U — " (3.37)

Since we want that u(x,t) be a small perturbation of U(z,t) when we stand close to (¢,T), it is natural to
require that U* satisfies the final condition
™ (q, T)=0.
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This constraint amounts to three Lagrange multipliers when we solve the problem, which we choose to put in
the initial condition. Then we assume

v (33, O) = Zg(l‘) + c1e1 + caes + c3es,

where ¢1, ¢a, c3 are undetermined constants and Zj(x) is a small function for which specific assumptions will
later be made.

e The reduced equations. In this section we will informally discuss the procedure to achieve our purpose in
particular deriving the order of vanishing of the scaling parameter A(t) as t — T
The main term that couples equations (3.33) and (3.34) inside the second equation is the linear expression

Qw[(Aaﬂ?)(b +2VenVeod + 77t¢]’

which is supported in |y| = O(R). This motivates the fact that we want ¢ to exhibit some type of space decay
in |y| since in that way U* will eventually be smaller and in turn that would make the two equations at main
order uncoupled. Equation (3.33) has the form

Ny = Lw[g] + hlp,&, ¥*](y,t) in Dag
¢-W =0 in Dyp
#(-,0) =0 in Bap(o),
where, for convenience we assume that h(y,t) is defined for all y € R? extending outside Doy as
hlp, & 0] = NQ o Ly [V ]xD,n + A’ Q-wKo[p, €] + N QoK1 [, €]l X Dy, (3.38)

where x 4 designates characteristic function of a set A, Ky is defined in (3.30), (3.31) and Ky in (3.32). If A\(¢)
has a relatively smooth vanishing as ¢t — T it seems natural that the term \2¢; be of smaller order and then
the equation is approximately represented by the elliptic problem

Lw[¢] + hlp, &, 0] =0, ¢-W =0 inR> (3.39)
Let us consider the decaying functions Z;;(y) defined in formula (3.10), which satistfy Lw[Z;;] = 0. If ¢(y,t)

is a solution of (3.39) with sufficient decay, then necessarily

/h[p,g,\p*](y,t)-zlj(y)dyzo for all ¢ € (0,T), (3.40)
R2

for 1 =0,1, j = 1,2. These relations amount to an integro-differential system of equations for p(t), £(t), which,
as a matter of fact, detemine the correct values of the parameters so that the solution (¢, ¥*) with appropriate
asymptotics exists.

We derive next useful expressions for relations (3.40). Let us first compute the quantities

Buslr®) 1= 5= [ Q-ullolp. &)+ Kalp €1 - ) (3.41)

Using (3.30), (3.31) the following expressions for By1, Bos are readily obtained:

t 2 s .
Boulpl(t) = / Re (j(s)e"®)T, (W)) s o)

T t—s/) t—s

¢ ; A2\ ds
t) = I . —iw(t) T AME) ) %2
Bulpl(t) = [ (i) (F11) 2
where I';(7), j = 1,2 are the smooth functions defined as follows:
o] 2
p
Ta(r) == [ g | K(Q) + 2K (O g — deostu)? e ) o
0 L+p ¢=r(1452)

To(r) == [ 5P (K0 = CRlO] 1y 00

where

ST

1—e"
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and we have used that fooo p3wgdp = —2. Using these expressions we find that
ITy(t) — 1| < C7(1 + |log7|) forT <1, (3.42)
ITy(7)| < g for > 1.
Let us define
Bolp) i= 3¢ (Borlp] + iBoalpl) (3.43)
and
ao;[p, &, V'] = _QA Ban Q- Lu[¥7]- Zo;(y) dy
aolp, €] = 2 (agap, &, W] + iaalp, €, 0°)). (3.44)

Similarly, we let
Bull®) = 5 [ Qulkolp €+ Kalp. €1 Z3,(0) d
Bi[€](t) := Bui[€](t) + iBi2[€](1).
Using (3.32), (3.10) and the fact that [~ pw2dp =2 we get
Bilg](t) = 2[&i(t) +ika(t)].

At last, we set

* A T *
aflj[p7€a v ] = % B Q—wLU[\II ] . Zl](y) dy
2R

alp, & 0] ==~ (an[p, & ¥ + iara[p, &, U,
We get that the four conditions (3.40) reduce to the system of two complex equations
Bo[p] = aolp, &, ¥, (3.45)
Bi[¢] = ai[p, & 7). (3.46)

At this point we will make some preliminary considerations on this system that will allow us to find a first
guess of the parameters p(t) and £(t). First, we observe that

t—A2 .
pts .
gl = [ Has o).
-T — S
To get an approximation for ag, we analyze the operator Ly in ag. For this let us write
e A B
V3
From formula (3.14) we find that
Ly[¥*](y) = [Lolo[¥*] + [Luli [¥*] + [Lul2[97],

where

AQ_o[Lulo[¥7] pwﬁ [ div(e™™9*) By + curl(e”™9*) Es |
AQ_u[Luh [¥F] = — 2w, cosw [ (92,05) cos 0 + (9, 05) sin 6 | Ey
— 2w, cosw [ (O, 13) sinf — (0y,003) cos O] By
AQ_o[Lyl2[¥] = pwg [ div(e™9*) cos 20 — curl(e™9*) sin26 | E;
+ pwi [ div(e™v*) sin20 + curl(e*¢*) cos 20 | Es,
and the differential operators in ¥* on the right hand sides are evaluated at (z,t) with x = £(¢) +A(t)y, y = pe??
while E; = Ey(y), I = 1,2.
From the above decomposition, assuming that U* is of class C'' in space variable, we find that

aolp, & V7] = [div )™ + i curl (€, t) + o(1),
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where o(1) > 0ast — T.
Similarly, we have that

ai(p,§) = 2(0z,¥3 + i3x2¢§)(§,t)/0 cosww?,pdp +0o(1)

=o(l) as t—T,

2
p

Let us discuss informally how to handle (3.45)-(3.46). For this we simplify this system in the form

since [ w2 coswpdp = 0.

t—A? .
/ P6) s — div g + i curl *)(E(E),£) + (1) + O(5]o0)

r t—s
Et)=o(1) as t—T. (3.47)

We assume for the moment that the function U*(x,t) is fixed, sufficiently regular, and we regard 7" as a
parameter that will always be taken smaller if necessary. We recall that we want £(T') = ¢ where ¢ € Q) is given,
and A(T) = 0. Equation (3.47) immediately suggests us to take £(t) = ¢ as a first approximation. Neglecting
lower order terms, we arrive at the “clean” equation for p(t) = A(t)e™®

b

t—X(t)2 p(S)
/ ; Sds = divy*(q,0) + i curlyp*(q,0) =: a; (3.48)
-T -
At this point we make the following assumption:
div ™ (g,0) < 0. (3.49)
This implies that af = —|a§|e™° for a unique wy € (—5,%). Let us take w(t) = wy. Then equation (3.48)
becomes 2
TR
A
/ ﬂcls = —|ag|. (3.50)
-T t—s
We claim that a good approximate solution of (3.50) as ¢ — T is given by
: K
ANt) = ——5—7—
®) log?(T —t)

for a suitable k > 0. In fact, substituting, we have

/ PO / TN 430 flor(T — 1) — 21og(\())]

-7 t—s -7 t—s

A S
+/ M) —A®)

—(r-t) t—s

~ /t As) 4 A(®) log(T — 1) =: B(t) (3.51)
-7 T — S
ast — T. We see that a8 p
log(T — t)g(t) = %(ng(T —t)A(t) =0

from the explicit form of A(t). Hence §(t) is constant. As a conclusion, equation (3.50) is approximately satisfied
if k is such that o
Als) .
wf A= il

And this finally gives us the approximate expression
A(t) = —| divep*(q,0) + i curl * (g, 0)| A (2),

where
| log T'|

MO = oy
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Naturally imposing A, (T) = 0 we then have

log T
M(t) = | log T'|

—oZr g T O FeD) as toT

e Solving the inner-outer gluing system.

Our purpose is to determine, for a given ¢ € Q and a sufficiently small T' > 0, a solution (¢, U*) of system
(3.33)-(3.34) with a boundary condition of the form (3.37) such that u(z,t) given by (3.36) blows up with
U(z,t) as its main order profile. This will only be possible for adequate choices of the parameter functions £(t)
and p(t) = A\(t)e®). These functions will eventually be found by fixed point arguments, but a priori we need
to make some assumptions regarding their behavior. For some positive numbers a1, as, o independent of T' we
will assume that

ar| A ()] < |p(t)] < ag| A ()] for all te (0,T), (3.52)
IE()] < A(t)” for all t e (0,7). (3.53)

We also take
R(t) = M\ (t) 77, (3.54)

where 3 € (0, 3).
To solve the outer equation (3.34) we will decompose ¥* in the form
U* = 7% 41
where we let Z* : Q x (0,00) — R? satisfy
Z; =AZ" in Q x (0,00),
Z*(-,t) =0 in 99 x (0, 00), (3.55)
Z*(-,0) = Z; inQ,
with Z§ () a function satisfying certain conditions to be described below. Since we would like that u(z,t) given
by (3.36) has a blow-up behavior given at main order by that of U(x,t), we will require
U*(q,T) =0.
This constraint has three parameters. Therefore we need three “Lagrange multipliers” which we include in the
initial datum.

e Assumptions on Zj.
To describe the assumptions on Zg, let us write

zii0)= | Z0)] . i) = (o) + izt (3.56)
z03(2)
A first condition that we require, consistent with (3.49), is div 2§ (¢) < 0. In addition we require that Z§(¢q) ~ 0
in a non-degenerate way.
We want also Z* to be sufficiently small, but independently of T, so that the heat equation (3.55) is a good
approximation of the linearized harmonic map flow far from the singularity. In order to achieve later the desired
stability property, it is convenient split Zj into two parts

Z5 = 2"+ 25,

where Z30 is sufficiently smooth and Z! allows more irregular perturbations. More precisely, for Z3° we assume
that for some oy > 0 small and some a1, as > 0, all independent of T', we have

HZ()kOHcS(ﬁ) < ay,
Z5°(q)| < 5T,
[(Dz5°(q) 71 < au,

—ap < div zSO(q) < —ap.

(3.57)

(The notation here is analogous to (3.56).)
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To describe Z3! we introduce the following norm

1231 = sup 251 0)] + oy s V25 () (3.58)
+ ogea (e = dol +£) D22 o).
where
gx = A(0).

Then we assume that for some o > 0 fixed we have

1ZsH. < T°. (3.59)
In summary, the conditions on Z§ are the following:

Z; = 730 + 73" with Z3°, Z3' satistying (3.57) and (3.59). (3.60)

e Linear theory for the inner problem. The inner problem (3.33) is written as
)\28t¢ = LWM)] + h[pa 57 \I/*] in DQR
¢ -W =0 in DQR
¢(-,0) =0 in Bag(o)
where h[p, &, U*] is given by (3.38). To find a good solution to this problem we would like that h[p, £, U*] satisfies
the orthogonality conditions (3.40).
We split the right hand side h[p, £, ¥*] and the inner solution into components with different roles regarding

these orthogonality conditions.
Recall that

hlp, &, 0] = N Q- Lu (W IxDup + NQ-uKo[p, €] + N QoK [0, XD
the decomposition of Ly given in (3.14):
Ly[¥*] = Ly[¥*]o + Ly [¥*]; + Ly (¥, ,
with Ly [®]; defined in (3.15). Using the notation (3.13), we then define
Ly[@]” = —2) w, cosw [ (8, 03(E(1), 1)) cos 8 + (Duyp3(£(1).1))) 5inb | Qu By

— 2)\*111);) cos w [(811@3(5( ),t)))sin€ — (Or,3(&(t),1))) COS@] Quls .

We then decompose
h=h1+ha+ hs
where

hilp, €, 0¥ = N2Q_o (L [9*]o + Lu[¥*]2)xp,p + A2Q_wKolp, €],
halp, €, 9*] = N2Q_o, Lo [0 1,0 + N2 Q_uK1 [, €] XDy

hslp. & 0] = NQ (L [0*]y = Lu[W )" )xp, -

Next we decompose ¢ = ¢ + P2 + ¢3 + ¢p4. The function ¢; will solve the inner problem with right hand
side hq[p, &, U*] projected so that it satisfies essentially (3.40). The advantage of doing this is that h; has faster
spatial decay, which gives better bounds for the solution. For this we let, for any function h(y,t) defined in
R? x (0,T) with sufficient decay,

1
WO = T [ h0:0) - 2 dy (3.61)

Note that h[p, &, ¥*] is defined in R? x (0,7), and for simplicity we will assume that the right hand sides
appearing in the different linear equations are always defined in R? x (0, 7).
We would like that ¢; solves
12

N1 = Lw[dn] + Inlp, &1 = Y > " eyylha(p, & U)wiZy;  in Dag,

I=—1j=1
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but the estimates for ¢ are better if the projections co;[h(p, &, ¥*)] are modified slightly.
Here is the precise result that we will use later. We define the norms

Ay, )]

hllya= sup —F———rt—, 3.62
I r2x(0,7) AL(L+[y[)—@ (362)
and
1
s — sup 19027 (0L DIV 0.7 .

R6(5—a) 1 )
(I+[yD?> (A+[yDhe—2

Proposition 3.1. Let a € (2,3), § € (0,1), v > 0. Assume ||h|y,o < 00. Then there is a solution ¢ = Ty 1[h],
on[h] Of

Dor )\I; max(

)\23t¢ = Lwl¢]+h— Z Coj [h}ZonBl — Z Clj [h]leXB1 i Dag
j=1,2 =11
J=1,

¢ -W=0 1in DQR
#(-,0)=0 in B2R(0)
where cy; is defined in (3.61), which is linear in h, such that

H(b”*,l«a’é < C”h”taa
and such that
|coj[h] — Coj[R]] < CAYR™=2@=D|||, 4.

The function ¢9 solves the equation with right hand side hs[p, &, U*], which is in mode 1, a notion that we
define next (this is basically motivated by the analysis of section 3.1, where we consider the linearized parabolic
equation and use a Fourier decomposition of the right hand side and the solution).

Let h(y,t) € R3, be defined in R? x (0,T) or Dag with h- W = 0. We say that h is un mode k € Z if h has
the form ) )

h(y,t) = R(hi(lyl, )™ ) By + R |y, )e™’) B,
for some complex valued function hy(p,t).

Consider then

)\2815(25 = Lw[d)] +h— Z C1j [h]w?)ZU in Dog
j=1,2

6 W =0 inDap (3.64)

¢(-,0)=0 in BQR(O)
Proposition 3.2. Let a € (2,3), § € (0,1), v > 0. Assume that h is in mode 1 and |||, < co. Then there
is a solution ¢ = Ty 2[h] of (3.64), which is linear in h, such that
16llv.a—2 < Cllhlly,a-
In the above statemen the norm ||¢||, ,—2 analogous to the one in (3.62), but the supremum is taken in Dop.
Another piece of the inner solution, ¢3, will handle h3[p, £, ¥*], which does not satisfy orthogonality conditions

in mode 0. We will still project it to satisty the orthogonality condition in mode 1. Let us consider then (3.64)
without any orthogonality conditions on A in mode 0. We define

160y = sup 12EDI A+ 1D V4000 0]
TR MO REA )

Proposition 3.3. Let 1 < a <3 and v > 0. There ezists a C > 0 such that if |h||q,, < +o0 there is a solution
¢ = Txs[h] of (3.64), which is linear in h and satisfies the estimate

[6llsx, < Clihlla,u-

Note that we allow a to be less than 2 in the previous proposition.
Next we have a variant of Proposition 3.3 when A is in mode —1.

(3.65)
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Proposition 3.4. Let 2 < a < 3 and v > 0. There exists a C > 0 such that for any h in mode —1 with
|h]la,, < +o00, there is a solution ¢ = Ty alh] of problem (3.64), which is linear in h and satisfies the estimate

[l ssx,r < CllR][a,,
where
lo(y, )+ (1 + [y]) I[Vyé(y, 1)
sxx p — SU .
I0llee = ) o (R()

All propositions stated here are corollaries of Proposition 3.11 and proved in section 3.1.
e The equations for p = Ae™. We need to choose the free parameters p, £ so that ¢;;[h(p, &, ¥*)] = 0 for
l=-1,0,1, j = 1,2. This will be easy to do for I =1 (mode 1), but mode | = 0 is more complicated.

To handle cy; we note that by definitions (3.38), (3.41), (3.44)

2w\
co,;[h(p, &, ¥")] = ——=75—5 (Bo;[p] — aojlp, &, ¥*
OJ[ ( f )] fszg‘ZOjP( 0][] OJ[ E ])
where By, ag are defined in (3.43), (3.44) and we recall that p = \e'.
So to achieve co;[h(p, &, ¥*)] = 0 we should solve

Bo[pl(t) = aolp, &, ¥7|(¢), t€0,T], (3.66)

adjusting the parameters A(t) and w(t). This equation is delicate and we will instead impose a modified version
of this condition. The modification of (3.66) consists in introducing another term in the equation, essentially
modifying the operator By.

To make this precise we define the following norms. Let I denote either the interval [0,T] or [T, T]. For
© € (0,1), ! € R and a continuous function g : I — C we let

lglles = Sup (T — )= |1og(T — t)|g(1)], (3.67)
and for v € (0,1), m € (0,00), and I € R we let
—-m g(t) —g(s
ghma = sup (T = ) (7 — 1) L) =9 (3.68)

where the supremum is taken over s <t in I such that t — s < %(T —t).
We have then the following result.

Proposition 3.5. Let a,v € (0, %), leR, Cy > 1. There is ag > 0 such that if © € (0,ap) and m < © —~,
then for a :[0,T] — C is such that

Re(a(T)) < 0, with C’il < Re(a(T)) < Cy

and
T°og "+ |a(-) — a(T)|le.1-1 + [a]y.mi-1 < Ch,

for some o > 0, then, for T > 0 small enough there are two operators P and Rg so that p = Pla] : [-T,T] — C
satisfies

Bolpl(t) = alt) + Rofal(t), t € [0,7], (3.69)
with
[Rolal (1)
oc | lo — ym+A+a)y
< (17 + 7O BB L o) — ol o + el mms) T (3.70)

for some o > 0.

We have additional properties of the solution to this problem.
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Proposition 3.6. Let us make the same assumptions as in Proposition 3.5. Then Pla] can be written as
P[a’] = pO,n[a] + 7)1 [(L] + 7)2 [CL]
where po . is defined by
T 1
Do,x(t) = k|logT / ——ds, t<T, 3.71
(t) = A | . Tloa(T —s)2 (3.711)
and each term
k= kla], p1="Pila], p2=Pala],

has the following bounds:

1
— |a(T)|(1 + O(——
o= (D14 O o).
, : |log T'|'~ log(| log T'|)?
t) —pox(t) < )
|p1( ) Do, ( )| ¢ |10g(T_t)|3_a

) |log 7|
<
PN Cliogm —gpa '

Ip2lleq < C(T277C + Jla(-) — a(T)lo4-1),

. 8 e —mm— log|logT
el < Cl1og 711570~ 4+ 7OLELE L o) D)1 + by i)

where ag > 0 is some fized some constant and o > 0 is arbitrary (with C depending on o).

Roughly speaking, to obtain the modified equation (3.69) we notice that the main term in p in By[p] is the

integral operator
=X ()% -
/ ps)
T t—s

t—A. ()% .

&mzam—/ () g

-T t—s

Thus we define

It will be sufficient to solve approximately equations (3.40) replacing in part this integral operator by a “regu-
larized” version of it following the logic of the formal derivation of the rate (3.51). For a > 0 let us write

/t_x*(t) B(s) o Salp] + Ralp]

-T t—s
where
t—(T—t)1+e s
Salg] == g(t)[—2log A (t) + (1 + ) log(T — t)] + /_T tgg lds, (3.72)
t—X2
Ralgli=— [~ 40 =9(s), 3.73
=) (3.73)

Thus equation (3.66) can be written in the form
Sali] + Rali] + Bolp] = a(t), in 0,7,
for some function a(t). The modified equation is
Salp] + Bo[p] = a(t) in [0,7],

and the remainder Ry is essentially R,[p]. This is a sketch of how we obtain the modified equation and
remainder.

Another modification to equations (3.66) that we introduce is to replace ag[p, £, ¥*] by its main term. To do
this we write

aolp, &, ] = al’[p, &, 9] + oV [p, &, W] + P [p, £, V]
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where
olp & W) = e /B (Q-wLul®li- Zor +iQ - Lu[¥) - Zoz) dy
for | =0,1,2.
We define
47t :
Bl & V) = e (Ro [a 169 (0 + a6 9100
R2
+al[p & 0)(1)) = (colhlp, & W] = ol [p, &, ),
and

cor = Re(ep), oy = Im(cp),

where Ry is the operator given Proposition 3.5 and ¢y = €y + i¢p2 are the operators defined in Proposition 3.1.
e The system of equations.

We transform the system (3.33)-(3.34) in the problem of finding functions ¥(x,t), ¢1,...,¢ds, parameters
p(t) = A(t)e™®), £(t) and constants ci, ca, c3 such that the following system is satisfied:

V=080 +9(p, &, 2"+, 01+ P2+ d3+ ¢a) InQx(0,T)
Y =(es—U)—° on 9Q x (0,7)

o . (3.74)
P(,0) =(cre1+coea+cses)x+ (L—x)(es—U—") in
w(Q7T) = _Z*(q’T)
N0y = Lw (1] + lalp, &, 9% = Y éojlhalp, & U |w) Zo,
j=1,2
- cjlhalp, & ¥ )w>Z;;  in Dag
122,1 ’ (3.75)
j=1,2
(bl -W =0 in DQR
$1(-,0) =0 in Bag(o)
N0y = Ly [da] + halp, &, W] Z c1jlhalp. & W Jw2Zy; in Do
by W =0 in Do (3.76)
(7252(',0) =0 in BQR(O)
NOyps = Lwls] + hs — Y c1jlhslp, & U w2 Zy;
j=1,2
+ 12122 CSJ- [p, 5, \I/*]’LU?)ZOJ n DQR (377)
i=1,
¢3 -W =0 in DQR
¢3(,0) =0 in BQR(O)
N0y = L[] + Z c1,5[hlp, & U JwiZ_y;
7j=1,2
¢4 W =0 inDsg (3.78)
¢4(-,t) =0 on 8BQR(t)
$4(+,0) =0 in Byg(o)
Coj [h(pvga \I]*)](t) - &Oj[pa§7 \Ij*](t) =0 forall te (07T)v .] = 17 27 (379)

c1[h(p, &, ¥")](t) =0 forall te(0,T), j=1,2. (3.80)
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In (3.74) x is a smooth cut-off function with compact support in Q which is identically 1 on a fixed neighborhood
of ¢ independent of T" and the function g(p, &, ¥*, ¢) is given by (3.35).

We see that if (¢1, P2, @3, 4,1, p, &) satisfies system (3.74)—(3.80) then the functions
b=¢1+ b2+ g3+ ds, V' =Z"+79¢
solve the outer-inner gluing system (3.33)—(3.34).

The way in which we will proceed to solve the full problem (3.74)—(3.80) is the following. For given functions
¢1,...,04 and parameters p, £ in a suitable class, we solve first the outer problem (3.74) in the form of an
operator ¢ = W[p1 + ¢ + ¢3 + ¢, p, €] and denote U*[d1 + o + ¢3,p,&] = Z* + ¥[d1 + d2 + ¢3 + ¢4, p,].
Then we substitute U*[¢1 + ¢ + ¢3 + ¢4, p,&] in (3.75)—(3.78) and solve for ¢1, P2, ¢3, P4 as operators of the
pair (p,&). Finally, we solve for p and ¢ the remaining equations. All this will be done by suitable control on
the linear parts of the equation and contraction mapping principle.

e The outer problem. Our main result for problem (3.74) is the existence of a small solution for all small T,
with certain precise absolute and Lipschitz estimates satisfied. To obtain this result we need a suitable norm
that we define next.

Given © > 0, v € (0, 3) we define

1
. -0 -0
||w||ti,®,v T )‘*(O) |10gT|)\*(O)R(O)||’(/}HL°C(QX(O’T)) +)\*(0) ||v$w||L°°(Q><(O»T))
1
+ sup M) TOTIR() T  ———— (. t) — (z, T
LU MO0 vt ) — v )
+ sup A(8)C|Var(,t) — Vath(x, T))|

Qx(0,T)

2y |Vz¢($at) - Vzil)(l'/7t/)|

+SUP)\*(15)_@()\*(75)R('5)) (|$—$/|2+ |t_t/‘)’y

, (3.81)

where the last supremum in taken in the region
1
r, o' €Q, t,t'€(0,T), |v—2a|<2\MR(E), [t-t]< Z(T—t).

e Choice of constants. We explain here the constants used in the different norms and the values we choose
for them.

e B€(0,1) is so that R(t) = A\.(t)7".

e a € (0, %) appears in Proposition 3.5. It is the parameter used to define the remainder R, in (3.73).

e We use the norm || |44, ay,5 (3.63) to measure the solution ¢ in (3.75). Here we will ask that 11 € (0,1),
a; € (2,3), and ¢ > 0 small and fixed.
We use the norm || ||,,,0,—2 (3.62) to measure the solution ¢q in (3.76), with 1o € (0,1), as € (2,3).
We use the norm || ||.x,., (3.65) for the solution ¢3 of (3.77), with v5 > 0.
We use the norm || ||.sx,., for the solution ¢4 of (3.78), with v4 > 0.
We are going to use the norm || ||y e, With a parameters ©, v satisfying some restrictions given below.
We have parameters m, | in Proposition 3.5. We work with m given by m := © — 2y(1 — ) and {
satisfying | < 1+ 2m.

We will need a series of additional inequalities satisfied by these parameters ensuring the gluing procedure.
See [22].

e The outer problem. The next proposition gives a solution to the outer problem (3.74). To state this result
we define the spaces

) Vyor € L=(Dar), ||61l+,01,01,6 < 00}
Dyg) : Vypo € L= (Dar), [|02]lvs,a. < 00}

) : Vyds € L®(Dar), [[63]lnws < 00}

)+ Vyds € L=(D2r), [|dallwrep, < o0}

and use the notation
E:E1XE2XE3XE4,
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¢ = (¢17¢27¢3a¢4) €Ll
1@z = o1l ,a1,6 + [92llva.an—2 + [|@sllwx,vs + [|Pallsns,ra
We define the closed ball
B={®ecX:|?|g <1}
Proposition 3.7. Assume Zg satisfies (3.60). Let p(t) = \(t)e™®) and &(t) satisfy estimates (3.52), (3.53),
® € B. Then there exists C' > 0 such that if T > 0 is sufficiently small then there exists a solution ¢ =
U(p, &, D, Z5) to equation (3.74) such that

1¥(p, €, @, Z5)lls00 < CT (@]l + 1Bll oo (— 1,1 + €]l L= 0,1y + 125 15)-

The operator U(p, &, D, Z;) satisfies Lipschitz properties, which are consequence of its construction.

Corollary 3.1. Let U(p,&, @, Zy) be the solution to the outer problem constructed in Proposition 3.7. Let py, €
satisfy (3.52), (3.53) and p; = Ae®™', ||®)]|p < 1, and || Z3)||+« < 0o, I =1,2. Then

H\Ij(plaqu)hzgl) - \I/(p%fa(I’Qv ZSQ)”}L@,"/
S CT([[@1 = P2l& + | A1 — w2)lloo + 1 Z61 — Zo2ll«)-

Corollary 3.1 gives a partial Lipschitz property of the exterior solution ¥(p, &, ¢) with respect to p, namely
it only considers variations of p = \e’™ with respect to w. We will need Lipschitz estimates for variations of
p = Ae’ in \ and also variations with respect to €. These estimates are obtained for ¥(p, £, ¢) when considered
as a function of the inner variable (y,t) € Dag.

For this let us introduce some notation. Suppose that ¢ (x,t) is defined in  x (0,7"). We let

?/1(%15) = 1/J(£(t) + A(t)yﬂt)’ (yat) € D2R~

The following expression is |1 6., expressed in terms of ¢ (and restricted to Dag):

~ _ 1 ~ _o_
||¢||ﬂﬁ,®v’¥ = A*(O) © ‘ IOgT‘)\ (O)R(O) ||1Z}||L°°(D2R) + A*(O) © 1Hvyw”[l°°(D2R)

—6-1 1 1 - -
+ Sup Ax(t) R(t) mW(ya t) =y, 1)
+osup A1) OV, t) — Vyd(y, 7))
(y,;t)ED2R

7 _ Tl
+ sup A, (t)—@—lR(t)Q'y |Vy¢(y, t) ,v2yw(y )]
(:0),(y/ ,t)€Dar ly —y'[*Y

2y |vy'l/~}(y7 t) _ Vyz/;(xlv tl)‘
it =t ’

+sup A (1) O (L (0R(1))
where the last supremum is taken in the region

1
(y,t), (y,t'), € Dag, |t—t'|< 5@t

Corollary 3.2. Let U(p, &, ¢) be the outer solution in Proposition 5.7. Let py = \je', & satisfy (3.52), (3.53)
and ||¢||«.a,0 < 1. Then for © € (0,0) we have

||\~I/(p1, 51, ¢) - qj(p% 527 ¢) ”jm,é,'y

Hx\l—AzH §1— &2
s

MR HL‘X’

&1 —ézHLm]

<c| R

L = Al + | +|

What we do next is to take ® € E with ||®||g < 1 and write U*(p, &, @, Z5) = Z* + U(p, &, D, Z§). We can
then write the inner problems as the fixed point problem
o = F(D) (3.82)
where
F(®) = (Fi1(®), Fo(®), F3(®)), F:BiCE—FE
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is defined as

F(®) = (F1(®), Fo(®), F3(P), Fa(®)),

T,l( [P £ (Pa§ o Zo)])
T72(h [p7€ \II p7§ ¢ ZO)D

D) = Tos (hslp. &, " (0, €, @, Z5)] I+ Yl (0,6, Z0) w320, )

j=1
Fa(®) = T (Z corglhlp, & 0 (0., @, Z5)JwiZ 1)
j=1
Although F also depends on p, &, Z; we will omit this dependence from the notation for the moment.

Our next step is to solve problem (3.82).
e The inner problem.

Proposition 3.8. Assume that p and & satisfy estimates (3.52) and that Zj satisfies (3.60). Then the system
of equations (3.82) for ® = (¢1, ¢, d3) has a solution ®(p,&,Zy) in By C E.

Let ®(p,&, Z§) be the solution of (3.82) constructed in Proposition 3.8. Next we show that the solution
®(p, &, Z§) is Lipschitz in the parameters p, &, Z;.

Proposition 3.9. Assume that p1,ps and &1,&s satisfy estimates (3.52) and that Z§ 1, 2.2 have the form
Zg,l:Z +Z0l’ l:1a2a

with Z3° satisfying (3.57) and
1Z53l« < T°,

Let us write pj = \je™i for j =1,2. for some o > 0. Then
(o1, &1, Z.1) — 2020, Z5 )l < A0 [0 (@1 — )+ | 2

§1— &
AR

=
s Lee

+[222

+ 1A = Aeflp= + H

+ 1284 - Z5h )]
for some possibly smaller o > 0.

With this we can now state the following result. Let ®(p, &, Z;) denote the solution of (3.82) constructed in
Proposition 3.8.

Proposition 3.10. Given Z; of the form (3.60) there exists p = A\’ and & such that (3.79) and (3.80) are
satisfied.

The proposition above yields the existence of a blow-up solution.
e Linear theory for the inner problem.
At the very heart of capturing the bubbling structure is the construction of an inverse for the linearized heat
operator around the basic harmonic map. We consider the linear equation
N20;¢ = Ly [¢] + h(y,t) in Dag (3.83)
¢(-,0) =0 in Bap()
¢ -W =0 in DQR
where
DQR = {(yvt) / te (OﬂT)7 (RS B2R(t)(0)}'
We assume that h(y,t) is defined for all (y,t) € R? x (0,T) and satisfies
AI/
(1+yD)e

where v > 0 and a € (2,3) (so that ||k 4, < 00).
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The parameter R is given by (3.54), that is R(t) = A\.(t) ™, B € (4, 3). Also, we assume that the parameter
function A(t) satisfies we have that
aX(t) < A(t) < bA(t) forall te(0,T)

for some positive numbers a, b, ¢ independent of T'.

We observe that a priori we are not imposing boundary conditions in problem (3.83). Our purpose is to
construct a solution ¢ that defines a linear operator of h and satisfies uniform bounds in terms of suitable
norms.

All functions h(y,t) with h(y,t) - W(y) = 0 can be expressed in polar form as
h(y,t) = h'(p,0,t)E1(y) + h*(p,0,t)Baly), y = pe'”. (3.84)

We can also expand in Fourier series

h(p,0,t) = h' +ih® = Y hilp,t)e™, Ty = gy + ihgo (3.85)
k=—oc0
so that -
h(y7 t) = Z hk(y7 t) = hO(y7 t) + hl(y7 t) + h*l(ya t) + hL(y7 t)a (386)
k=—o
where R . ~ ‘
hi(y,t) = Re (hi(p, t)e™) By + Im (hy.(p, t)e™*?) Es. (3.87)

We consider the functions Zj;(y) defined in (3.10) and (3.11) and define for k = —1,0,1,

XZk_] . (2) dz
Zf 5 [ b0 Zig(e)d

R2 X|ij

where

if [yl > 2R(t).

The main result in this section is the following, where we use the norm |4, defined in (3.62).

o 8) = {;u,%uy) if [y| < 2R(?),

Proposition 3.11. Let 2 < a <3, v > 0 and let h with ||h||a,, < +0o. Let us write h = ho +hy + h_1 + ht
with h*+ = Zk;ﬁo 41 hie. Then there exists a solution ¢[h] of problem (3.83), which defines a linear operator of
h, and satisfies the following estimate in Dog:

1+ 1y IVyo(y, )] + [o(y, 1)]

< A*(tl)i(t')z min{1, R |y| 2} ko — hollan + Wlholla,y
v 4
1i|(t)a? ||h1 Fall,, W [Pall,,
m min{1, B2 |y} [lh—1 — Aoyl + A (t)” log R(?) ||
s

The construction of the operator ¢[h] as stated in the proposition will be carried out mode by mode in the
Fourier series expansion. We shall use the convention that h(y,t) = 0 for |y| > 2R(t). Let us write

d= > ¢ Ok(y:t) = Re(prlp, t)e™) By +TIm (o1(p, t)e™?) Ey.

k=—o00
We shall build a solution of (3.83) by solving separately each of the equations
N0y = Lw[or] + he(y,t) =0 in Dyg, (3.88)
éx(y,0) =0 in Byg)(0),
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which, are equivalent to the problems
N20ypr = Liler] + hi(p,t) in Dyg,
¢(p,0) =0 in (0,4Ro)
with R
Dsr={(p,t) / t€(0,T), p€ (0,4R(¢))}

and we recall

YK

0
Lilor] == 02pr + pT@k — (k* 4 2k cos w + cos(2w)) i

We have the validity of the following result.
Lemma 3.1. Letv >0 and 0 <a <3, a#1,2. Assume that
17 (s ) o < +00.
Then problem (3.88) has a unique bounded solution ¢y (y,t) of the form
dr(y, 1) = Re(pr(p,1)e™) Er +Im (px(p,t)e™’) Es
which in addition satisfies the boundary condition
or(y,t) =0 forallt € (0,T), y &€ OBpry(0). (3.89)
These solutions satisfy the estimates

Lo R2-a ; <2,
ol < Clallri A

L+p)20 if a>2 UF22Z

R?—@ if  a<2,

a0l < Clnlx {55 0 05h

R? if a>1,

v —1
w0l < Clllrta+p { o, B2z

01(y, 1) < Cllhflap (1 +p) 2R
with C independent of R and k.

Proof. Standard parabolic theory yields existence of a unique solution to equation (3.88) that satisfies the
boundary condition (3.89), for each k. Equivalently, the problem

N0yox = Li[pr] + hi(p,t)  in Dy, (3.90)
or(t,4R) =0 forall te€ (0,7)
¢(0,p) =0 in (0,4R(0)),

0
Lilor] = 0or + GoPk _ (k* 4 2k cosw + cos(Qw))SD—;C
p P
has a unique solution g (p, t) which is bounded in p for each t.
We use barriers to derive the desired estimates. A first observation we make is that for mode & = —1 the

elliptic equation £_1[¢] + g(p) = 0 in (0,4R) with p(4R) = 0 has a unique bounded solution given by the
variation of parameters formula

4R r r
o(0) = Z1(p) / —pzj o / 9(8)Z-1(s)s ds, (3.91)
2
Z1(p) = —p*w, = %~

Here we have used that £_1[Z_1] = 0. Let us call ¢o(p) the function in (3.91) with g(p) := 2(1 + p)~*. We
readily estimate

R?~e if a < 2,

leo(p)| < {(1+p)2—a ifa>2"
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Let us call @(p,t) = A(t)”¢0(p). Then we see that

AV : AV
—N2@(p,t) + L1 [@(p,t)] + —=— < e N/, -
oi(pyt) 1[p(ps1)] At =¢ [Alo(p) R
< —N(1+4p) " [1=CAR> (1 +p)]
<0

- _1
in Dyg. Indeed, since R(t) < A« 2, the inequality holds provided that T was chosen sufficiently small. Thus
for k = —1 the barrier ||h||a,, @(p,t) dominates both, real and imaginary parts of ¢_1(p,t). As a conclusion,
we find

R*~a ifa<?2
1y, )] < C|\b|a N ’
|¢ l(y )| — || || ) {(1+p)2a 1fa>2,

The cases k = 0,1,—2 can be dealt with in exactly the same manner, by replacing Z_; in Formula (3.91)
respectively by the functions

in D4R.

P 1 p*
Z =— 7 =—, Z_ = —. .92
O(p) p2+17 1(p) p2+17 2(p) p2+1 (39 )
The estimates for ¢, predicted in the lemma then readily follow for k = —2,—1,0, 1. Finally, let us now consider

k with |k| > 2 and k # —2 and the function @(p,t) as above. Now we find
_)‘2()515(/0’ t) + Ek[@(pv t)] < (Ek - E—l)[@(pv t)]
1
< —ON(K? =1+ 2(k — 1));2(1 +p)F e

v

O~ 1420k 1) =% in Dyp.

(1+p)
The latter quantity is negative provided that |k| > 2 and k # —2 and hence we get the estimate
C R ifa <2
(v, )] < =||hllaAl” " in Dyg.
|Pr(y, )| < k2 | ||a, {(1 +P)2_a if a > 2, 4R
The proof is concluded. O

We can get gradient estimates for the solutions built in the above lemma by means of the following result.

Lemma 3.2. Let ¢ be a solution of the equation
N9 = Lw[¢] + h(y,t) in Dayr (3.93)
¢('7 0) =0 n B4’yR(O)~
Given numbers a,b,~y, there exists a C such that if for some M > 0 we have
6y, )] + (14 [y))?[h(y, )| < MA(6) (1 + |y))™"  in Dayr, (3.94)
then
(1+1yDIVyo(y, )] < CMAG) 1+ [y inDsyr (3.95)

and we recall

Dyr={(y,1) / lyl <~yR(), te(0,T)}
If in addition we know that ¢ satisfies the boundary condition ¢(-,t) = 0 on OBy g for allt € (0,T) then
estimate (3.95) holds in the entire region Dyyg.

Proof. To prove the gradient estimates, we change the time variable, defining

b ods
T(t) = ,
=], 37
so that (3.93) becomes in the variables (y, 7)
a‘r(b = LW[¢] + h(va) in D4'yR
#(-,0) =0 in Byg(o)
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Let 71 > 0 and y1 € B3ypr(r,)(0). Let p = % +1 50 that B,(y1) C Bayr(r)(0). Let us define
% T
O(z,t) = ¢y + pz,71 + p’s), z € Bi(0), s 7;7;'

We distinguish two cases. First, when 7, > p?, we use interior estimates for parabolic equations, while for
the case 71 < p?, we use estimates for a parabolic equation with initial condition.
Assume 71 > p?. Then ¢(z, s) satisfies an equation of the form

bs =A.p+AV.¢+ Bd+ h(z,s) in B(0) x (—1,0]
with coefficients A(z,s) and B(z, s) uniformly bounded by O((1 + p)~2) in B1(0) x (—1,0] and
h(z,s) = p*h(ys + pz, 71 + p*s).
Since p < CR(y) and R(m)? < 71 for 71 large we get
(1) S Al 4+ 0%8)0 < A(m)®, s € (—1,0].
Standard parabolic estimates and assumption (3.94) yield
||Vz§£||L°°(Bi(O)><(1,2)) S ”QZN)HLOOB%(O)X(O,Q) + HiLHLOO(B%(O)x(OQ))
< MA(n)'p*

so that in particular .
VoL, m)| = V200, )] S M A(m)*p* ™"
In the case 71 > p? the argument is similar, but the equation for ¢ holds in B; (0) x (—;—5, 0] and has initial

condition 0 at s = —;—;. Finally, for the last assertion we argue in similar way but using boundary rather that

interior gradient estimates. U

In addition to estimate (3.95) we have a Holder gradient estimate which is more natural to express using the
variable 7 as follows. We denote

Bo(y,7) ={(',7) / ly —y'|> + |7 — 7| < £2}.
For a function g(y,7), a number 0 < o < 1, and a set A we let
|f(y77_)_f(y/77-/)| a
& ,7), (y,7') € As.
) L0
Corollary 3.3. Let ¢ be a solution of the equation (3.93) with h(y,7) = divH(y,7). Given o € (0,1) and
constants a, b, v there is C such that if

6y, ™) + (L + [yDH (g, 7)| + (14 [y1) ™ [H] s, () (0 r)1Dar e < M A7) (14 [y])
in Daygr, where £(y) =1+ ‘%‘, then

(T +1yD)IVyd(y, 7)| + 1+ ) [Vl (rr)0Dayr < C MA@ (1 + [y)~* (3.96)

in Dayr. If in addition we know that ¢ satisfies the boundary condition ¢(-,t) = 0 on OBy ) for allt € (0,T)
then estimate (5.96) holds in the entire region Diyg.

[g]a, 4 :=sup {(

Our next goal is to construct an inverse for modes kK = —1,0, 1 with a better control when subject to a certain
solvability condition.

e Mode k = 0. Let us consider again equation (3.88) for £ = 0 and the functions Zy;(y) defined in (3.10) . We
have the following result.

Lemma 3.3. Let assume that 2 < a <3, k=0 and
ho(y,t) - Zo;(y)dy = 0 forall t€[0,T) (3.97)
R2
for j =1,2. Then there exist a solution ¢q to equation (3.88) for k = 0 that defines a linear operator of hg and
satisfies the estimate in D3g,

5—a . 5—a —
[60(y, )| < [hollaw B> A (1 + |y)) ™" min{L, R™="|y| =} . (3.98)
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A central feature of estimate (3.98) is that it matches the size of the solutions obtained in Lemma 3.1 for
k # 0,1 when |y| ~ R.

Proof. We observe that conditions (3.97) can be written as

2R
/ ho(p,t) Zo(p)pdp = 0 forall 7€ (0,T). (3.99)
0
Let us consider the complex valued functions
. 9 oo _
Ho(p,t) == —Z, — ho(¢,t)Z, d k=0,1.
o(0t)i=~20) [ s [ Hecnzcac k=0

They are well-defined thanks to (3.99). Then the function

Ho(y,t) := Re (Ho(p, 7)) E1(y) + Re (Ho(p, 1)) E2(y)
solves
Lw([Ho(y,7)] = ho(y,7) in Dygr
and satisfies
[Ho(y, )] S M) (14 [y))* || Aol
Moreover, elliptic gradient estimates yield

IVyHo(y, 7)| S Xe()” 1+ y)' " Ihollay  in Dsg.

a,v in D4R.

Let us consider the problem
N, = Ly [®] + Ho(y,t) in Dyp, (3.100)
®(y,0) =0 in Byr(0)
O(y,t) =0 forallte (0,7), y € IBsgr0)(0)
According to Lemma 3.1, this problem has unique solution ® = ®( that satisfies the estimates
@0y, t)| < CllHolla—z,0Ae(7)" (L + |y)) ™" R*™* in Dyp.
Applying Lemma 3.2 we deduce that, also,
[Vy@o(y, )| S [ Holla—20A:(1)"(1+ y)™* R*™" in D3
Let us write
g 1= 0y, P9, Hoj:= 0y, Ho
Then we have
N0, ®o; = Ly [®o;] + 8y, |VW [*®q + 2V, WV P + Ho;(y, T)
+2(V®e0,, VW)W 4 2(VO, VW), W  in Dsg,
®g;(y,0) =0 for all y € B3p(0)(0)
According to Lemma 3.2 and the above estimates we obtain that
(14 DIV ®o;(y, 1) < Nholla, A (®)” (1 + [y[) 2RO
+ [[Bolla, A ()" (1 + [y)* =" in D3g.

Then we define
¢o = Lw[®o]
so that ¢ = ¢q solves
Np = Lw([¢] + ho(y,t) in Dsg,

¢(y,0) =0 forall y € Byr(o)(0)

and defines a linear operator of the function hg. Moreover, observing that
|Lw [®o]| S ‘D;%] +O0(p™*) || + O(p™?) | Dy Py
we then get the estimate
60(y, )] < 110l BP™N(®) (1 + |y) 2. (3.101)

To complete the proof of estimate (3.98), we let g be the complex valued function defined as

do(y,t) = Re(po(p,t)) Er +1Im (po(p,t)) o
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so that letting R’ = RT <« R, using the notation in (3.90), ¢o satisfies the equation
)\2815@0 =Ly [(po] + ilo(p, t) in DR/, (3102)
@0(O7p) =0 in (07 R/)v

and from (3.101), we can find an explicit supersolution for the real and imaginary parts of equation (3.102),
which also dominates their boundary values at R’, which yields

oy, )] < Ilhollaw XY IR P+ 1D, Jyl < R
Combining this estimate and (3.101) yields the validity of (3.98). O

We mention next a variant of Lemma 3.3, in which we weaken the hypothesis on the right hand side, allowing
it to be a divergence of Holder continuous function. This will be needed when analyzing estimates of the
derivative with respect to A of operator 7 o (Proposition 3.3).

Lemma 3.4. Let assume that 2 < a < 3, v >0, and k = 0. Let hy have the form
hO (yv T) = div HO (y7 T)
such that
(L + [yDHoly, Tl + (1 + |y [Hols, () (5,m)pan < Xe(1)” (14 [y
in Dyg, where a € (0,1) and (y) =1+ ‘%l. Assume also that

/ ho(y,t) - Zoj(y)dy = 0 forall t€[0,T)
R2

for j =1,2. Then there exist a solution ¢y to equation (3.88) for k =0 that defines a linear operator of hy and
satisfies

5—a _ . 5—a —
[60(y, )] < Ihollaw B AG(L+ [yl) ™" min{1, R7=" |y| =},
m DgR.

e Mode k = —1. Let us consider equation (3.88) for k = —1 and the functions Z_1;(y) defined in (3.11) . We
have the following result.

Lemma 3.5. Let assume that 2 < a < 3, k=0 and
h_1(y,t)-Z_1;(y)dy =0 forall te[0,T)
R2
for j =1,2. Then there exist a solution ¢_; to equation (3.88) for k = —1 that defines a linear operator of hg
and satisfies the estimate in Dspg,

6-1(y, )] S Ih-1lla,, A, min{log R, R*~“|y| %}
Proof. The proof is essentially the same as that of Lemma 3.3. (]

e Mode k = 1. Now we deal with (3.88) for £ = 1. For convenience we give the result for a right hand side
more general than strictly need for the proof of Proposition 3.11. Let us assume that h; is defined in entire
R? x (0,T) and that

hi(y,t) = div, G(y,t) (3.103)
where
|G (y t)|<M yeR? te(0,7T) (3.104)
) —_ 1 + |y|a_17 ) ) ) *

for some v > 0, a € (2,3). Then the following result holds.
Lemma 3.6. Let assume that 2 < a < 3, k =1, hy has the form (3.103) so that (3.104) holds and

/ haly,t) - Zi(y)dy = 0 forall t€(0,T)
]R2

for j =1,2. Then there exist a solution ¢1 to equation (3.88) for k =1 that defines a linear operator of hy and
satisfies the estimate in D3g,

[d1(y, )] < A(®)”(1+ |y|)2—a.
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From this we get directly the next result.

Corollary 3.4. Let assume that 2 < a <3, k=1 and
hi(y,t)- Zi(y)dy = 0 forall te (0,T)
Bar
for j =1,2. Then there exist a solution ¢1 to equation (3.88) for k =1 that defines a linear operator of hy and
satisfies the estimate in D3g,
1, )] S Mhallap () (1 + 1y~

Let us do the same change of the time variable so that (3.88) for k = 1 in entire R? becomes in the variables

(y,7)

;¢ = Lwlp]+h inR?x(0,00), (3.105)
#(-,0) = 0 inR%
Thus, we consider a function h(y,7) defined in entire R? x (0, 4+00) of the form
h = Re (he?) Ey + Im (he'®) Es, (3.106)
that satisfies the orthogonality conditions for j = 1,2

/ h(-,7)-Z1; = 0 forall 7€ (0,00) (3.107)
R2

and such that h(y,7) =0 for |y| > 2R(7).
By standard parabolic theory, this problem has a unique solution, which is therefore of the form

¢ = Re (pe'?) By + Im (@e') By, (3.108)
where the complex valued function ¢(p, T) solves the initial value problem
Orp = Lalg] + h(p,7) i (0,00) x (0,00), (3.109)

Sﬁ(p70) =0 in (0,00),

[

0
Lifp] = 5590 + %P (14 2cosw + cos(2w))£.
p P
We have the validity of the following result.

Lemma 3.7. Let 0 < 0 < 1, v > 0. Assume that h is mode 1, that is, has the form (3.106), satisfies the
orthogonality conditions (3.107), and can be written as in (3.103) with g; satisfying (3.104) where b =1+ 0.
Then there exists a constant C' > 0 such that the solution ¢ of problem (3.105) satisfies the estimate

A (1)

The proof of this result is done by the blow-up argument together with a Liouville theorem, a non-degeneracy
of the blow-up profile, and the convolution estimates in order to get a contradiction. See Appendix B.

(3.110)

Proof of Lemma 3.6. We take h to be the extension as zero of the function h; as in the statement of the lemma.
Then we let ¢ be the unique solution of the initial value problem (3.105), which clearly defines a linear operator
of hy. From Lemma 3.7, expressing the resulting estimate in the variables (y, t), we have that for any ¢; € (0,7

6(y, )] < CX()” (L + 1Y) "7 Pll210e, forall t€(0,t1), yeR”
Then letting ¢; := ¢‘D3R and letting ¢; T T the result follows. O

Combining the estimates for all the modes readily yields the validity of Proposition 3.11.

e Modified theory for mode 0 (re-gluing).

We will perform another gluing procedure that we refer to as the re-gluing process, for mode 0 to further
refine the estimates. The re-gluing is not limited to this specific mode and can be in fact applied to a wider
class of operators. For a more general setting, see Appendix D.
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Let us consider the problem

= Lwe+h(y,7) + > GojZojw, in Dag

j=1,2
¢-W =0 inDsyr (3.111)
=0 on dBag X (19,00)
30('77-0) =0 in B2R(TO)7
in mode 0. We work with the norm || ||,, defined in (3.62).
Proposition 3.12. Let o € (0,1), 6 € (0,1), v > 0. Assume ||h||,24+0 < 00. Then there is a solution ¢, ¢o; of
(3.111), which is linear in h, such that

R°G79) < 9RS
oy, T + (1 + ) Ve (y, T < O Rl {(1+1”"3 v =

5
[ 2R° <|y| < R,
and such that Iohez
By2 'V 407
éojlh] = —Glh
O][ ] f]RQ ‘ZO_]|2 [ ]
where G is a linear operator of h satisfying the estimate
GlR)| < O R |h]lu,210-
with 0 < o’ < 0.
We will construct ¢ solving (3.111) of the form
p=n9+Y
where ]
Y
n(y,7) =m (R1>
and 7, (r) = 1 for r < 1, ny(r) = 0 for r > 2. Here R, = R°.
We find a solution to (3.111) if we get ¢, ¢ solving the system
0r¢ = Lwo + B+ h(y,7) + > cojZojw, in Dag,
j=1,2
¢-W =0 inDsp, (3.112)
¢('a TO) =0 in B2R1(7'0)7
Orp =AY+ (1 —n)By + Ap+ (1 —n)h(y,7) in Dar
1/)W:O inDQR 3113
d):o OnaBgRX(To,OO) ( ' )
’lﬁ(-,TQ) =0 on BQR(TO)7
where
Y= VW + 2(VW - Vi)W
A¢ = ¢An+2V$Vn — ény + ¢(VWVn)W.
Consider
8T¢ = A¢ + (1 - U)B¢ + h(yaT) in DQR
- -W =0 in D
- (3.114)
=0 on dBsg x (19,00),
1/’(%7'0) =0 \V/y € B2R7
Let

lollS o =SupT Y@ lyD7 [y, D+ A+ D Vg (y, 7)I]
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Lemma 3.8. Let 0 € (0,1), v > 0 and let ¢ solve (3.114). If Ry is sufficiently large, then

191155 < ClAllu2+0- (3.115)
If in (3.114) h is replaced by (1 — n)h we get the additional estimate
11
W(y»t)‘ + R1|v¢(y7t)| < Y Do |y| < 2R1
TV RY

Proof. To prove this lemma, we first claim that for the equation
Orp =AY+ h(y,7) inDag
¥ =0 on 0Bag X (19,00),
¥(y,m0) =0 Vy € Bap,
in mode 0, we have
D15 < Cllally,240- (3.116)
To find the estimate for the solution of (3.114) we need to estimate ||(1 — 1)Bt||,,2+0. We have that

L= VWP | < (L=m7 " (1+ [y) "Il

g e O 7 e [ o

Similarly
(1= )| VW - V)W| < (1= n)r (L + y]) >l
< R;lT_V(l + |y|)—2—a||w||l(j()y

5

Therefore
(1 =) BY[lu240 < CRT )15
Then, if ¢ satisfies (3.114), using (3.116) we get

1115 < ClIl(AL = n)BY + hlly210 < CRTHWI) + Cllhllv24o-
If R; is large enough, we obtain (3.115). O
Proof of Proposition 3.12. We use Lemma 3.8 to find a solution 9[¢] of (3.114) with h replaced by A¢, and a

solution t[h] of (3.114) with h replaced by (1 — n)h, so that ¥[¢] + ¢ [h] is the solution of (3.113).
Let 01 € (0,1). We also get the estimate

le[@lI5, < ClAdlb 240 (3.117)

We take R; = R° and construct a solution of the system (3.112), (3.113). For this it suffices to find ¢ such
that

0r¢ = Lw ¢ + BY[¢] + By[h] + h(y, ) + Z cojZojXB, in Dapg,
j=1.2

d)W:O in DQRl (3118)

¢(,70) =0 in Bag, (ro)-
Let T denote the linear operator given by Lemma 3.3, Applied in Dag,. Then to solve (3.118) we consider the
fixed point problem
¢ = T[By[¢] + Bi[h] + hl.
Let 0 € (0,1). By Lemma 3.3,

17190240 < ll9llv240, (3.119)
where
(1 + ly])?

1611400 = sup — == [loy, )l + (A + yDIVy oy, I
1

We claim that if
o1 <0
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Indeed, we have

||A¢||V,2+U1 < CR1<0)01_U||¢||* v,o

(3.120)
(680] < g B Aol < O
—5 T 71 1 \2 *,V,0 T 1 NOL *,V,0
TERT ey T (1 lyh?e
1
SCR(0) 77— |95 00
> 1( ) T (1+|y|)2+01 H¢” Vs
Similarly
1 RS g Rol—a'
VoV < =77 —L——|Vn|[[glls 1.0 < CT " 9]l 0
VoV T Vanllel bz 9]
Similar estimates for the remaining terms in A prove (3.120)
(From (3.117) and (3.120) we find
1161119, < CR1(0) 7|l (3.121)
Now we claim that
1BY w210 < ClllI,- (3.122)
Indeed, since |[VW|? < C(1 + |y|)~*, we have
VW[ gl < C
Also

(1+ \ |)4+01 lollSa, < WWHMI

VW - V)| < 07
(VWO = Oy

These two inequalities prove (3.122).
Combining (3.122) and (3.121) we get

|BY[@lv2+0 < CllYIBIIS, < CRUO) ™ 0]l40
(From the above inequality and (3.119) we then get

< Oy I

v,01

V,01

”T[Bw[(b}]”*va < CR1(0)01_0||¢||*,V,07
which shows that the operator ¢ — T [Bw[¢] + Bylh] + h] is a contraction if R;(0) is sufficiently large, and we
find a unique fixed point, which satisfies the estimate

[10ll+.0.0 < CITIBY[A] + Rlll+v.0
Next we estimate ||T[Bv[h] + hlll«,v.0- We have by (3.119)

(3.123)
(
IT1BY[R] + h]ll«v.o < CIBY[R] + Ry 240
< CIeRISS + 1Bllv2+0 < Cllhlly240,
and hence
[¢llsv.0 < Clihlly2+40 (3.124)
Similar to (3.121) we have
L1155 < Cllélleno < Clhlloto
and
|19 < Cliblly2+0

Recalling that ¢ = n¢ + ¢ and R = R®, we get

RSG—0)
le(y, T+ (1 + [y [Vye(y, 7)| < CT7Y(|R]]12+ {

e vl <2R°
a2 SIS R
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Finally, thanks to Lemma 3.3, we have that
1
I, 120 ?

The last term is a linear operator of h, which we estimate next. A similar computation as in (3.120) shows that
||A¢||V+5(0701),2+01 < Cll(bH*,V,U'

cos ] = /B b Zoj + /B (B[] + BY[h) - Zo;

This implies
”7[}[@5]”%&-5(0—01),01 < C||¢||*,V,U

and therefore

< CTVR77[]lw0

| Bl 2
Bar,
and using (3.124)

CT R 7| |hllv,240-

/ By(o) - Zo;
Bar,

We have for |y| < 2R?
[[R](y, )| + (1 + [yDIVy[h](y,t)| < CRY7||Allu240-
Then for |y| < 2R’ we have
VW2 [p[R]] < O (1 + [y) " Ry 7 || hllv.210
and
(VW - V)W | < Cr= (14 [y[) " Ry 7||hllv,240-
As a consequence we get
|BY[R]| < CT77(1+ [y)) " Ry |1A]lu 240

and hence

< CT R ||Allv, 240

/ By[h] - Z;
Bar,
O

3.2. Landau-Lifshitz-Gilbert equation. The basic ansatz in LLG for the construction is similar to the
HME’s. We point out some difference and new aspects as follows.

e Ansatz of multiple bubbles

The construction begins with a careful choice of first approximation. Since the target is the 2-sphere, one
has to choose some profile for multiple bubbles which is relatively reasonable to analyze. Here we choose

N x — €Ul
Ue=—=(N=1)Us + > _ QW ( " )

Jj=1

as the first approximation. Notice that |U.| &~ 1 at any space-times as those bubbles are essentially separated.
Based on U,, we then look for solution to LLG in the form

u(z,t) = 1+ AU, + & — (@ - U,)U, (3.125)

for some perturbation term ® and scalar A. Here the purpose of the scalar A, depending on ®, is to preserve
the unit-length of the map u(x,t) for any (x,t) € R? x (0,7). So here part of the interactions between bubbles
get encoded in the scalar A. Let us denote the error of u as

S[u] := —us + a(Apu + |Voul?u) — bu A Agu.
An important observation here is that instead of solving S[u] = 0, we only need to solve
Slu] = E(z, t)Us
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for some scalar function Z. Indeed, since |u| = 1 is kept for all ¢ € (0,T) and v = U, + @ where the perturbation
w is uniformly small, then

1
=(U. - u) = Sl - u =~ Zau(ul*) + gA|u|2 —0.
Thus = = 0 follows from U, -u > §g > 0. This provides us the flexibility to adjust the error terms in U, direction,

and we will call this U, -operation throughout this note. This operation can simplify analysis especially for the
dealing of multiple bubbles.

e Slow decaying errors and non-local corrections by approximate parabolic system

The error S(U.) contains slowing decaying terms
N
Zg([)j] ¢ L2(R2)
j=1

which correspond to the re-scaling and rotation around z-axis. To improve the spatial decay of the error at
remote region, we add well-designed global/non-local corrections around each bubble. Since the operator

—0 + (CL — bU[j]/\)Ax
depends on the blow-up profile U7 as well as the parameters \;, v; and £V), one cannot expect explicit represen-
tation formula apriori without knowing the blow-up dynamics. We consider instead an approximate parabolic
operator
=0 + (a — bUN) A,
and add correction ®5Y around each bubble UU! with
—9, 0+ (0 — DU N A D + EV ~ 0.

Then the new error with corrections is given by those created by @57 and the remainder b(Us,, — UV A A, &5V
This is rather important in the analysis of the non-local reduced problems.

e Formulation of the inner-outer gluing system

We next look for the perturbation ® consisting of inner and outer parts with non-local corrections added
N
(a,t) = 3 (nf (@, )@, @ 4, 0) + 0l (2, )05 ) + e, )
j=1

where ‘I’E;] is on the tangent plane of W, n%] and r]gj are suitable cut-off functions near ¢l¥). Then u solving

LLG implies a coupled inner-outer gluing system for (I)Hl] and @y, j=1,..., N
X200 = (a — bWUIA) [Aym o) +'|VymW“]\2‘I’i[i] +2 (Vyme -V, ‘I’fﬁ) W“]}
+H[j] [(I)El] 5 (Douta )\ja Yi» E[ﬂ] in D2Ra

O ®Bout = Bao., ApBous + GO ®oe, Ay, 5, €V in R x (0,7),

where WUl is the j-th bubble expressed in the rescaled variable yll = ””;?m, the right hand sides HU!, G
J
consists of the error terms, couplings and nonlinear terms depending on the parameters \;, v;, ), and Bg v,

is a matrix, that involves the perturbation ® and the blow-up profile U..

For the full system above, finding blow-up of LLG at multiple points now gets reduced to finding well-behaved
inner and outer profiles such that gluing procedure can be implemented. In other words, we need to devise
appropriate weighted topologies in which the gluing system becomes weakly coupled and thus can be solved
by fixed point arguments. For the outer problem, we make use of the sub-Guassian estimate recently proved
in [34]. For the inner problem, good solutions with sufficient decay in space and time can only be captured
with careful choices of the parameters );, v;, 7. We shall develop linear theory for the inner problems with
orthogonality conditions, and these orthogonalities in turn determine the blow-up dynamics.

e Solving the inner problem
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The linear theory for the inner problem is established by analyzing each Fourier mode. Decomposing the
complex form in Fourier modes, one obtains the linearized operator at mode k of the form
) k+1)%p* 4+ (2k* — 6)p*> + (k—1)? 1
)‘iat_(a_ib)(app‘Fp—( ha )p+(2 2)p al )2)7
p (p*+1) p

where p; = |yll|. Then for all the modes k € Z\{—1}, good inner solutions are found by the following

(3.126)

Step 1: we first use energy methods to get a rough pointwise upper bounds for the inner solutions ¢y;
Step 2: next we use Duhamel’s formula to refine the pointwise bounds and further gain decay estimates;
Step 3: finally we perform re-gluing procedure to obtain better estimates in the innermost region.

See also Appendix D. In Step 1, the following spectral gap for each mode k € Z plays a central role:
Lemma 3.9. Let

)\R’k — lIl QR;’;(f7 f) fO?" k 7é 1’ )\R’l — QR,;(f? f) fOT k _ 1
rexoBr\O} [[f172(5,) rers (B0} [f1l72p,)
Here R 2 4 2 2 2 2
k+1 + (2k — 6 +(k—1
Qnalr.f) =2 [apfﬁ ¢ GO OR 6 4 (k= D2 P 5.127)
0 (p?*+1) P

denotes the quadratic form of the associated linearized operator. Then Ar i is attained by a real-valued function
in Xo(BR) for k # 1 and H}(Bg) for k=1. When R is large,

Aro~ (RPInR)™, Api~R™* Mg_1 2 (RPImR)™', Agy 2 [k[PR™2 for |k| > 2.

As mentioned earlier, the treatment for mode &k = —1 is different from the techniques that we employ for
all the other modes. The reason is the following: as one can see from (3.126), mode —1 can be roughly viewed
as a problem in 2D, which is worse than any other mode as one cannot gain spatial decay in Step 2 above.
Motivated by a recent work of Krieger, Miao and Schlag [61] on the stability of blow-up for wave maps beyond
the equivariant class as well as a series important works of Krieger-Miao-Schlag-Tataru [59, 60, 62], we try to
apply the techniques of distorted Fourier transform (DFT) to this specific mode —1. The general framework
and theories of the spectral analysis of half-line Schrodinger operators have been established earlier by Gesztesy-
Zinchenko [42]. See also recent applications of DFT in the study of asymptotic stability of solitons and kinks

[ ’ ? ? ]

Fortunately, it turns out that the use of distorted Fourier transform can give us almost the optimal bound.
The results and ideas are given in Appendix C.

e Non-local reduced problems
The development of the linear theory for the inner problem relies on orthogonalities which are achieved by
adjusting modulation parameters \;, v;, £V, The dynamics for £7! turns out to be governed by an ODE, which

is relatively straightforward to solve. However, the non-local feature in the corrections @S[j] gets inherited by
the mode 0 (A; and ;) of each bubble as the corrections are essentially for mode 0. Here one might expect
the complex system involving both A; and +; is a rather sophisticated form due to the presence of dispersion.

Fortunately, it turns out that the contribution of both ®;) and the remainder b(Us, — UW) A A, @5 in the
orthogonal equation at mode 0 results in the following well-ordered non-local problem

t=A2(t)
/ pj(s)ds ~ O(l),
0 t—s

where p;(t) = \;(t)e? ). This \;-y; system was first found and handled in the context of HMF [22]. Surpris-
ingly, this comes with a similar form in LLG with the presence of dispersion.

e Solving the outer problem

The linear theory for the outer problem is done by using the sub-Gaussian estimate for the fundamental
matrix of the parabolic system in the non-divergence form. Dong-Kim-Lee [34] proved that, for a uniformly
parabolic system in the non-divergence form, if the entries belong to DMO, (Dini mean oscillation in space),
then the fundamental matrix I" satisfies the sub-Gaussian estimate:

4 76(\‘1—1;\)2 s
|F(Z‘,t,y,8)| SC((J)—S) 2e Vi=s )
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d is the dimension, ¢, C' > 0, and ¢ € (0,1). Here the Gilbert damping a > 0 makes sure that the system is
uniformly parabolic. Higher regularity estimates can be obtained by the blow-up argument.

In the matrix Bg y, appearing in the outer system, the dependence on ® in the matrix shall be dealt with
via Schauder fixed point theorem, and the key thing here is the dependence on the blow-up profile U,. In fact,
to ensure DMO,-regularity in U,, the type II blow-up rate

A K VT -1t
plays a crucial rule.

Roughly speaking, the reason why we choose to work in DMO, is that we need weighted C? estimates, but
C° cannot ensure C2. On the other hand, one cannot expect good C® bound either since there is a loss of A\ <.
So one has to work in some intermediate space between C° and C® that we choose as certain Dini space.

4. LONG-TIME DYNAMICS FOR 1-EQUIVARIANT HARMONIC MAP FLOW, CRITICAL HEAT EQUATION IN R%,
KELLER-SEGEL SYSTEM IN R2

In this section, we consider the long-time dynamics for three intimately related problems: the 1-equivariant
harmonic map flow, the critical heat equation in R*, and the Keller-Segel system in R?. These three models
share a common feature that they are all at the borderline separating the regime of slow decay and fast decay.

The harmonic map flow (HMF) from R? into S? has the form
{ut = Au+ |Vul?>u in R% x (0,00)
u(+,0) = ug in R2.
A special class of solutions are given by the k-equivariant ansatz
u(re®, t) = (cos(kﬁ) sinwv(r, t),sin(k@) sinv(r, t), cosv(r, t)),

and thus HMF gets reduced to a scalar equation for the polar angle

k? sin(2v)
vt:UTT+;UT_T7 (T’,t)ER+XR+ (41)
v(r,0) = vo, reR,.
We consider the l-equivariant class
v sin(2v)
— Urr — 9 7t R t )

= +r 272 (r;t) € Ry (to, 00) (4.2)
U(’I"7 tO) = UO(T)? (S R-i-a

where ty > 0 is some large initial time. The aim of this section is to understand the possible long-term behavior
of (4.2), and the main result stated below depends precisely on the power decay rate of the initial data vg.
Define the cut-off function n as n(r) =1for 0 <r <1, n(r)=0forr >2,and 0 <n < 1.

Theorem 5. Given any v > 1, for ty sufficiently large, there exists an initial data vo(r) with vo(0) = 7 and

2
forr > 2y/tg, lvo(r)| S if 1 <y <2 and |vo(r)] S 177 + (tolntg) tre” 320 if v > 2, such that the global
solution of (4.2) takes the form

o(rt) =17 <\;¥> [w — 2arctan (;Jt))] 10 ( (r) Lk minty—1, 1})
vp(r,t) = —2n <r> HLE + O(u( )Lz min{y-1, 1})

Vi (n(®)~'r)
where
C,()t'2(Int)"' (1+ 0 ((Int)'Inlnt)), if 1<y<2
w(t) =4 Cu(v) (1+ 0 ((Int) " Inlnt)), if y=2

(1+0 ((Int)"'Inlnt)), if v>2
with a constant Cy,(v) > 0 depending on~y. In particular, ||v,(-,t)|| Lo ((0,00)) = 2p(t) " (1 + O(t*% mi“{vfl,l})).
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Remark 4.1. A similar approach in the proof of [100, Lemma A.3] gives the lower bound for |vo(r)|. In fact,
the initial data of the solutions that we constructed satisfies vo(r) ~ =7 as r — oc.

Due to the natural connection between the k-equivariant harmonic map flow and the critical heat equation,
we also built the long time behavior for the critical heat equation in dimension 4

up = Au + u? in R* x (tg,00), (4.3)
u(w,to) = up(z) in R '
Theorem 6 ([100]). For to sufficiently large, there exists initial value ug > 0 with exponential decay such that

the positive solution u(xz,t) to (4.3) blows up at infinite time. More precisely, the solution takes the form of the
sharply scaled bubble

) =n (225 )t ow (T E ) 4 0 minge o)

Vit (1)
where w(y) = 2% 1+|1y|2' The blow-up rate and location are given by
1 Inlnt
t:—(l 1o ) £ =0 ).
ut) == (1+0(00), et =0
The dynamics for establishing Theorem 6 is original from the one in [18]. Consider the classical Keller-Segel

problem in R?,
uy =Au — V- (uVv)  in R? x (0,00),

1 1
=(—=A -1 = — 1 _— t)d .
v=(—Agr2)"u 5 /R2 og T u(z,t) dz, (4.4)
u(-,0) =up >0 in R?

Theorem 7 ([18]). There exists a nonnegative, radially symmetric function ug(x) with critical mass [o, ug(x) de =
8m and finite second moment [g, |x|? uf(x) dr < +oo such that for every wy(x) sufficiently close (in suit-
able sense) to uy with [5, uy de = 8w, we have that the solution u(x,t) of system (4.4) with initial condition
u(xz,0) = uy(x) has the form

1 x — &(¢) 8
4) = U( ) 1+0(1), Uly) = —0 45
uniformly on bounded sets of R?, and
c
At) = 1 1)), t) — t— ,
(t) \/@(JrO()) §(t) = q as +o0
for some number ¢ > 0 and some q € R2.
Our results are inspired by the formal analysis in [35]. Fila and King [35] conjectured that for
ut:Au—Hu\ﬁu, zeRN, t>0, (4.6)
u(z,0) = up(z), r € RN '
with initial data lim r7ug(r) = A for some A > 0, the [Ju(-, )| @~ )-norm of threshold solution obeys
T—00
=< :y <2] 7=2 [74>2
N=3 tz t2(Int)"t | t2
N=4| t 2 Int 1 Int
N=5| ¢ (Int)~3 1

In particular, the trichotomy constructed in Theorem 5 can be viewed as an analogue of the Fila-King diagram
in R*. Recently, global unbounded solutions for Fujita equation (4.6) in R® and R* have been rigorously
constructed in [26, 100], confirming the existence of upper off-diagonal entries in the above diagram (including
a sub-case 1 <4 < 2 when N = 3).
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The heart of the construction is non-local dynamics, governing the scaling parameter p(¢) in a unified way:

t—p?(t) .

f1(s) )

/ . ——ds+——= ( ~2C,v4(t), Vv > 1. (4.7

t/2 S
I [ |
=1y =g =T

Here, I is in fact from a non-local correction dealing with the slow spatial decay. Such non-local/global
feature usually appears in lower dimensional problems and was first observed in [22, 26]. The second term I

comes from a self-similar correction improving the error in the intermediate region, and the last term Ij. is the
contribution from the initial condition vy whose expression depends only on «y (cf. (4.12)). The trichotomy in
Theorem 5 is captured by approximating the non-local problem by a leading ODE, but the solvability of the
full non-local problem is rather involved.

In this part, we will give the proof of Theorem 5 as a prototype for the construction of global solutions.

We use the following notations.
e For z € R%, t5 <t and admissiable functions g(x), h(z,t), denote

(Tyog) (1) = (4rt) 4 / = gy,

\amfyl2

lz—yl|
(Tyeh)(x,t,to) //d [Am(t — s)] —% A <>h(y, s)dyds.
R

e For any ¢ € R, we use the notation c— (resp. ¢+) to denote a constant less (resp. greater) than ¢ and
can be chosen arbitrarily close to c.

4.1. Approximation and corrections. The first approximation is built on the one parameter family of steady
states to the equation (4.2)

Q, = T — 2arctan (7“)7 w>0.
I

Then we have

1 dp(p* — 1) 8p> r
1. _ } _ —
T — 2arctan (p) ~ <p> , bln(QQM) = W, COb(ZQu) —1= —W fOI' p = ; (48)
We take the first approximate solution of the equation (4.2) to be
=0 Qus n= ,LL(t),
()
and define the error operator as
1 sin(2v
Ev] := —v + Upr + ~Ur = 252 )
Let us write ,
z = —.
Vit
Then we have 1 9
E[U*] = M_ll'w@pQ;ﬂ?(Z) + ;U”(Z)Qu + 777/(Z)8pQu
/'t
r 1 / sin(2Q,)  sin(2n(2)Qy)
o _ 4.9
- (21&\/% * rﬂ) Q0255 22 (49)

sin(2Q,)  sin(2n(2)Qu)

2r2 2r2

=& (] + E [p] +n(z)
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where
& 1] = 100, Q (=) = ﬁfi n(), & lu) = En lu] + Eaz (],
2 " _i /Z g L L / z
&yl = %77 (2) N ' (z) + <2t\/i + rﬁ) () (4.10)
= 2rpt ™2 (272" (2) + 27 ‘1 ' (2) = 27%0'(2)),

1 T 2
5 . i + ( + ) / :| ( - ) + (8 ) / -
12 (4] Ln O+ (G T i) T (@ i\t (2)
Throughout this section, we make the ansatz p(t) < v/¢/9. Then
&2 [p] =0 (Tt_3M31{\/Zgr32\/i}) : (4.11)

The initial data plays an important role in determining the leading term of p. Set
1

O, = 0.+ 1OV, — W, W(r,0) = (),
where U, is given by
V() = (), () = (4t [ )y
with e; :=[1,0,0,0]. For ¢ > 1, the leading term of v, is given byR
P+ (0,1) = vy (1) (C + g4(1)),

where
t%, 7 <4 (4m) 2 fyw e F 2|0z, 5 <4
Uy(t) = gt In(1+1), y=4 Cy=q(4m) L83, v =4 (4.12)

t2, v >4, (4m) 72 [raly) dy, v >4,
=1 v <2
t~HInt), v=2
5 2<y<4

g4(t) = 0( (14n L+t)~", ~v=4 )

tTW, v<6
t~HInt), y=6
1 v >6

The remainder term is bounded by

|9 (r,1) — (0, 1)]

\9791 y|?

(y)~Vdldy < rt~ 2y 5 (t).

47‘[‘t / / |6re1 y|2 —(07"91 2—ty) rex <y>7’yd0dy
N / /

Combining [100, Lemma A.3], we have

r—7 v<4
T2
Vi = |vy (1) (Cy + g5(1)) + O(mﬁ%?]v(t))} 1{T<2t2} + O( ret et In(r +2), v =4 > 1{r>2t%}'
2
rY 4t 2e 1ot y>4
(4.13)
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4.1.1. Non-local corrections. We add two corrections ®;, i = 1,2 to transfer the error &; of slow spatial decay,
where

1 1
Set ®; = ry;, i = 1,2. It suffices to consider
3
8t(p74- = Orrpi + ;Orgol + 'I"_lgi [M] . (415)
By a similar reason to derive [100, Lemma 2.1], the leading term of ¢ is obtained from the self-similar
solution, while the remaining smaller errors are resolved using Duhamel’s formula. More specifically,
. _ .. t . _ _r2 r
p1=1[u] = ppr + Ty o (r " Exalp] — f1p1) (71, 50), ¢r:=2r"" (e " - n(ﬁ)> (4.16)
and @7 satisfies
A 1,1 2.2 —2 -z
= (2O Ly O (e )Ly (4.17)
, .
A -2 —1,-1, -2
|0rf1] St l{rgt%}Jrr t" e q 1{T>t%}.
By the same argument for deriving [100, Lemma 2.2], 2 is given by Duhamel’s formula
_ lo
2 = palpt] =Ty o (r'E[u]) (11, ). (4.18)

Denote ¢ = plu] := p1 + 2.

Proposition 4.1. Suppose that C7'u(t) < u(s) < Ciu(t) for all s € [t,2t] with a constant C1 > 1, u(t) ~
() < \/t/2; py satisfies |p1| < p/2. Then we have

7‘2
el S Gut™ +glu)1 _ppyy + (w2 +glul) e 51, oy o
- 143 143 20 '
£ Iu(t1)|(<ln(u ) r<py T{nETENT, oy T e “"‘1{T>2t%})

t
where glp] := t_Q/ (s (s) + s|fa(s)]) ds. Forr < 22,
to/2
)
F = 2! -1 / a
(rt) = el 27 (e )
A 1,—1 1 . lo 1 to 1 Lo f(s) 4.20
= u(pr+ 271 Tue (17 €l — i) (ryt, ) + Tuo (r Ealpa)(ryt, ) + 27 / ds (120)
/2 -

= O(ut_2r2 + sup |a(t)| 4+ min {p" e, Int} sup |(tn)] + g[,u]).
t1€[t/2,t] t1€[t/2,t—pZ(t)]

2

Jeli+ ] = elul| S (I lt™ + gl ml) 1 _ypny + ( sup |pa (t1)|r 2 + Gl m])e‘ﬁl{wt%}

t1€[t/2,1]
. —1- 1,4 —1,41 92 _sz
+tles[1;gt](lu1|+u qull)(tl)(ﬂn(u BN r<pwy T 02N oo, T 32‘1{T>2t%}>
(4.21)
where
t/2
)=t sup ()| 4672 [ s (il ) () s ] ds (122)
t1€[t/2,] to/2
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Forr < Qt%,

Flp, p](r,t) := @l + ] — lp] + 27 (ulfl + /t/;* IZ%(SS)dS)

= (@1 +27 1) + Ty (1t (Exalu+ ] — Exalp]) — fu 1) (rt, %O)
(4.23)

t—uz

+Tye (r ! (Ealp+ m] — E[W)) (rt, %0) e /t/2 /217(85) is

= O(lmt=2r + (1 + min {1, Int}) ?%]wm+u*mmwun+ﬂmmn.
t1E[t/2,t

Remark 4.2. The precise form (4.20), (4.23) are prepared for solving the leading term and minor terms of the
scaling parameter p respectively.

Proof. The proof is similar to [100, Lemma 2.1, Lemma 2.2]. See also [18, Lemma 7.1, Lemma 7.3]. First, we
estimate o7 given in (4.16). The first term ¢ is deduced in [100, Lemma 2.1], which satisfies

3
Op1 = Orrpr + ~0p 1 + 2677 (2770 (2) +27 7271/ (2) — 2770/(2)) -
r
By (4.11) and [100, Lemma A.1], we have

2 t/2 -2
Ty o (r " &2u])| St %e 1o /to/2 u3(s)s tds + “3t_21{r§t%} + ,U,3t_17’_2€_m1{r>t%}. (4.24)
_ 1 r 1 b —2p (p + Opn)?
1 " /
r— (€ + ] =& =|-7"z)+|—F+—7F z /
( 12[/’4 u1] 12[/‘]) |:t77 ( ) (Qt\/i T\/g)”( ):| 0 r2 [(ﬂ+0M1)2+T2] (4 25)
77'(2)4/“/1 32 (u+ O ) + (p+ 0p)* ) '
Vet o 2 (e 0P ’
which implies
rH Eep + ] = Elu]] S mle* 1 e <ovny- (4.26)
So we get
Ty (r ! (Eralp + ] = E12[n])) |
< 2 for /t/2| ()p*(s)sds+ swp Jm(t)] (w2721, _y + 212t ) (4.27)
~ t0/2 ,U“l ,LL tle[t/p2,t] ,U“l ! 'u {7’St§} 'u {7‘>t§} ’
7,2
Note that |ip1] < Wtill{@t%} + |ﬂ|r*26*471{r>t%}. By Lemma A.2, one has
T <o [ d 24 4.28
e t e 32 ! (T (1 1 tr—“e 321 ,). .
Tas o)) S 42 H [ il sup (i) (1, ) e BTy (4.28)
Similarly,
-2 t/2 -2
[Ty e (191)] < t_Qe_@/ sl (s)|ds + sup |1 (t1)] (1 1o FtrT%eTEEl ) . (4.29)
to/2 t1€[t/2,1] {r<tz} {r>t2}
Next, we consider ys. By Lemma A.1,
o t/2
|T4 . (r_1€2)| <t 2em T / sli(s)|ds
to/2 (4.30)
+ sup  |aty)| (<1n(u—1t%)>1 + (In(r~'t2))1 bt et )
t1€[t/2,] ! {r<u®} {u(t)<r<t2} {r>tz2}) "
Combining (4.17), (4.24), (4.28), (4.30), we get (4.19). Note that
= in )]
Ealp + - & =-2 + . 4.31
r ( 2[# :ul] 2[:“’]) |:7"2+(ILL+,U,1)2 [r2+(u+ul)2] (T2+/142) 77(’2> ( )

For py satisfying |p1| < p1/2, we have
[Pt (Ealp+ ] = ELD)| S (il + o7 i) (r+ )" 0(2). (4.32)



GLUING METHOD 65

By Lemma A.1,
a2
Tio (" €l + ] = &) S o2 F5 [ PRI

to/2

. -1, -1, ~1,4L %
+tles[tt1}>27t]!(\u1|+u Ium\)(tl)l(ﬂn(u ED)Lruey + )Ly e 61{r>t%})'

Combining (4.17), (4.27), (4.29), (4.33), we get (4.21).
In order to extract the dominating part of ¢ for later purpose of solving the orthogonal equation, we split
9 into several parts to estimate.

/2 t—pu(t) L ‘;t s 1 N
2 = (to/z /t /tm(t)>/(47r(t s)) e 19 |y| T & ul(y, 8)dyds = I1[u] + Iz[p] + I3[u].

For I1, by Lemma A.1 (for the cases v(s) = [(s)| 1, j2<s<t/2y and v(s) = (|| + p7 [opa]) (8)1te j2<s<t/2})
we have

2 t/2 2 t/2 ) )
Ifl[u]ISt’Qe’ﬁ/ s|u(s)|ds, |I1[u+u1]—11[u]|§t’26’ﬁf s (il +p~ " iml) (s)ds.  (4.34)

t(]/2 t0/2
For Is, glven s € [t — p2(t),t], we have

S sup W) (r+p) 1, g,

[rt Ealu(r, 5))| L [f(t)] (r + p(t)) (r<2e})

rt Ealp+ m] = S ()] S sup (] + T igml) () (r+ p(t) 21 corby
1 €[t—p2(t),t] {r<2t2}

Then

t 2Vt -2
Us[pll < sup |4t (t— S)_2/ e T (4 p() Pridrds S sup  |j(t)]
tr€ft—p2(8),1] t—u2 () 0 trEft—pZ(1)1] (4.35)

Islp+m] = Il < sup (| +p7" unl) (t)-
tielt—u2(0)1]

For Iy, more delicate calculations are needed to single out the leading term. Set
L[p)(0,1) := L[u] + Lo [p] + Lo2z2[u]

where
t—pi(t) e HONAE)
Ly] == — 2/ / (4 (t — 5))"2e” 370 ji(s)|y| 2dyds = —2_1/ ——ds,
R4 t/2 t—s
t=ni(t) /2 |yl
Too1[p] == 2 dr(t — 5)) 2T )y 2 (1 = (<L) dyd
onlp =2 [ 7 [ arte— o)t S )l (1 ) s,
12 (1) ul® o —2)(s) Iyl
1 / / (4m(t Zem A (7 + 2(s)|y _2)17 —=)dyds.
022 - ‘y|2+#,2(s) ( )| | (\/E)
For Ipa1, by the same calculation in [100, p. 10], we get
o211 < sup )], Hon[p+ ] = Ton[ul| S sup |1 (1)) (4.36)
t1€[t/2,t—p3 ()] t1E€[t/2,t—p3 ()]
For Ij99, since
—24(s) 2 20(s)p(s)
T o T 2008yl
ly|* + p2(s) [yl (P + p(s))
2 (ju+ fu) (s )(uﬂu ) (s)  20(s)p(s)
2 (12 = 1,2
ly[? [Iyl2 (4 ) s)] [wl* (yl* + 12(s)) (4.37)

_ 2{ ()t p)®(s) | As)p(s) Cut ) ($)lyl” }
ll* Ulyl? + (4 p1)?(s)  lyl* 4 (e + )2 ()] (Jyl? + p2(s))
|

=0 (1 (1| + 1~ igus ) Iy1 =2 (gl + )72
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by the same calculation in [100, pp. 10-11], we have
[o22[1]| S sup la(t)l,  Hozz[p + pa] — To22[p]] < sup |(Ifoa] 4+ pHppal) (B1)] - (4.38)
t1€[t/2,t—p2(1)] t1€[t/2,t—p2(t)]
By the same calculation in [100, pp. 11-12], then

|La[p](r,t) = L[p] (0,8)] S min {p~'r,Int}  sup  Ja(t)],
tr€[t/2.:4— i3 (1)

|2+ pa](r, 8) = Lp[p + 1] (0,2)) = (T2 [p (r, £) — T[]0, 1)) (4.39)

Smin{p'rint}  sup (Jpal 4+ g iml) (f).
tielt/24—p2 ()]

Combining (4.17), (4.24), (4.28), (4.34), (4.35), (4.36), (4.38), and (4.39), we get (4.20). Combining (4.17),
(4.27), (4.29), (4.34), (4.35), (4.36), (4.38), and (4.39), we get (4.23). The proposition is concluded.
O

4.2. Elliptic improvement and the leading dynamics of p(t). In order to improve the time decay of the
error, we will introduce ®. by solving the linearized elliptic equation. Let us first denote

1)1(7’, t) = W(Z)Q;L + 0+ D+ U, + 77(42)(1)@

where 7(4z) is used to restrict the influence of ®, within the self-similar region. Then we compute
1 1
Blui] = = 0: (n(42)®e) + 0pr (n(42)®e) + —0r (n(42)Pe) + —5 (1 + @2 + Vs
| SnR(:)Qu + B+ Oy Wb n()B] | sin(20,)

2r2 o2
(4.40)
= 0 ) + D ((A2)2) + 10, (n(12)8,) — () X ) g,

)
() cos(Q?;) -1

(P1 + P24+ V,) + E,
where

E, = —77(2)# [sin[Q(QH + @1+ Dy + U, 4+ 1(42)P.)] — sin(2Q,) — 2co0s(2Q,,) (B1 + P2 + V. + 77(42)‘1%)}

5.3 [ —sin[2(n(2)Q + @1 + g + U, + 1(42)®.)] + n(2) sin[2(Q,, + D1 + Py + U, + 1(42)D.)]

+2(1=1(2)) (@1 + @2+ W) |.
(4.41)
Roughly speaking, we will choose ®.(p,t) which solves
1 cos(2 cos(2 -1
Opr®e + ;8,«@6 — %”)@e S n(z)(cfi;)(@l + Oy + T,).
By (4.8), it is equivalent to

1 pt —6p” +1 pp,  —8p
8,0, +-0,0, - — %, ~n(toyy—C_ )+ Ui (up,t)) .
pole 2000 = 5y e ”(\/z)“(p2 e (elu)(pp,t) + ¥u(pp, t))
The linearly independent kernels Z, Z of the homogeneous part satisfying the Wronskian W[Z, Z] = p~! are
given as follows:
4 2
p = pr+4p°Inp—1
Z(p) = , Z(p)=—————+
(p) 11 (p) (7 1 1)
Let us write the orthogonality
M) = / 1(=7) sy (Plul(up,t) + P (pp, 1)) Z(p)pdp
0 (p*+1) (4.42)

&
Vit
oo 3
= | o (el )+ o) .
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Written as the leading term of p, pg will be determined soon. By (4.13) and using (4.20) for the case p. = o,
we have
2
< up.  8p3 1 1 RO fi(s) 3,-2 2 -
Mp / n[—Q ut™ + ——=ds) +O0O(p’t "p*+ (p) sup |u(t1)]+ gl
2 0 (\/E)(P2+1)3 ( tjg t—s ) ( < >t16[t/2,t]‘ 1+l ]>
#0,(0(C ., (0) + Olppt o, (0)] dp
- [ (ufl +/tug fi(s) ds) + 20, ()(C, + g (t))} {1 +/OO (n(&) - 1) 47/)3dp}
g t—s e 0 Vi (p* +1)3
+O(iP 2t + sup k)] + glu]) + Ot~ oy (1),
t1€[t/2,1]
(4.43)
where we used [, 2j’_1) dp = 1.

In order to make M(p] close to 0, we single out the leading terms

H fi(s) -
ut 1+/t/2 P8 45 2 20, () (4 + 95 (1) (4.44)

The leading term g of the scaling parameter u will be derived by balancing (4.44). Suppose ug has the form
po(t) = citt=Po(Int)~1 with 1/2 < py < 1, then fip(t) = c1(1 — po)t~Po(Int)~?
2 <ty <t/2, one has

[1 -1 —po)_l(lnt)_l} . For
t—uz(t) X nd(t) .
/ 0 MO(S)ds:/ t ’uo<t2>dz
t t—s t

t1 1 —Z
t
0]
t
—a-mer [

b

— ) (n(t2) T L - (1 po) !

= c1(1 —po)(2po — 1)t P + O(t P (Int) *Inlnt),
where we have used the following estimates in the last step

(In(tz)) '] d=

1_H®
(1—2z)"tz7Po(In(tz)) " tdz
21
= (lnt)flx (1—2)"tz7Podz Jr[ (1—2)""27% ((In(tz)) "' — (Int) ') dz
1,%3# 1w (t)
= (lnt)*l/ (1—2)"tdz 4 (Int)™! (1—2)"" (277 —1)dz
t1 ty
2
[162)
; —1
+ (1—z)"tzpo ne
1

: (Int+1Inz)Int :
= (Int)™" (=@ (1) +In(1 = ¢711)) + O((Int) ™)
)"

= (Int (— In(c?) — (1 —2po)Int +2Inlnt + In(1 — tlt_l)) +0((Int)™1)
= 2po — 14+ O((Int) ! Inlnt);
and

a-a

2P (In(tz)) "2dz = O((Int) ™)
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since
(1 —2)"tz7P(In(tz)) " 2dz = O((lnt)_Q)/ (1—2)"'dz=0((Int)™"),

1 1 t
2

/ (1—2)"tz7Po(In(tz)) " 2dz ~ / 27Po(In(tz)) 2dz = tPo~ ! /2 a"P°(Ina) ?da = O((Int)~?).
e For 1 < v < 2, in order to balance out (4.44),
et P (Int) "t 4 e (1 —po)(2po — 1)t P + O (77 (Int) ' Inlnt) ~ 2v,(t) (Cy + g4(1))

we take pg = 2, ¢; = (1 — 1)~(y — 1)~12C,, which implies po(t) = (1 — )~ (v — 1)712C,t1 =2 (Int) L.
e For v > 2, by the same argument in [100, pp. 13-14], a good approximation is g = (Int)~.
e For v = 2, we choose p1g = 2C,, + (Int)~! by a similar argument as in the case v > 2.

In conclusion, the non-local problem (4.44) has a good approximation of the form

(1-1)Hy-1 20t F(nt)~Y, 1<y<2

po(t) == ¢ 2C, + (Int) ™1, v=2 (4.45)
(Int)~1, v > 2,
where the constant C., is defined in (4.12). Obviously, po < t2 since ~v > 1. Moreover, for v > 2, by the similar
calculation for the case 1 < v < 2 shown above (see also [100, p. 14], which is related to the case v > 2), we
obtain

tmp? t=3(Int) tlnlnt, 1<y<2
- (uot*1+/ ‘ZO—(‘S)C@ + 20, (£)(Cy + g4(2)) O( t~1(Int)~2, =2 ) =0 (Inlnt|go) .
t/2 o t71(Int)"2Inlnt, ~>2
(4.46)
This cancellation is crucial when solving the orthogonal equations.
After several times correction, we achieve that for tg sufficiently large, there exists fig = fig(t) such that

fio = pio (L+ O ((Int) "' Inlnt)), fio = jio (1+ O ((Int) ' Inlnt)),

, . . . N . g (4.47)
8i0/9 < po < 9io/8, 8|kl /9 < [f0| < 9liol/8, M(po] = O(t™2).
The following corollary is a direct consequence of Proposition 4.1 by our choice of pg in (4.45).
Corollary 4.1. For f ~ po, |f| < || and py satisfying || < f/2, we have
. t=2(lnt)", 1<y<?2
< ~ 4.48
g[f] N|u’0| {t_l(lnt)_Q, 722 ( )
_x _a _ _1,1 _rZ .
£ F gy + 73 (1) ' ((nr ML e 32t1{r>t%}), if1<y<2
[Plf]l S § t-te 3, if v=2 (4.49)
(tlnt)*le*%;t, if v>2.
Combining (4.13) and (4.49), we have
721 PR Sl | 1, 1<y<2
el 4wl s q 5 2y, ) (4:50)
(tlnt) {r§2t%}+(r + (tlnt)"te ) o2ty v > 2.
t=2(Int)"2, 1<y<2
‘argo[fﬂ + |3r¢*| 5 l{rgg\/f}/ial t_l(lnt)_17 Y= 2
t1(nt)"E, oy >2 (4.51)
+1 4 r—7, 1<y <2
2
{r>ov1} P (tlnd) e~ g, 4> 2.
t/2
9Lf ]l S 7205 sup ()] +t_2/ s (Il + pg " Lol ) (s)ds. (4.52)
t1€[t/2,t] to/2



GLUING METHOD 69
2

_ < 1.5 2.5 ~ 53¢
lolf + ) — ol S (lpalt +g[f,u11)1{rg2t%}+(tles[gg’ﬂ\m(tl)\r +glfml)e Ly

- -1 143 ~im
- tles[tl%,t] (|M1| *o(E) o)l |M1|) (t) (mtl{rg(t)} + (In(r=7t )>1{f(t)<r<2t2} e 1{r>2t%}> ’
(4.53)

Proof. We only prove (4.51) and the other terms can be deduced by Proposition 4.1 directly. Recall (4.15),
(4.10). Then

0ulf] = Orrtl] + 20n0l] + 7711 + 1ol

where
_ _ o L tTT(nt), 1<y <2
P af]+ &I S Tpcaviiio” o] ~ Tpcoymiio {t‘l(lnt)_2 v > 2

Combining (4.50) and using the scaling argument twice, we have (4.51).

O
Set u = g + w1, where py is the next order term with the ansatz
lnal < fio/9,  |pal < lisol/9- (4.54)
Then
(1)/2 < p(t) < 2p0(t),  Ao(B)]/2 < [A(E)] < 20 (D). (4.55)
Combining (4.13) (4.20) and (4.46), for r < 2t7, we have
t—py
(p[ﬂ} + w* _ _2_1(M1t_1 +/ ,ul(S) ds)
t/2 t—s
(4.56)

+ O(,ut_2r2 + (1 +min{p " 'r,Int}) sup |a(t)|+ glp] + Inlnt|io| + rt_%vv(t)
t1€[t/2,]

where we used the cancellation in r < 2tz due to the choice of o-
Given fig above, we are now able to describe ®, rigorously. Set p = % and consider ®, = ®.(p,t) solving

pt—6p%+1

1 ~
”(I)e - ’(I’e - f@e =H o,
8/0/) + pap pg(pg + 1)2 (p t)
where o - (P)Z(p)
7T~ — Hop —op g I np)z(p
H(p,t) == )T 1) + Ui (fop, 1)) + oM
(P ) = fon () 1z (Plitol(iops 8) + = (ftop, ) + fio [Mo] ()22 ()
®, is taken as B
~ P
d.(p,t) = Z(ﬁ)/ H(z,t)Z(x)xdx — / H(z,t)Z(z)zdx.
0
By the definition of M |fig], one clearly has
/ H(z,t)Z(x)zdr = 0. (4.57)

Using (4.56) for the case p; =0 and (4.48), we have

5 - fop,  —8p 0

o
H:uon(\[)(p — NOO(t )(p)Z(p)

fo (x)zdx .

(it 20" + lio| min{(p), Int} + InInt|jio| + popt ™~ 2v,(t)) +

|H|<u0n(uop)p<_>3{t3(lnt)11nlnt, 1l<y<2
(

Vit “1(nt)~2Inlnt, ~>2.
y (4.50), another upper bound of H with faster spatial decay but slower time decay is given by

t3, 1<y<2

HOP\ — )\ —4
111 pan S50 {(ﬂnt)17 5
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Combining the above two upper bounds, H is then bounded by
min {ﬁ(ﬁ>*4t’%7ﬁ(ﬁ)*t’%(lnt)*l Inlnt}, l<y<2
) min {p(p) "4, p(p) 3t (Int)2Inlnt}, y=2
min {p(p) 4 (tInt)~t, p(p) 3t~ '(Int)"2Inlnt}, ~>2.

=
]|

| S pon( ==

Using (4.57), we have
min {t’% ‘)flln(ﬁ—l—2),t*l(lnt)’1lnlnt}7 l<y<2
(P)0p®e| + |®c| < pop(p) 2 { min {t71(p) ' In(p+2),t"'(Int)"?Inlnt}, v=2
min {(¢Int)"*(p) "t In(p+2),t " (Int)2Inlnt}, ~v>2.
By the same argument in [100, (2.28)], we also have
“Int{p) 'n(p+2), 1<y<?2
0:@c| S nop®(p) > {2 Int(p) P In(p+2),  y=2
t=2(p)~tIn(p + 2), v > 2.

We now use the expression of @, to compute the new error.

En] = <I>en’(4z>2—§ (4208, + O (42)®, + %#(4@6@6 + %%#(42«)@6
+(1(42) = 1(2)) Tl (Al )+ 0..)

1

8u'p 8iiy ' p _ 8~ _
+n(2) K(pz FETERe i 1)2> (plpo](r,t) +u(r,t)) + ﬁ (elul(rt) — @lpo](r, 1))

M2 () 2)fig % (cos f,) — COS ~—2
fo n(x)Z2(z) zdx+77(4 Vg~ (cos(2Qp) (2Qu)) p~ " + E..

+ fig ' M(fio]

(4.58)

(4.59)

4.3. Gluing system. Having improved the spatial decay by non-local corrections and time decay by solving
the linearized elliptic equation, we are now ready to formulate the gluing system to deal with the remaining

errors. We introduce the correction term

U(r,t) + p(p)2(p.t), p=p'r

where ng(p) = n(R~'p) with R = R(t) = t* with w > 0 to be determined later. In order to restrict the inner

problem within the self-similar region, we make the ansatz
pR < Vi,
and by (4.45) and (4.55), it is true provided
1o 1<y<2
0<w< { 2 >;
2 v Z 4

By direct calculation, one has

1 1
Elo ¥+ np®] = —000 + 05, ¥ + 0,0 — 0 + A[@)

20,2 ,pt—6p° +1 8>

sR® + Nrp0, P i+ 1R
P (p*>+1)

s W — 77(232_ 1 cos(2Q,)V + N + E [vq],

— NROW® + N 20,y ® + Nrpu

82

(02 +1)
where E [v1] is given in (4.60),

+ (1 —nr)

A[@) = " (2)(B) 20 + of ()2 (pR) ™ @+ 2(uR) ™ i~ ()0, @ 4+ 0/ (£) 2

ST
(p2 +1)°

(4.61)

(4.62)

(4.63)
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and we used (4.61) and

bz (sin 201) —sin (2 (00 + ¥ + 7)) = ~ 2 cos(20,.) (¥ + ma) + .

1
N =N[¥,® ] := 52 sin (2 (n(2)Qu + @1 + P2 + ¥, +n(42)D.))

—n(2)sin (2 (Qu + @1+ P2+ V. +n(42)P.)) + n(2)sin (2(Qp + @1 + Do + U, +1(42)Dc + ¥ + D))

—sin (2 (1(2)Qu + @1 + P2 + Vs +1(42) P + ¥ + 1r?P))

+ 772(:2){ sin (2(Qu + @1+ P2+ W, +1(42)P.)) — sin(2Q,) — 2¢c0s(2Q ) (P1 + P2 + W, + 7(42) D)

— {sin 2Qu+ P21+ P2+ T, +1(42)P. + ¥ +nrdP)) —sin(2Q,)

—2c0s(2Q,) (1 + P2+ ¥, +1(42)P. + ¥ + an))} }

(4.64)
In order to make F [v; + U + ng®] = 0, it suffices to solve the following gluing system.
e The outer problem:
OV =0,V + 19,0 - LU +G for (r,t) € (0,00) x (to,0) (4.65)
U(-,tg) =0 in (0,00) '
where
Gg=g[v,o = A[D <I>’42l 42)(1 0@ E”4)<I> i’4)8<I> li’4<I>
=GV, @, ju1] := A[®] + Pcf'( z)tg—n( 2= nr)0®e + 1" (42 e+\/%n( 2)0r e+r\/gn( 2)®,
F42) = 1) =2 (ol ) + ()
n n (ﬁ2 + 1)2 @0 ) *\T
8utp 8jig 'p ) 8utp _
1— — *\ T V) )
+ an(z)[( i G T ) Gl ) + s (i) — ellr:0)
8u—?2 ~
+ (1= nr)(42)755 * (€05(2Qny) = €05(2Qu)) > + (1= 1) Lp‘;l)w + N
4.66)
~ ~ —1
N=N¥® 1]:=N+E,— % cos(2Q,) V. (4.67)
e The inner problem:
9,® 4_gp? .
120, ® = 0,,® + 2 — 22(;3/;;)5@ + fupupd,® +Hy +Ha  for t € (tg,00),p € (0,2R(t)) (4.68)
D(-,t9) =0 in (0,2R(to))
where
8w 8u~tp 8iig ' ,
Hi = Hi [V, 1] = + 2 - — )+ (r,t
RO [( T i) () + )
) (4.69)
8~ _ __
e () = o)+ i (cos(2Q) — cos(2Qu) 770 |
Y 10 p)Z(p)
My = HaolU, &, 1] = p® | N = 0,0, + fig ' M (o) . 4.70
2 o[ pal = p ( ; fig - Mfio] 7 () 22(0)ede (4.70)
Set

U :=ri(r,t), ®:=pd(p,t). (4.71)
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In order to solve (4.65) and (4.68), it suffices to solve the following system

Out = 0,6+ 20,0+ 171Gl p ] for (121) € (0,00) x (10, 00) W)
¢('7t0) =0 in (07 OO), .
2016 = Lin[d] + p~" (Halupt), ] + Halpptp, pd, in])  for ¢ € (to, 00),p € (0,2R(t)) (4.73)
d(-,t0) =0 in (0,2R(t9))
where
. 3 8¢ .
Lin[¢] := 0pp + ;aﬂb + (ZEDE + fupe (¢ + pOyd) . (4.74)
For the dealing of the inner problem, it will be more convenient to use the time variable with
¢
T=1(t):= / = 2(s)ds + Crtop™%(to), 70 := 7(to) = Crtop (o) (4.75)
to
where C is a large constant. By (4.55) and (4.45), we have
= 1(Int)?, 1<vy<2 [r(n7)"277, 1<vy<2
T(t) ~tug? ~ S t, v=2 t(r) ~ < T, y=2 (4.76)
t(Int)?, v > 2, 7(ln7)~2 v > 2,
and thus
(A < 7). (4.77)
Under the parameter restriction (4.62), we have
R(t(1)) < V/T. (4.78)

We introduce the norm

[fllika = sup ) ()0 f (p, T+ 1 f (o T)I) (4.79)
TE(10,00),p€(0,2R(t(T)))

for some positive constants a, x > 0 to be determined later and will solve the inner problem in the space
Bin = {f(pa T) is Cl in P fOI’ TE (7-0700)7 P € (072R(t(7—))) : ||f||i,f€’0« S 1} (480)

The outer problem (4.72) is handled in the following proposition.
Proposition 4.2. Consider
3
Op) = Oppt) + ;(%w + 771G, po, pa] for (r,t) € (0,00) x (tg, 00)
Or(0,t) =0 for t e (tg,), P(r,tg) =0 for r e (0,00)

where G is given in (4.66). Suppose that ¢ € By, 1 satisfies tljin (t)], |1 (t)] < Crt(Int)~20(t) for a constant
Ct > 0 where

(4.81)

tfaw+%flff-:(771)(lnt)lf%’ l<~y<?2
I(t) = S tmaw—r y=2 ~ T (g 'R (4.82)
tow = (Int)t 2", v >2
and the parameters satisfy

(4.83)

y=l<k(y—-1D4+aw<2(yv—-1), aw<k(y—1), Q2LH+aw<2c(y—-1), if I<y<2
l<k+aw<2, aw<k, (2+a)w <2k, if v>2,

then there exists a solution 1) = [, 1] satisfying 1 = Tye[r=1G[r, pp, u1]](r, t,to) with the following estimates:
_ _ 1,
Ol SO0 (L, #0721y ) 10000 S 00) (0B L couy +1 302100 um ) 5 (480)

|’¢(T,t1) - ¢(7’7 t2)|
|t1 — ta]®

sup sup S 299(t) + N27299(t) (o R) 2 (4.85)

2
r€[0,00) t1,ta€lt—22 1]

for any a € (0,1), 0 < X\, < t2.
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In order to solve the inner problem (4.73), it suffices to solve the following two equations.
The inner problem with orthogonality condition:

N28t¢1 = Lin[¢1] + Pfl (Hl[#ﬂ¢a :u‘ﬂ + H*[ﬂl]) for t € (t()v OO>7 P S (Oa 2R(t)) (4 86)
$1(-t0) =0 in (0,2R(t)); '
and the inner problem without orthogonality condition:
(20bs = Lin[da] + p~" (Haluph, po, ] — Ha[pu])  for ¢ € (to,00), p € (0,2R(t)) (4.87)
$2(-,t0) =0 in (0,2R(to)) '

where ¢ = ¢1 + @2 and H.[p1] will be given in (4.97) later.

4.4. Solving the orthogonal equation and Ho6lder estimate about [i;.
4.4.1. Solving the orthogonal equation. Hereafter, for ¥(t) given in (4.82), we make the ansatz

trn (®)], |l ()] < (Int) 2 9(0). (4.88)
Under the assumption (4.83), (4.88) implies the desired ansatz (4.54) with ¢y sufficiently large.
In order to find a well-behaved solution for the orthogonal inner problem (4.86), we will use Proposition D.2
with the conditions f(7) = Cy7~1 with a large constant Cy, Py =4, d =4, Z(p) = ﬁ, B =-2,
R=(t(1))*, Ro=(t())® with 0< & <w. (4.89)
By (4.78), we have Ry < R/3 < /7. Given the definition (D.9) of ¢;, in Proposition D.2, roughly speaking, we
will solve the orthogonal equation
cin [0~ (Ha[pp[d, ] + He[pa])] (7(2)) = 0 (4.90)

with a well-chosen function H.[u1] to make the orthogonal equation manageable. Note that ¢;, includes a minor
term cj,,1 defined in Proposition D.2.
The effect from the outer solution is given by

Bo 8uplg, in](pp,t) p° [T 8p%[8, pa](up,t)
/o (p?+1)° ,02+1d _“/o (P +1)° -

Recall p = ﬁ Notice that for any a,b,c € R,

e P e P 1 (2b—a+c)p*t? + (c—a)p” _ . a) -
P e m (p% + 1)b+1 +O<“ Hpa 1 ] o) %) (4.91)
since for
c Py r _
0) = : =— =0+ (1— 0o =p+(0—1
f(0) ME e P gy Mo Om ( Vo = p+ ( )i

we have )
(2b—a+c)pf™ + (c —a)pd

(o5 + 1)

In particular,

8u'p 8/161/7 o 2p°=2p -1 —2 —4
- = =8u "m———3 O (p [l p™" [l plp) ") 4.92
By (4.92), (4.56) for the case uy =0, (4.48), and v > 1, we have
Ro ]y~ 1 815 2
2 ptp fig P _ p 1y
— + Py ,t dp = nO Inlnt 4.93
ft /0 <(p2+1)2 (p2+1)2> (elro] + ¥s) (up )p2+1 p = O (| ) (4.93)

where p = pu(fio) .
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By (4.23), we have

Ry 1 2
2 / (8“<so[u]—so[uo1><up,t> L

p?+1)2 p?+1
Y A 1O
= —p(1+ Co(Ro)) (le +/ ; dSJrﬂ [(1*V)1nt*2hluo]+5u[ul]>
t/2 -
Ro 8[)3
+ Flpo, pa](pp,t) ———3dp
s [0, 11 ( )(p2+1)3
where
0<v<min{y-1,1} (4.94)
so that p2 < t1v;
* -4y 0 iy (5) — (1)
= v =&, t) = d 4.
Coto) = [ o =0y, and &) =Elpl(0)= [ P sy
and by (4.23) and (4.52),
R 3
o _ 8p
K Fliao, pa(pp, t) ———dp
0 (p*+1)
s (4.96)
— k0 (lle 2 Ro+ sup (] + ¢ ) () + 672 [ (s lin()] + (5] )
t1€[t/2,t] to/2
We choose
)\
Mol o= ([ L5 ) 1+ ColRo) . fislon(p). (497)

And we have

Ro p? t=2(Int)"'Inlnt, 1<~y<2
2 o2 (cos(2Qn, ) — cos(2Q,,)) p2d dp = 1?0 ’ )
[ i (eos(2Qu) — eon(2Qu)) 5720 0) o= 0 (i 4 T
(4.98)
Formally, in order to solve (4.90) in (tg, 00), it suffices to solve the following nonlocal equation
t—t'Y . Ro g3
: - - fu(s) ° 80°[¢, pual(pp, t)
p=x@O[(1—-v)lnt—2Inpu ! —utl—/ ds—l—/ dp
1=x®)[(1-v) o] 1 P . 1)
Ro 8 1 8——1— 2
- H Ho P - P
+ (14 Cy(R 1[/ — + ) (up, t) ———d
(4.99)
Ro Ly 2 Ro - 8/)3
+u/ fig* (co8(2Qp,) — c08(2Qu)) p2®@c(p,t)——— dp+/ Flio, p)(pp,t)———dp
0 p? (p?2+1)

+ " e [T (Halupd [, pl] + Halma])] (T(f))]} in [to/4,00)
where p = pu(fip) ™! and we set 1, cin,1 = 0 for t < ¢y and x(¢) is a smooth cut-off function such that y(t) =0
for t < %to and x(t) =1 for ¢t > .

Recalling H; given in (4.69), we have

e, 1<y<2
|07 M| S o) | 1018, ) (o, )] + | |~ .
(tlnt)~, ~>2

(4.100)

t/2

it sup (fial 7 al) () 4672 [ (slins)] + (o)) ds
t16[t/2,t] to/2
Also, one has

| [l S pint sup | (t2)In(p)- (4.101)

t1€[t/2,t]
We will solve the nonlocal problem (4.99) in the following proposition.
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Proposition 4.3. Given ¢ € Bi,, under the assumptions (4.83) for parameters aw+r(y—1) # 3 if 1 <y < 2;
ve (07 min{'g—l,l});

w< FL g < 172, n—2<%, 1<vy<2

) ) (4.102)
w<gz, 6<yz K-2<w@-fL—-a), 722

Le(2,4), 0<dp<w, {

then for to sufficiently large, there exists a solution py = u1[@] to (4.99) satisfying
i (@) + [ (8)] S V(B e) (4.103)
where Y(t) is given in (4.82). Moreover, there exists a solution ¢1 = ¢1[P] for (4.86) with the estimate
(0)10p01] + ¢1] S 7 "RTORG(p)* "

And

lein [~ (Ha[upld, pu]] + Helm])] (7(8))] S 9(8)uoRG ™",

lcina [0 (Halup o, ] + Halpn])] (7(t1)) = cina [p7 (Halupd [, ) + Hol])] (7(22))] (4.104)

S dOpoRy ‘T (t)] 1 — b

for a € (0,1), t1,ta € [ut,t] with a constant v € (0,1) close to 1 sufficiently.
Under the additional assumption

(6 — £)6p — min{a,f — 2} w < 0, (4.105)
there exists a constant € > 0 small such that
(P)Opdr1] + [01] S 70 77" () (p) "
Proof. Recall ug in (4.45). For v £ v —1,
[(1—v)Int—2Inp) " = C,(Int) ™ (1+O0((Int)"'Inlnt)), C,,:= (min{y—1,1} — v)"h. (4.106)
Under the ansatz (4.88), ¥[¢, u1] is given by Proposition 4.2 and there exists C; > 2 sufficiently large such that

[(1—v)Int — 210 o]t (1 + Co(Ro)) /Ro 8p° Y[, 1] (kp, t)dp

0 (p? + 1)3 < C1|Cy [P ()P~

where t?(Int)P* ~ 9(t) and

- T-1- -1 1 2 1-2 1 2

p = aw + 2 /f("}/ )3 < 7 < pl = K” P}/ E ( 700)\{ } (4107)
—aw — K, v > 2, 0, v =2
For this reason, we introduce the norm
_17-1
£l := sup [IC, [P (mt) ] | f(2)], (4.108)
t>t0/4
and fi; will be solved in the space

B, =A{f : |fll« < Cu,C1} (4.109)

where C),, > 2 will be determined later and

pa(t) = pafpul(t) == o

For any fi1 € By,, since p # —1, we have
11 ()] < 1C | C (o, p )P ()P | |,
with a constant C'(p,p1) > 1 depending on p,p;. For any i1 € B,,,, under the assumptions

—D(y-1 0, 1 2
(k=D -1 +aw>0, 1<y< (4.110)
Kk+aw—1>0, v > 2,

11, 1 satisfies the ansatz (4.88) when ¢ is sufficiently large.
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For brevity, we denote x(t)A[, i, f11] as the right hand side of (4.99). In order to solve (4.99), it suffices to
consider the following fixed point problem for ji;

Slnl(t) = x(O) Ao, pa [fu]], pa ], fu]  in [to/4, 00). (4.111)
We will estimate A[1)[@, p1[f1]], 1 [i1], f11] term by term. For simplicity, we write py = pq[f11].

B t—t! P(ln s)P1— 1
u sP(Ilns)
\/ : d’<|0w|||u1||/ T
/2 -

/1t (l’ - 1) [1 + (lnt)‘l lnx]pl_ldx+ /1751' [1 + (lnt)_l 1nx]P1—1 1
1

1/2 1—:E /2 1—£E

dx

— [Co ot () !

1—-t7v
1
+/ dz
1/2 1 — X
B

y (4.93),

= |CyultP () v (14 O((nt) ™)) [l .

< tP(Int)P~HnInt|| iy«

Ro 8M 1 8/171[3 - 2
By (4.98),

2

Ro
i [ i (eos(2Q,) — e0s(2Qu)) 7700 p.0) o dp| S (10 i
0

dp

By (4.96), v > 1 and the assumptions (4.83) on parameters, we get

Ro _ 8p3
Flpo, pa](pp, t) ———3dp
| Pl TR

By (4.100) and (4.101), under the assumptions (4.83), we have
o™ Halupld, ]| S pot? )™ (o)~ (Lt [lulls) s [p™ Halpl| < ot (I t)* n(p) il

Under the assumption (4.102), by Proposition D.2 (for the case v(7) = 777(t(7)) % ~ pot?(Int)P1), we see
that

St t)P ol

cina [P (Halppy[d, ] + Halpa))]

is well-defined and satisfies
‘u’lcin,l [~ (Halup[¢, ] + Ha[p])] (T(t))’ S RGP ()P (1+ || l+)
and for a € (0,1), 71,72 € [£7,7],
e [0 Halppd o, ml] + Hapn])] (1) = cinn [p7 Halupd[d, mal] + Ha[i])] (Tz)(
PR PR = 1ol =l (TR 4+ RS Y) | (1 () (4112)
STERTTTORG I = o (1 [l )

~

where we have used Ry < /7.
Incorporating the above estimate and using ||f1]]« < C,,C1, we obtain that there exists a large constant
Cy > 1 which is independent of C,,, such that for ¢t > %’

Sl < x<t>{0107,u|tp<lnt>m-l 1|0 (14 O((n )~ Inn ) [C, |7 (I )7~ €, o

+ CQCM101(lnt)_1 [tp(ln t)pl_1 Inlnt + Rg*ftp(ln t)pl} }

The parameters will be determined in the following order. First, we take v|C, ,| < 1, which is equivalent to
v < min {“’771, 5}, and then we choose C,,, sufficiently large such that v|C, ,|C,, +1 < C,,. Finally, we take
to sufficiently large. We thus conclude that S[j:] € B,
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By (4.23), (4.99), and the parabolic regularity theory, A[1[¢, p1], g1, f11] enjoys the Holder continuity in time,
which provides compactness for the mapping. Thus, we find a solution fi; € By, by the Schauder fixed-point
theorem.

Once we have solved (4.99), i.e., (4.90) holds, then by Proposition D.2, we deduce the existence and the
estimates for ¢1 = ¢1[¢].

For t1,ts € [¢t,t] and ¢ € (0,1), by (4.75), (4.76), we have 7(t1) ~ 7(t2) ~ 7(t) and

[7(t1) = 7(t2)] < Clty — talpg™(t) < C (1 = ) min{r(t1), 7(t2)} < émin {7(t1), 7(t2)}

for ¢ arbitrarily close to 1. Then combining (4.112) and (4.76), we get (4.104).
O

4.4.2. Estimate about the Hélder semi-norm of fi1. The pointwise estimate (4.101) for p~'H.,[u1] is not sufficient
to find a solution ¢ to (4.87) in Bj,. For the purpose of deriving better estimate for p~'H.[u1], we will give
the time decay estimate about the Holder semi-norm of fi;.
Claim: Let fi; be the solution to (4.99) given by Proposition 4.3. Under the assumptions in Proposition 4.3,
f11 has the Holder estimate
[in]capey S oft) (4.113)
with a € (0,1), and

" HInt)?, 1<vy<?2

o(t) == 9(t)(Int) "1t~ (172 ¢4 { ¢, y=2 (4.114)
t(Int)?, v > 2.
Thus, recalling (4.97), (4.95), and by (4.113), we have
o ]| S o €[]l 1(p) S n(p)paot ™~ o(t). (4.115)

4.5. Solving the inner problem and the proof of Theorem 5. In this section, we solve the inner problem
and complete the construction of desired blow-up solution.
Recall Hy given in (4.70). We have

t2 2 (lnt) 1 1<"}/<2
1 ’ 2K 3K 2 2
P Hol < + 7 t)+7 t)R 1% . 4.116
’ 2‘N<{t2(1 t)27 /y>2 () () ><> ( )

We will use Proposition D.1 to find a solution ¢ for the inner problem (4.87) without orthogonality condition.
Recall the upper bound of the right hand side of (4.87) in (4.115), (4.114) and (4.116). The assumption (4.62)
gives T'R?2In R + |0, R|RIn R < 1 for to sufficiently large. Then by Proposition D.1, there exists a solution
¢o for (4.87) with the estimate

O Int)?, 1<y<?2
(P)|0p2| + || S () 2 R*In Rr~"(t)R™*(Int)~H¢~ v min{2e00) £ v=2
t(Int)?, v > 2 (4.117)

2=27(Int)" L, 1<~vy<?2
9 ( nz) 7 + 772 (t) + Tﬁgﬁ(t)RQ).
t~2(Int)*, v >2

+ {p) 2R? 1nR( {

Under the constraints
y—1, 1<vy<2
<

0,
1, v=2

0<a<?2, (2—a)w—au—min{2w,5oﬁ}+{

(4.118)
{2w+2—2’y—|—/<a('y—1)<0, l<y<?2 {2w—ff(’y—1)<0, l<y<?2

2w—2+£KkK<0, v > 2, 2w — K <0, v > 2,

there exists a constant € > 0 sufficiently small such that
(P)Opd2| + |p2| S ™77 (t)(p) "
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Recall ¢; in Proposition 4.3. Combining all the restrictions on constants in Proposition 4.3, we conclude
that
¢1+ ¢2 = ¢1[¢] + 92 [¢] € Bin (4.119)
due to the small quantity provided by ¢y, with ¢¢ sufficiently large, where Bi, is defined in (4.80). The
compactness of this mapping is provided by the parabolic regulatiy theory. Thus, by the Schauder fixed-point
theorem, we find a solution ¢ of (4.73) in Biy.

We now collect all the assumptions on parameters measuring the desired topologies (4.62), (4.83), those in
Proposition 4.3, (4.118) and write

f
Fy min {y — 1,1} or f = w0
Then the system of parameters can be reformulated as
1
l<k+4awy, <2, (2+a)wy, <2k a€(0,1), v, € (0,5)

aw—!—fﬁ(’y—l)#% if 1<vy<2,

1 1 (4.120)
Le(2,4), O<607<w7<§, 60”<Z’ k—2<wy(2—0—a),
(6 —£)0py —min{a,l —2}w, <0, 0<a<2,
(2 — a)wy — avy —min {2w,, 004} +1 <0, 2wy, —24+k<0, 2w,—k<O0.
By the software Mathematica, the solutions are given by
1 1 1 1/1 1
1 <wy < 3 3 < awy < 2ws, 1 5—@0@—&—2@1V < oy < T 2wy < K <2 — awy — 2w,
7y ) 1 1—aw
&#m—aaw if 1<v<2, 1-aw,<av,, 1—aw7<l/v<§, Vw7<a<1’ (4.121)

2wy —aw, —av, +1

max{2+a, ,6—%}<€<4.
00~

Sor

. . _ _ 13 . _ 13 _ 1 14 21 vy 13 .

One may choose a special solution as wy = 57, aw, = 55, a = =, 0oy = §, 55 < K < 54, K # 56-1) — 21 if
_ 23 _ 47 _ 46 p_ 55
1<y <2 av, =35,V =g, =37, L= 77

Now we have constructed the solution v of (4.2) with the form

o= (w - 2arctan<;>) (o) () + n%)@e(é,w () + 19001
whose initial data is given by
- - r 9 r 4r o r
wn(r) =, t0) = () (w - mmM)) 1 (o 0 (ta) 1) s ).

Recalling (4.50), (4.58), we have vy(0) = 7 and for r > 2v/%g, |vo(r)| < r177 if 1 < v < 2 and |vg(r)] <
2
ri=7 + (toIntg) "tre” 30 if 4 > 2.
The estimate of v and v,. are given by direct calculation.

APPENDIX A. CONVOLUTION ESTIMATES

Lemma A.1. Let n > 2 be an integer, t > to > 0, b € R. Suppose that v(s) > 0 for s € [to,t]; 0 < l1(s) <
lo(s) < Cus? for s € [to, t], C7 (k) < Li(ta) < Cili(ty), i = 1,2, for all ty € [ty, 2] N [to, 1], t1 € [to, t], where
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Cy > 0,C; > 1 are constants, then

" 157b(s) if b<n
T o (0(8) (J2] + W)™ Lgarznoy ) (6 t0) S Fe 00 [ “o(s) § (D) if b=nds
fo 1770(s) if b>n
1270t if b<2
(In(9) if b=2 for x| < 1i(t)
270() if b>2
1270t if b<2
<1 (l|g(;|))> Zf b=2
+ sup v(ty) ||2° if 2<b<n for 11(t) < |z| < a(t)
t€[t/2,1] |33|2 n<ln( (l )) if b=n
2P 1) if b>n
(B bt if b<n
jo2re o ¢ (2 if b=n for |z > la(t)
1m=b(t) if b>n

where we set v(s) =0 if s & [to, ]

Lemma A.2. Let n be a positive integer, t > tg > 0, b € R, £ > 0, ¢g > 0, and suppose that v(s) > 0 for

s € [to,t]. Denote
_ - 700 ys‘ —b 7@7‘1{}2
u(z,t) / /n (t—s) ze 5 v(s)|ly| e 1{|y‘23%}dyds.

Then , ,
n n— 1
it~z t2/2v(s)s T ds+ sup v(ty)t!7z, x| <t2
ti€[4,t]
U/(x,t) g n— 2 min{cq, xT 2
(8 [P ols)s T s+ sup oltr)tfe] 0 )e T fa] > o
t1€[%,1]

where we set v(s) =0 if s ¢ [to, t].

Proof. The strategy is basically a verbatim repetition of the proof of [100, Lemma A.2].
O
APPENDIX B. LINEAR THEORY VIA BLOW-UP ARGUMENT
Define
1] a, = sup ™ (y)*|h(y, )|
(y,7)ER™ X (710,00)
The main results are the following.
Proposition B.1. Consider
0r¢ = Ap +pUP~L(y)p + h(y,7)  in R"™ x (19,00) (B.1)
d(y,70) = e0Zo(y) m R™. .
Suppose 2 < a<n—2,v <1, |hlatqer < o0 and
My, 7)Z;(y)dy=0  forall 7€ (r9,00), j=1,2,---,n+1. (B.2)
R"’L
Then for 1o > 1, there exists a linear mapping (o, e0) = (¢[h], eo[h]) satisfying (B.1) and
&y, 7)Zj(y)dy=0  forall 7€ (r9,00), j=1,2,---,n+1, (B.3)
R"L
WIVol+ 16l < 77 W) " lIll2+aw, leo[h]l S 70 " lIRll2+a,- (B.4)

Proposition B.1 is in fact a consequence of the following
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Proposition B.2. Suppose 2 <a <n—2, v <1, ||h|l24a, < 00 and

hy,7)Z;(y)dy =0 for all 7€ (19,00), j=0,1,--- ,n+1. (B.5)
R"L

Then for o9 > 1, there exists a unique solution ¢ of

0r¢p = Ap +pUP~L(y)p + h(y,7)  in R"™ x (19,00) (B.6)
¢(y,70) =0 m R™ .
in L (R™ x (19, 7)) for all T > 19 and ¢ satisfies
oy, 7)Z;(y)dy =0 forall T>1y, j=0,1,--- ,n+1 (B.7)
Rn
and the estimate
WVl + 1ol S 777 (W) Ihll24a0- (B.8)
We first use Proposition B.2 to deduce Proposition B.1.
Proof of Proposition B.1. First, set ¢(y,7) = ¢1(y,7) + ¢(7)Zo(y). Then it suffices to consider
Or¢1 = Ady +pUP~L(y)p1 +hy in R™ x (19,00) (B.9)
¢1(y,70) =0 in R" '
with hy := h + c¢(T) Mo Zo — ¢ (1) Zy where we used AZy + pUP~1(y)Zy = Ao Zp with \g > 0. We take
-1
¢ = ractr) = ([ Zan) [ bzt
with .
) == ([ zway) e [T [ s zatwads
n T Rn
so that [, h1(y,7)Zo(y)dy = 0. Combining this with (B.2) implies (B.5). It is direct to see that
le(D)| + 1 (D S Mhllz+aw ™™ Ihillz4ar S 1All24a.-
By Proposition B.2, (B.9) has a unique solution ¢; satisfying
(bl(va)Z](y)dy =0 fOI‘ au T > T0, ] = 07 17 e ,n + 1a <y>‘v¢l| + |¢1| ,-S T_”<y>_a||h||2+a,u~
Rn
Then ¢ = ¢1 + ¢(7)Zp satisfies (B.3) and (B.4). Finally, letting eg = co(79) completes the proof. O

Next, we use blow-up argument to prove Proposition B.2. Our method does not rely on the use of maximum
principle, so we expect that this method is applicable to more general equations/systems in the absence of
maximum principle (assuming non-degeneracy of the profile in certain sense). Typical examples are parabolic
equations with complex coefficients such as

Apdru = Au+ V(u, Du) + h,

where the complex constant Ag satisfies Re(Ag) > 0 (with dissipation). This kind of operator naturally arises,
for instance, in the study of Landau-Lifshitz-Gilbert equations.

Proof of Proposition B.2. The existence and uniqueness of (B.6) are given by the classical parabolic theory.
Denote

1fllavr == sup ™)1 f(y, T)I-
(y,7)ER™ X (10,71)
For all 7 > 79, by the estimate of parabolic fundamental solution (See [38]) and convolution estimate in [100,
Lemma A.1, Lemma A.2], for 0 < a < n — 2, we have
[8lla,v,r < oo (B.10)

By scaling argument, we have ||Vé||14q,0.r < 0.
For a > 2, multiplying (B.6) by Z;, j = 0,1,...,n + 1 and integrating by parts, we obtain (B.7) by (B.5)
and the initial data of (B.6).
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In order to prove (B.8), it suffices to prove the following claim.
Claim: For all 73 > 7y large enough, there exists C independent of 71 such that

Hd)”a,v,n < C||h||2+a,u,ﬁ- (B-ll)

Indeed, by taking 71 — oo, (B.11) implies (B.8). To prove (B.11), we argue by contradiction. Suppose that
there exist sequences 7 — 0o and ¢y, hy, satisfying

Ordr = Agy + pUP " (y)pr + hie  in R™ x (19,00)

oy, 7)Z;j(y)dy =0 forall T € (7'0,7'1]“)7 j=0,1,--- ,n+1 (B.12)
R”L

k(y,70) =0 in R"”

and
||¢k||a7,/dc =1, ||hk||25+a7y’7f =o(1) where o(1) >0 as k — oc. (B.13)
First, we claim that for any compact subset €2 in R"”,
sup  77|¢x(y,7)] = 0 uniformly in €. (B.14)
‘ro<7'<7'{€

Assume this is not true. Then there exist a constant M > 0 such that |yz| < M and 79 < 78 < 7F,
(72)” |6k (yr 72)| = do > 0, (B.15)
» = o(1), we have 7§ — oo by the same reason for getting (B.10).

1
Without loss of generality, we assume 75 > 97¢. Set

ék(yv t) = (TQk)Vdjk(yv T2k + t): ];'k(y7 t) = (Tg)uhk(ya TQk + t)
Then by (B.12), one has

for a constant dp > 0. Since |h|l24q., -

O = A +pUP ™ (y) by, + hy in R™ x (1o — 72—2k70] (B.16)
with
6k(y, ) < CE)) ™ Ay, 7)| < o()C@)(y) >~ in R™ x (10 —
where C'(v) is a constant only depending on v.

By the parabolic regularity theorem, up to a subsequence, we have <;~Sk — gz~5 in ClloC7 that is, ¢~5k — gz~5 in C*
topology on any compact subsets of R™ X (—o0, 0]. Combining this with (B.15) yields

6y, T < Cw){y)™", ¢ #0. (B.18)

0], (B.17)

By (B.16), we have

k
4(t—70+%

N /t 4 / lam(t—9))7 % exp <— Ly(t__ZP) (pUP ()02, 5) + (2, 9) ) dzds.

5)
Then for any fixed (y,t) € R" X (—00,0], by a > 0, (B.17), (B.18), [91, Corollary B.4, Lemma B.5] (used for
time integral ftt; -+ for some ¢; < —1), [100, Lemma A.3] (used for Cauchy integral) and ¢, — ¢ in CL ., we
have .
~ n _ly=z|? ~
o(y,t) z/ / [Am(t —s)] 2e 4y<t*5>pUp*1(z)qS(z,s)dzds. (B.19)

Then the limiting equation reads
0:¢ = Ad+pUP  (y)p in R™ x (—00,0]

oy, 7)Zj(y)dy =0 for all 7 € (—00,0], 5 =0,1,---n+1 (B.20)
Rn

6(y, )] < C(v)(y)~* in R™ x (—o00,0]

where we have used a > 2 in the orthogonality by dominated convergence theorem.



82 J. WEIL, Q. ZHANG, AND Y. ZHOU

Using (B.19), [91, Corollary B.4, Lemma B.5] finitely many times for 7 € (—oo, —My) with M, large and
then applying [100, Lemmas A.1, A.2, A.3] in [M), 0], we have
6l < (>,

and ¢ is smooth by the parabolic regularity theory. By scaling argument, one has

() [DY| + 6| + |D*0| S ()™
Differentiating (B.20), we get

Orpr = A +pU " (y) 5, (B.21)
and then scaling argument gives
) D] + drr| + 1D s | S ()2

Moreover, multiplying (B.21) by (;NST and integrating by parts, we get

1 - -
587 ‘¢T‘2dy+3(¢77¢7’) =0,

]Rn

where

BUS) = [ (V57 =07 @) do

By orthogonality in (B.20), we have [, d-0(y,7)Z;(y)dy = 0 for all 7 € (—00,0], j = 0,1,--- ,n + 1. Then
B(¢r,¢-) > 0 by fR" 0:0(y, 7)Zo(y)dy = 0 since Zj is the only eigenfucntion corresponding to the positive
eigenvalue. Thus, 9 [, |+ |2dy < 0.

Multiplying (B.20) by ¢, and integrating by parts, we have

/ |6-[*dy = —%aTB@é).
R™

0
aT/ |p-|2dy < 0, / dT/ |p-|2dy < oo.
R~ —o0 n

Hence ¢, = 0. So~¢~> is independent of 7 and A¢ + pUP~1(y)¢ = 0. By the nondegeneracy of A +pUP~1(y) (see

Y)
[2, Lemma 5.2]), ¢ is a linear combination of Z;, j =1,--- ,n + 1. Due to the orthogonal conditions in (B.20),

we must have ¢ = 0, which contradicts (B.18). Thus (B.14) holds.
By (B.13) and (B.14), there exists a sequence y; with |yx| — oo such that

(T5) ()| ok (e, 75| > ;

From these relations, one has

Set
D (2, 1) := (79)" () “Dn (yn + |ynlz, [yt + 7).
Then 1
|6£(0,0)] = 5. (B.22)
We reformulate (B.12) as
~ ~ ~ ~ ok
Dbk = Aoor + plyk U~ (yk + lykl2)dr + ha(z,1) in R™ x (7#,00) (B.23)

~ ok . n
d)k(',Tﬁny):O in R

where

hie(z,t) = (75)" (i) lyie | e (e + el 2, [yl *t + 75).
By (B.13), one has
(2, 6)] < o(1)(75)" (o) “lyne > (e + lyel2) =2 (Jyw |t + 75)
To—TF TF —1¥
|yk\2 ’ |yk|2

),

— ~ —2—a _ —v n
~ (1) (lyel ™" + [gn + =) () MywlPt+1) ", for (z,8) € R x (
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bt 4

‘kaIQU”_l(yk - ka|2></3k) Sy s+ Tyl 2) 745 (i) (e + el 2) ™ (Jyel*t + 75)
T0—TF T — T§)
\yk|2 ’ |yk|2

— — ~ —4—a _ —v n
~ Jyxl ™ (lyel =" + |9 + 21) ((r3) " Hywl?t+1) ", for (z,t) € R x (

where g = yi|yr| 1. By (B.23), we have

(z,t) /0 / [Ar(t — 5)] e ‘Z(fw; (p\kuUp 1(yk + |yk\w)¢k(w s) Jrhk(w s)) dwds.
T 7-2 n

lyg 12

Then

0 2
~ _n |w| _ _ N —4— _ —v
61(0,0)| £ / I ™ el ) (Dl 4 )

< ) (Il ™+ g+ wl) 77" () s +1) " | dwds.
Claim: Suppose that 78 > 279, |yx| > 2, m > 2,n > 2,v < 1, then

0 1, if m<n
[ [ 955 (™ i) () P+ 1) dwds Sl i =
/ lye|™™ ™, if m>n.
Assuming (B.24), for 0 < a < n — 2, one then has
ly| =2, if 4d4a<n
‘&k(0,0)’ <o)+ { Jyk|2(nlyl), if 4+a=n—0 as k— oo
gl if 44a>n
which contradicts (B.22).
Finally, we prove (B.24).
Proof of (B.24):
Lw|? ~ —-m _ —v
[ [0 (™ )™ () s 1) s

lyg 2

2
|z

= / (7)) 1\yk|23+1)_u (—3)_%/ e 1 ((—s)_%|yk|_1+|(—s)_%;&k+x|)im dxds.

TO— Ty

lyp |2

83

(B.24)
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Notice for 0 < 2¢y < |7], we estimate the spatial integral as

z|2 _ |z|? . _
/ e (co + |5+ z)) " da = / 4+/# +/ e (co+ |04 a)) " de
n le|<Z JEl<z<2lm) Jjz)>2)7]

2

z|? _ |z|? . _ =2 _
N/ 467%(Co+|17|) mdx—l—/d e i (co+ |T+z|) mdx+/ e 2 (co+|x]) " dx
|z <15t Bl <jz)<2)3| || >2|7]
12 72 3 e
< \17|*m/ ) e dx—i—e*lﬁ/ (co+ |7+ z|) md:ﬂ—l—/ e x| "dx
|zl < 5 |z-+3| <3| || >2|7]
152 Co 3|7| )
S g™ + Lgas [T e T / +/ (co +7)"™r"Ldr
0 co
1, if m<n )
- . _ 1w
+1lgg<y § (Infd)), if m=n +1ggsye 2
[g|"=™, if m>n
N B it m<n 1, if m<n
_ 17l 7 . o . -
Se <1n(%)>7 if m=n +1lgg<y {Wld), f m=n +1ggsnld™™
g, if m>n [o]*=™,  if m>n
1, if m<n o=, if m<n
- i . i 192 = .
~ Loy o) + (), if m=n  +1lggsy Q0T e (In()),  if m=n
712
c if m>n |o]—™ + e’%cg_m, if m > n.

Thus, we obtain

/O 5 ((7216)71|yk‘25+ 1)71/ (—s)"% /" 67‘1‘2 ((—8)7%|yk|71 + |(—3)7%3}k —|—z|> mdzds

ro—r
lyg 12
0 17 if m <n
< " ((Tzk)_1|yk\25 + 1)_V (—s)_% <1{S<1} (In(—s)) + (In |y;:L|2;n if m=n
E (=) H)" " i mo>n

7, if m<n
m 1 .
+1>-1) (—=s)2 + et (Infykl), o if m=n )ds
(—s5)% +eTs ((—s)’%|yk|fl) , i m>n

0 (—s)" 7, if m<n
= [ (@ s+ ) (1{s<1} (—5)"% ((In(=9)) + (nfgel)), if m=n
lyg |2 (—8)7%|yk‘min, if m>n

—~

1, if m<n
+1lso13S 1+ (—s)"2 s (In |ye|), if m=n )ds =A.

k
If =2 > -2 for |yx| > 2, we estimate

lyk|?
0 1, if m<n 1, if m<n
AS [ () ulPs+1) 7S (nfyl),  if m=nds <SS (njyl), if m=n
'01!76‘22 lye|™™ ™, if m>n lye|™™ ™,  if m>n

where we have used
0
s () s +1) ™ ds = Tl 2= )7 [1 = (ro(eh) )] £

lyg |2
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for v < 1.k
TO—T-
If ‘yk‘ﬁ < —2, we have
0 17 lf m<mn
A= / () MylPs +1) " {14 (—s) Femws (Infyl), if m=nds
- 14 (—s)"Zetss [yp|™ ", if m>n
. o=} (—8)~ %, if m<n
2|yl —v n
| Lo (D s 41) 7S ()7 (=) + (nlunl)), i m=n ds
2ul? Ik (=) 2 yu|™ ™, if m>n
1, if m<n
_ _ _ 1—v .
S @=n) byl 2 (1= (1= ) )] S ), i = ds
lye|™™ ™, if m>n
-1 (75)7%a if m<n
o 972 (n(=s)) +(nlyl)), i m=mnds
PR (—s)_g‘ykrm_"’ if m>n
ko m .
To-rs (FE) 2, it m<n
2lykl — v o\ _n F T .
g (G s+ 1) C) 78 () + (nl)) . i m=nds
Y2 ko _n m—n .
" ( |2yk\20) 2 [y ) if m>n
1, if m<n EN—1 1—v
. _ _ To(75) ™ 1 Ny
< Yl i m=n b0 y) [((2)+2) ~ ()™ ]
lye|™™",  if m>n
k m .
(7—‘2;‘72—0)7?, if m<n
F_ro\_n kT .
x Qa2 % () + nlgel)) i m=n
ko _n m—n .
() 2 lwel™ ™, if m>n
1, if m<n
S Infyel), i m=n
|yk|7n—n lf m>n

where we have used 78 > 279, |yx| > 2, m > 2 ,n > 2, v < 1. Therefore, we conclude the validity of (B.24).
O

APPENDIX C. LINEAR THEORY VIA DISTORTED FOURIER TRANSFORM
Consider the LLG equation in critical dimension
up = a(Au + |[Vul*u) —bu AN Au  in R? x (0,7),
u(-,0) = ug € S? in R2,
where a? +b?> =1, a > 0, b € R. The inner linearization around degree 1 harmonic map, in self-similar
variables, looks like

(a+1ib)0, — (8/);0 + lap - (n+ %" + (20" — 6)p" + (n — 1)° 1) .
p (p?+1)2 p?
We utilize distorted Fourier transform at mode n = —1 in [99, Section 9.6]. The use of aforementioned techniques
does imply a solution. However, such solution is not sufficient for the gluing to work as it loses too many R’s and
makes the nonlinear terms non-controllable. So we use distorted Fourier transform (DFT) instead to get desired
estimates. The reason behind this is that formally the worst mode is —1 as it corresponds to 2-dimensional

heat operator, and usually estimates in 2D come with a logarithmic loss.
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The derivation of desired estimates for mode —1 is done by first deducing the Duhamel’s representation via
DFT and then estimating pointwisely. For ¢ € R and v(7) > 0 and vectorial complex-valued function f, the
weighted topology are defined by

[ £llo,e == sup v )W) | (g, )
(y,7)ER2 X (19,00)

Consider
{(a +b)0r6u(p,7) = Ludn(p, 7).
Pn(p;70) = 9(p),
where 75 > 1,
(n—1)? 4n 8
R R VRN
Assume g is a Schwartz function. Set ¢, (p, 7) = p_%An(p7 7), then

{(a +ib)0r A (p, T) = LonAn(p, 7),

1
Ln = aﬂﬂ + ;89 -

An(p,m0) = p2g(p).

~ _1)2
where ﬁn = 8pp + ip_2 - (npzl) - pgil + (p2i1)2'

Recall the generalized eigenfunctions ®"(p, £) with respect to —L,, is given by

We multiply it by ®™(p, ) and integrate by parts and get

{(g +ib)0r An(€,7) = —€An(€,7),
An(&,70) = [ p29(p)@™(p, €)dp,

where A, (&, 7) = IS A—i(p, 7)®"(p, €)dp. Thus
An(€,m) = eI AL (7).

Taking inverse DF'T, one has

An(por) = / An(€.7)8" (9, €)p(de) = / =D A (€,0)0™ (p, €)pn (dE)
:/ e~ gn(y ¢) / w g(2)8" (2, ) dap, (dE)
0 0

= /0 /0 e (a=ib)Tn E)(I)"(x7£)pn(d£)x%g(m)dx.
By Duhamel’s principle, it holds that

¢n(p,7)=//0 /O e~ @=ET=5) =37 (p, €)D" (2, €)? by (, 8) oo (dE ) dzdls (C.1)

gives a solution to the non-homogeneous equation with RHS h,, and zero initial data.
To estimate solution in above formulation, one needs precise estimates of generalized eigenfunctions and
density of spectral measure. For n = —1, we summarize the results in [60, Section 4.3.2] as follows.

Proposition C.1 ( [60]). For all p >0, £ > 0, we have
27 p0)| < {p3<p>2 et

EHOT i e
D~ 1(p, &) has the following expansion:
O (p, &) = Dy (p) + p? Y _(—p*E)0,(p%),

Jj=1
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5
which converges absolutely, where <I>51(p) = 1{’;2. It converges uniformly if pfé remains bounded. Here
®,;(u) > 0 are smooth functions of u > 0 satisfying
1 wu
D -

and 1 (u) > clp%u for all uw > 0 with some absolute constant ¢y > 0.

, forall w>0,7>1,

The spectrum measure p_1(d§) of —L_q is absolutely continuous on & > 0 with density

dp_1(§)
a3

Our linear theory for LLG mode —1 without orthogonality condition is stated as follows.

Proposition C.2. ([99, Proposition 9.8]) Consider

(G + ib)a‘rqﬁfl(pv T) = /371¢L1(/77 T) + h(pa T) in (0’ OO) X (7’0, OO),
—1(p,70) =0 in (0,00).

where 79 > 2, ||h||»

¢
¢ < 00, where v(T) > 0, £ > 3. Then the solution ¢_y = T_1[h], where T_1[h] is given by
the linear mapping (C

1) with k = —1, satisfies the following estimate

T-F sup w(s)4 7% fé v(s)ds if £<2
s€[T/2,7] 2 .
< C d(n7)? sup w(s)+7lInT [2 v(s)ds if £=2
[6-1(p, D S Ihlloet 1, S T J4
InT sup w(s)+7 ! [2 v(s)ds if £>2
s€l[r/2,7] 2
Ti72 sup w(s)+ri2 fi v(s)ds if £<2
se[r/2,7] 2 .
1 )ri(ln7) sup w(s)+73(n7) [2 v(s)ds if £=2
TRl ayp7 selr/2,7] . H
i sup w(s) 71 [2 v(s)ds if £>2.
s€[r/2,7] 2

Inside the self-similar region, better estimates with orthogonality condition imposed can be obtained, see [99,
Section 9.6]. Indeed, we have:

Proposition C.3. ([99, Proposition 9.8]) Under the assumptions in Proposition C.2, assuming 2 < £ < g and
the orthogonality condition

/ h(y,7)Z2_11(y)dy =0 for all 7> 19, (C.2)
RQ

we have the following estimate

(P2 sup wv(s)+7% fé v(s)ds if p<rt2

) s€[r/2,7]
¢— s T 5 h v © z
[9-1(p: I S Il ¢ 7%<T%7§ sup U(S)+Ti7§ fiv(s)ds) if p>7'%.
s€[r/2,7] 2

The proof of Proposition C.2 and Proposition C.3 is done by directly estimating the Duhamel’s formula.

APPENDIX D. LINEAR THEORY VIA RE-GLUING

General linear theory, which can be applied to the inner problem, will be developed in this section. Technical
ingredients include energy estimates, orthogonality conditions, maximum principle, spectral gap, and a re-gluing
process.

This section is pretty independent of the other parts in this note. Some symbols which appear in other
sections are abused, but there is no relationship between them. Consider

{ 8,0 = Lo+ Aly,7)-Vé+ By, 7)¢+h, in Dg,

D.1
¢('7TO) = 07 in BR(T(]) ( )
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where A = (A1, Ay, -+, Ag) is a vector-valued function and B is a scalar function,
L:=A+V(y), Bgru ={yeR*||ly<R(r)}, Dr={(y.7) | y € Br(r), T € (70,00)}.
We always assume V (y) = V(|y|) is radial in space satisfying |V (y)| < (y)~2; L has a radial positive kernel Z(p)

with the asymptotic behavior
Z(p) ~(p)"  10,Z(p)l S (p)° .

We shall write v = v(7), R = R(7) for simplicity.
Our aim is to find well-behaved ¢ for right hand side h in the weighted space with the norm

[hlloe = sup  (uv(r)”" {y)[Aly, )]

(y,7)EDR

for £ € R, v(7) > 0. The non-orthogonal linear theory is given as follows.
Proposition D.1. Consider

0r¢ = Lo+ Ay, 7) - Vo + By, )¢ + h in Dr,
¢ =0 on ODg, ¢(',TO):O in BR(TO)'

Suppose ||h]lye < 00, R > 2, v,R € C(19,00), () '|A(y,7)| + [Bly,7)| < f(7), (f(r)+ W' ]o7") Opeq +
Or,e2 < 1, where

RQerax{O,foZ}’ (< ﬁ—l—d
Rmax{0.=d=28} In R, (=B +d if B<1—4
R2+max{0-‘,-,—d—2ﬁ}7 (> 6 +d
R2+max{0,fﬂ7£}’ (< 5+d
R2(InR)?, ¢=pF+d if B=1-1
9}1@71 = Rt InR, {>p0+d
RQ-{—max{O,—B—E}’ {<2— B
R’InR, (=2-8
R?, 2-B<l<B+d if B>1-4,
R?InR, (=B+d
R, > p+d
|R/|R1+max{0,fﬂfé}, (< ﬂ'f‘ d
9R7€72 = |R/|R1+max{0,—d—25} In R, (= B +d

|1%/|Fil-{—max{o-ﬁ-,—d—Q/B}7 > ﬁ + da

then there exists a unique solution with the pointwise upper bound

IV, Tl + |6y, )| £ v(r) () Ore(lyDIAllo.e

where
R?-8—L, (< pB+d

R>=28 IR, (=pB+d if B<1-4
R*d4=28, > pB+d

In R, (>B+d (D.2)
R?-8-¢, 1<2-8

In R, (=2-4

(p)>=P-¢, 2-f<l<B+d if B>1-4.

(0>~ In(p+2), L=p+d

(p)?=4=28, 0> B+d

ORe(p) ==

R>P=t (< B+d
(InR)2, (=pB+d if B=1-14
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Proof. The existence and uniqueness are given by the classical parabolic theory and we will give pointwise
estimate by the comparison theorem. Set p = |y| and a barrier function with the form ¢(p,7) = Cvg(p, R),
where

R T _
Lalp. ) = =) 00 F) = 200) | s [ 20501 s

and C, ¢ will be determined later. It is easy to get

R x
dx 7 1 p 7
0 R =2 / 7/ Z =15~y —7/2 =15 =tds.
Pg(p ) (p) ) ZQ(JZ)JZd_l 0 (S)S <8> S Z(p)pd_l o (S)S <8> s
Direct calculation yields
xd, <1
@ ; Frd=l x> 1,0<B+d 1 1-d <1
/ Z(s)st N sy Tds {0 0 T LE<OE ST~ s
0 l+Inz, z>1,¢4=0+d Z2(z)x T Bx>1,
1, z>1,0>6+d,
x, r<1
1 z A z>1,0<B+d
- 7 d—1 7€d ~ ’ ot
ZQ(x)xd—l /0 (S)S <S> S pl-d—28 (1 + lnx) L x>1,0=8+d
pl—d=28 x>1,0>p+d.

Considering three cases 1 —d — 28 > (=,<) — 1, namely, 8 < (=,>)1 — g, we have

o Z2(x)xd=L [, e s =~ OREP)-
Then

95 (0 Or(p).
For 0,g, since

Ps p<1
1 P ; 1= 1,0 d
. 1/ Z(S)Sd_1<8>_ed8fv p1 dl p > a7<ﬁ+
Z(p)p®=t Jo PP (1+Inp), p>10=p+d
pt=d=h, p>1,0>p+d,

then

10,91 < ()7 O 2(p)-
A closer look at © Rj(p), when ¢ > (8 + d, tells that the increase in £ will not improve the estiamte of g. Thus,
we take

7.— l, < B+d
Sl B+dE<t, £>pB+d
Then ©p 7(p) = Or¢(p), which implies

9+ (P)19p9l < ()’ ORe(p)-
From the choice of g, we have

P[¢] := L(Cvg) + h+ Cv (A - Vg + Bg) — 9;(Cvg)
; CvR'Z " ;
= —Coly) “4+h+Cv(A-Vg+ Bg) —Cv'g— Z:(R)};Ly—q /0 Z(s)s? 1 (s)"tds

_ _ _ Vi R B
Coly) [~ 14 ) (4- Vg Bg) — ooy — TLEZI) [ 20011 )] + o).

IN

IN

3 i, _
— 760w C o) Nl
where we have used

()" (4- g+ Bg)| +

o | S (P + 1Y) )P Omelll) S (F(7) + 10 0™) s < 1
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o R ) L (< B+d
igéy;f%(y_/\l) / Z(s)s"Hs)"Mds| S ()P IRRIO MR, I=B4d S Opes <1
(R) 0 |R'|RL—4-28, (>B+d

Set C' = 2||h|y.¢, then P[¢] < 0, which implies |¢(y, 7)| < v(7)(y)?Oro(|y]). Since Ore1 > R?, then f(r) <
(Ore1)"' < R™2. Additionally, from the presumption, |V (y)| < (y)~2. Then using scaling argument, we get

the gradient estimate.
Lemma D.1. Consider

¢(-,70) =0 in BR(r,).-
Suppose ||h||y,e < 00, h is radial in space and if £ > 3+ d, h satisfies the orthogonal condition

R
/ h(u, 7)Z(u)yu" du =0 for all T > 7o;
0

and (y) Ay, 7)| + [B(y, 7)| < f(7),
R>2v,ReC Y (r,00), (f(r)+ ['|[v") Ori—o1 t0gi02 <1,
f(M)o(T)0R 03 € CH(10,00), [£(T) + |(f(T)o(T)0R,e3) | (f(T)0(T)0R,e,3) "] Orpet + Orpe2 < 1,

where OR c.1, Or,c,2 for c € R are defined in Propostion D.1,

2-8 if B<1-4
2 -, (<4-p
_ ¢, ¢ d,2— _ -
é:{g Z#gid £ﬁ2 5 Pe = {—2, 4—B<l<fB+d+2 i B>1-d
) = or t = — M i - 9
(d+B)—, (=p+d+2 2
d+ 3, (>B4+d+2
RA-—L, (< B+d+2
R>*420InR, (=p+d+2 if B<1-4
R?7d4=26, (>pB+d+2
R¥P~E T<B4+d+2
Opes =4 (nR)?2, T=pF+d+2 if B=1-14
InR, (>B+d+2
RY* 8=t (<4-p
R, [=4-§ if B>1-4.
1, £>4—-0

Then there exists a solution ¢ = P[h] as a linear mapping about h with the estimate

IVl + 16l S v(1)0res (W)™ + F(T) W) Orp, (1Y) IRl o.e

O

(D.3)

(D.5)
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where ~
RA=P—L, (< B+d+2
(y)P~2{ R2=4281nR, (=F+d+2 if B<1-4
R?—d=28 (>B+d+2
RA-B=E [<B4+d+2
y)P~2{ (InR)?, (=B+d+2 if p=1-14
Ore3(y) P = InR, (>B+d+2 (D.6)

Y 2R T<a—p

)8~ 2InR, l=4-p

2=t 4-pB<l<pH+d+2 if B>1-42.
>—[(d+5)—]’ Z:5+d+2

y) 48, 0>B+d+2

Remark D.1. By direct calculation, for < 8+ d, we have (y)?Or(|y]) < (y) P Ore3. Thus for £ < B +d,
the estimate in Proposition D.1 is better than Lemma D.1.

Proof. Let us first consider an elliptic problem LH = h where h is the extension of h as zero outside Dg. H is
given by

p 1 s - .

o) Z(p) ; Z2(s)sd_1/0 Z(uw)u h(u, 7)duds, if €:ﬂ+d,ﬂ§1—gor€#ﬁ+d,€§2—ﬂ
p,T)= ] 1 s ~

—Z(p)/p W/o Z(w)ut h(u, 7)duds, if (=B+dB>1—S%orl#£B+dl>2-8

The intuition behind the choice of H is to make H behave like integration twice in space about h and keep the
information of ¢. By direct calculation, H has the following estimate
[H -2 S 1Allo.e (D.7)
for £ given in (D.5). Indeed,
sd, s<1
sPta=t s> 10<B+d
14+Ins, s>1¢{=08+d
sfrd=t s> 10> p+d,

where we require the orthogonal condition (D.3) when s > 1, £ > 8+ d.

1 {sl_d, s<1

S [1Plo,ev

/S Z(u)u? h(u, 7)du
0

Z2(s)sd-1 s17d=28 s> 1.
Then
1 s S, s<1
d—17 _d—
‘Z%%ﬂ11;ﬂwu h(u, T)du| S |hlloev q 812 (1+1ns), s>1,0=p8+d
sl=P=L, s>1,0#[B+d.
When ¢ =p+d,B<1—%orl#pB+d(<2—p,
P’ p=1
o 1 , P72 (14+1np), p>1L=B+dB<1-4
d—17 2 d
p27ﬁ77 p>17€#ﬂ+da€<2—6

1+ 1Inp, p>10#£B+d=2—p0.
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For the cases £ = 8+ d, 5 > 1 — g or £ # B +d, ¢ > 2— f3, this formula cannot recover the information of ¢.
Then

P’ p<1

p>np), p>1l=p+dB<1-4
H| < lloev 9>~ Inp)®, p>14=5+dS=1~1
p>=t, p>1U#B+d <2
2~np), p>1L#AB+dl=2—].

When€:B+d,ﬁ>1—g0r€#5+d,€>2—6,

oo 1 S -
——— | Zwuth dud
/p 77(5)501 /0 (u)u (u, 7)duds

which implies

< |hlo.ev (P> I(p+2), L=F+d>1-4
A KT R (#£B+d(>2-8

2~lin(p+2), {=p+d,f>1-12
H S W 02 :
(p)2", (#£B+d0>2-8.
Thus we complete the proof of (D.7). Next, consider
87-(1) =L® + H in DQR,
=0 on 8D2R (I)(~,T0) =0 in BQR(TO)-
Under the assumption R > 2, v, R € C*(79,00), (f(7) +|v'|[v")Op 7 91+ Or s oo < 1, by Proposition D.1,
we have a unique solution ® with the estimate
] < o(m)(y) O g2 (ly) 1 Allo,e-

Set ¢y = L®. By [V (|y|)| < (y)~2, scaling argument and the defintion of © ;_, in Proposition D.1, we have
IV + 1] S o))" *Opza(ly)n

N2
RY-A-L (< B+d+2
(Y)P2 S R*42P IR, [=F+d+2 it <14
R*~d4=28 0>pB4d+2
R¥P~L T<B+d+2
P2 (ImR)?, [=B+d+2 if B=1-4¢
S u(m) Ao In R, (>B+d+2
(y)P2RAPE I<4-p
(1)’ R, i=4-p
>, 4-B<l<B+d+2 if B>1-14
()" PIn(lyl +2), {=F+d+2
(y)=9=7, (>B+d+2

S v(T)0r,e3(y) " Rllv,e
In order to retrieve the term A - V¢ + B¢, we consider
Or¢p = Lo + A- Voo + Boo+ A-V¢1 + Byr in Dp,
$2 =0 on ODgr, ¢2(p,70) =0 in Bp(,)

where

|A- Vo1 + Boi| S f(7) )|Vl + [d1]) S f(T)o(T)0R,e3(y) " ||h
Under the assumption R > 2, f(7)v(7)0r.e3, R € C* (70, 00),
[f(T) + |(f(’7')7)(7’)93,z’3)l|(f(T)?)(T)eRj’;;)_l] Orp,1 + Orpe2 < 1, by Proposition D.1, we get ¢o with the
estimate

lv,Z~

W)V a| + [da] S F(T)v(T)0R.e3() Orp, ([yD)I|Pllv.e-
Set ¢[h] = ¢1 + ¢p2. We complete the proof.
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Next we perform the re-gluing procedure to further improve the linear theory. In the process of re-gluing,
since the outer solution will enter the right hand side of the inner problem, in order to make the term involving
the outer solution radial in space, we take A(y,7) = A(p, )y, B(y,7) = B(p,7) where p = |y| and A(p,7) is a
scalar function.

Proposition D.2. Consider

0-¢ = Lo+ Alp,7)pdpd + B(p,7)¢ + b + cin(r)n(p) Z(p) in Dg,
¢(-,70) =0 in Br(r)

where |A(p,7)| + |B(p,7)| < f(7), ||hlloe < 00. Suppose that Ry < R/3 < v/7, [V(lu)l < ()=, Pv > 2,

d>2,—-d<pf<0,0e(f+d,f+d+2)N(2,d), f(T)RIOIIaX{47d72B’2+} S 1; there exists a constant Cy > 1 such

that C7YF(1) < F(s) < C.F(7) with F = v, R, Ry for all T < s <27, 77 % f; v(s)R¥ (s)ds < vR* %, where

7 '_{li—, 5>1—% and £ =4-73

* o .
l, otherwise

for € given in (D.5);

14+max{0,2—3—¢
v, Ry € C'(79,00), (f(7) + [v'[v1) ORry.i—21 + |REJ|RO+ w{02-6-} < 1,

F(T)o(T)0Ry 0.3 € C'(70,00), [f(7) + [(f (1)v(T)0Re.0.8) |(f (T)0(T)0Re.08) ] ORg et + ORopr2 < 1,

where

R§+max{0,2—,8—€} i B<1 *%
0 i _ R§+max{0,2757£}7 Z< 4 ﬁ
Rp,4—2,1 _ . d
R%1n Ry, l=4-p if B>1-5,
RZ, 4—B<l<p+d+2
Ry if <14
Ry Pt I<a-p
ORo03 = - . d
InRy, [f=4-F if B>1-14
1, (>4-8
R§+max{0+7—d—25}’ ’Lf B<1— g
) _ ) R3(In Ro)?, if B=1-14
Ro,pe,1 R%lnRo, Z§4—,B ’Lf ﬁ>1—é
RZ, 4-B<l<B+d+2 z
|R/0|Rtl)erax{OJr,7(172[3}7 ’Lf ,8 <1-— g
0R01P€72 = |R6|RO In Ry, if B=1- g
|R6|R03 Zf B >1- %a
for iilf Ro(7) sufficiently large and sup f(7)R%(7) sufficiently small. Then there exists a solution (¢, cp) =
=0 210

(¢[h], cin[h]) which is a linear mapping about h with the properties
(P> "Ry if B<1-3

<p>27l7Ré*B*€’ Z <4- ﬁ
P 0,0l + 1] S vl[hllo, 7 7 ; D38
(1001 + 101 S vliBllo.e (0 9% IRy, [=4-p if 6>1-14, (05
(p)2~t, 4-B<l<B+d+2

en(r) = enltl(r) = ([ 22wyt ( [ w2 cm,mh]m) . o)
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and cin 1[h] depends linearly on h with the following estimate.

) 1, B+d— Py <0
lein 1 [2)(7)] S v||hllv.eR27 { In Ry, B+d—Py=0 (D.10)
RV B4 d— Py > 0;

for ac € (0,1), 71,79 € [T = A2, 7] with 0 < A\ < +/7/8,
1

lim1 [A](71) = cin1 [B](72)] S wllhlloe | R4V Ry (1) — Ro(72)]

_ (L B+d—Py <0 (D.11)
+in =l (AR 4 02 R" ) SRy, Bd— Py =0
RITIV B4 d—Py >0

Proof of Proposition D.2. Set ¢(p,T) = nr,(p)di(p,T) + do(p, T), Where ng,(p) = n(%-). In order to find a
solution ¢, it suffices to solve the following inner—outer gluing system for (¢;, @,).
The outer problem:

{ard)o = AQI)O + J[¢oa ¢i]n2R(p) in Rd x (TO’ OO)’ (D12)

qbo(',TQ) =0 in Rd,

the inner problem:

, (D.13)
in Bag(ry),

{ O-¢; = L¢z + Apap¢z + Bp; + Ve, +h+ Cm( ) (p)Z(p) in Dagr,,
where m2r(p) = 1(55),

[(bov ¢z] = V(bo(l - nRo) + Apap¢0 + B(bo + A[¢Z] + h(l - nR0)7
A[pi] = ¢iAnr, + 20,18, 0,0i + Adipdyni, — G:i0r1R,-
Here ¢, (7) is given by

—1

2Ry 2
ein(7) = Cinla] () = C /0 (V(2,7)60 (@, 7) + bz, 7)) Z(@)a—tdz, Cy=— ( /0 n(x)Z2(x)xd_1dx)

to achieve the orthogonal condition

2R
/ (V(2)po(x,7) + h(x,T) + cin(T)n(z) Z(x)) Z(2)z* dx = 0.
0
We reformulate (D.12) and (D.13) into the following form

¢0(y7 T) =Tae [J[¢ov ¢i]7723] (yv T, 7—0)7 ¢1 (ya T) =T [V¢O +h+ Cmﬂ(P)Z(P)] (D14)
where 7; is the linear mappings given by Lemma D.1. We will solve the system (D.14) by the contraction
mapping theorem.
Denote the leading term of the right hand side of (D.13) as Hy := h + Cin(p IZRO h(z,7)Z(x)zd td.
It is easy to check ||Hillv,e S ||R|lv,e under the assumption §+d < ¢. If H; satlsﬁes the orthogonal condition in
DsR,, under the assumption

Ry >2,v,Ry € CI(T(),OO), (f(’T) + |v’\v_1) Orgi—21 +O0Ry 722 <1,
F(T)(7)0Re.03 € C (10,00), [f(7) + |(f(T)0(T)0Re.e.3) | (f (T)0(T)0R0.0.3) "] ORopest + Oropen2 < 1,
Lemma D.1 gives the following a priori estimate
(PO, Ti[Hi]| + |Ti[Ha]| < Dywi(p,T)

where D; > 1 is a constant and
wi(p,7) = v(7)0Ry,0,3(p) " |h]|v,e
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where we have used f(7)(p)?O g, p,(p) < (p)~P* under the assumption f(7)Ry™H 972021 < 1 Indeed, by
the definition of p, in (D.5) and ©Og, p, in (D.2),

(p)2 R~ 727, it f<1-49
(p)?(In Ro)? it p=1-4

FE0) PP O, 1, (p) S 1= f(7){ [(p)*In Ry, pe=2-p S
(p)?, 2-B<p <B+d if f>1-4

(p)?In(p+2), pe=p+d
For this reason, we will solve the inner problem (D.13) in the space
Bi ={g(p,7) : (P)|Opg(p,T)| + lg(p,7)| < 2Diwi(p,7)}.
For any fixed ¢; € B;, we will find a solution ¢, = $o[¢i] of the outer problem (D.12) by the contraction

mapping theorem. Let us first estimate J[0, ¢;] term by term. Under the assumption |Rh| Ry + f(7) < Ry 2,
using (D.6), we have

IA[6:]] S (Rg® + |Ry| Ry + f(7)) LRry<p<anre) Diwi(Ro, T) ~ Ry *1(r,<p<2ry Diw;i(Ro, )

= Di Ry 1 ry<p<are)VllBllv.Oro,e,3(Ro) 7"

Ry’ (<B+d+2

Ry*InRy, I=B+d+2 if B<1-4

RyZ4F I>B+d+2

Ry’ (<B+d+2

Ry'(InRy)?,  I=B+d+2 if g=1-4
~ Dilip,<p<orVllhllve{ |Ro> * PRy, >F+d+2

Ry’ (<4-8

Ry'In Ry, {=4-5

Ry’ 4-B<l<pf+d+2 if p>1-4

REZ_[(CH_B)_], _:ﬁerJrQ

Ry 24P, (>B+d+2

Since the information of ¢ is lost in |A[¢;]| when ¢ > B 4 d + 2, we restrict it to the case £ < § + d + 2.
Additionally,

IA(1 = nro)| S Loz royvin) ‘IR

|v,€-
Thus, )
~ (p)~‘In(p+2), B>1—% and f=4-p
J10, ¢; < D;l hll» - 2
1710, ¢illnzr S Diliro<p<aryvllhlo.e {<p>_g, otherwise (D.15)
S Divllhllv,e(Lperoy Ro ™ + Linopzanyp™")
where

Z*Z:{€_7 5>1—%and 224—6

£, otherwise.

Consider (D.12) with the right hand side J[0, ¢;]n2r. In order to retrieve the information of ¢ and avoid
losing time decay, we restrict it to the case d > 2, 2 < £ < d.
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By [100, Lemma A.1] and the scaling argument, under the assumption that C;"F(7) < F(s) < C.F(7) with
F =uv,R, Ry and a costant C,, > 1 forall 7 < s < 2r, 7% f: v(s)R4(s)ds SvR*~ % R < /7, we have

P ’(’%7} 1710, éilnzr] ‘ + ‘% @Mm}‘ < CDi|Allo.e ‘7:1 v(1gpen) By + 1{Ro§p§4R}P_Z*)]‘
5 T Rg_g*7 1Y S RO
< CD;||hllv,e (7'(2161067 / v(s)R¥ (s)ds + v(7)  p>~ %, Ry<p< R)
o p2=de m.Rde7 p>R

o($) R (s)ds + (r) {Rﬁz L)

T

_d _ o2
< wo(p;7) = DoDz’hllu,é(1{p>8R}T Fen T /

0

p27£*7 p> RO
with a large constant D, > 1. This suggests that we solve ¢, in the following space:

Bo ={g(p:7) + (p)0pg(p,7)| +19(p, 7)| < 2wo(p,7)} - (D.16)
For any ¢, € B,, since |V (p)| < (p)~FV with Py > 2, we have

~ . 2-P, 7
[Véo(1 —nRry)lm2r S (TI££0 RO(T)) V1{R0§p§4R}DoDi||h||v,ZUP e*’
‘Ap8p¢o + B¢o 2R S f(T)DODi”h”v,ZU(R(%72*1{p§RO} + pz_e*l{R0<pg4R}> (Dl?)

< (‘sup f(T)R2(T))DoDi||h|\v,zv(REZ*1{p§R0} + 0" L ry < peary)-

T2>To

Taking 1nf Ro(7) sufficiently large and sup f(7)R?(7) sufficiently small, we have

270 T2>To

Tol T (G0, diln2R] € Bo.

The contraction mapping property can be deduced in the same way. Indeed, denote

lgllo == sup  [(wolp, 7)) g(p, )]

R4 X (19,00
Then for any ngl) 32 ¢ B,
V(G = ) (1 = o) | mar + [ Ap0, (6 = 62) + B = 62) | mar

. 2— P ~ ~
S ((inf Ro(m))” " + sup f(7) R 2(7)) Do Di[lluev (Rg 1 (p<ray + 0~ Umpwpzany) 165 = 6810
TZ2T0

where ( mf Ro(r )) vy sup f(7)R?(7) provides small quantity for the contraction mapping.

T2T0 T2>To

Now we have found a solution ¢, = ¢0[45¢] € B,. It follows that in the domain p < 2Ry,

2Rg
Voo +n(0) Z(0)Cy /0 V(@) 1) Z(x)a"da

i 1, B+d—Py <0
< DoDilhllo.coR5" (<p>‘PV +n(p){mRy,  f+d-Py= 0) < (inf Ro(7)) " “DoDi|hllu.ev{p) =
RITPY g d- Py >0 =
for a small constant € > 0 provided Py > max {27 20, +B+ d}.
Due to the choice of cin(7), Ha := Vo[pi] + h + cin[po|pi]](T)n(p) Z(p) satisfies the orthogonal condition in
Dsp,- By Lemma D.1, since (Tigfo Ry (7‘))_6 provides smallness, we have

7;[H2] S Bz
The contraction property can be deduced in the same way. Thus we find a solution

Finally we obtain a solution (¢, ¢;) for (D.12) and (D.13).
By the same argument in the proof of [100, Proposition 7.1], ¢ = ¢[h] is a linear mapping about h.
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We will regard D,, D; as general constants hereafter. Set

2Ro
cin1[R](7) = / V(@)oolh](@,7) 2 ()2’ de.

Since ¢,[h] € B,, then the estimate (D.10) follows.
Combining (D.18), (D.16), (D.6) and then using the scaling argument, we get (D.8).

Combining (D.15) and (D.17), we have |.J[¢o, ¢i|n2r| < v||hlls.eRy . By (D.16), then |¢,| < ’UHh”U’gRg_E*.
Applying again the scaling argument to (D.12), we have
sup sup ‘Qbo (y7 Tl) — ¢O(y7 7—2)|

«
yER 11,10 €[T—A2,7] ‘Tl - 7-2|

for & € (0,1), 0 < Ay < 4/7/8, which yields (D.11).

Sllblloe (AT RS + X370 Ry )

O

Remark D.2. The reason why we consider (D.12) in R is to make the scaling argument applicable for a wider
range of Ay.
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