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Abstract. Let ζ(s, z) =
∑

(m,n)∈Z2\{0}
(Im(z))s

|mz+n|2s be the Eisenstein series/Epstein Zeta func-

tion. Motivated by widely used Lennard-Jones potential

V(| · |2) := 4ε
(

(
σ

| · |
)12 − (

σ

| · |
)6
)
,

in physics, in this paper, we consider the following lattice minimization problem

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
, b =

1

σ6

and completely classify the minimizers for all b ∈ R. Our results resolve an open problem in
Blanc-Lewin [18], and a conjecture by Bétermin [9]. Furthermore, our method of proofs works

for general minimization problem

min
z∈H

(
ζ(s1, z)− bζ(s2, z)

)
, s1 > s2 > 1

which corresponds to general Lennard-Jones potential

V(| · |2) := 4ε
(

(
σ

| · |
)2s1 − (

σ

| · |
)2s2

)
, s1 > s2 > 1.

1. Introduction and statement of main results

Let L be a two dimensional lattice, i.e., of the form
(
Z~u⊕Z~v

)
, where ~u and ~v are two independent

two-dimensional vectors. Large classes of physical, chemical and mathematical problems can be
formulated to the following minimization problem on lattice:

min
L
Ef (L), where Ef (L) :=

∑
P∈L\{0}

f(|P|2), | · | is the Euclidean norm on R2. (1.1)

The summation ranges over all the lattice points except for the origin 0 and the function f denotes
the potential of the system. The function Ef (L) denotes the limit energy per particle of the system
under the background potential f over a periodical lattice L. It arises in various physical problems.
See [5, 6, 7, 8, 9, 10, 11, 13, 12, 14, 45, 18, 39, 34] and references therein. The functional Ef (L) can
be derived directly from crystallization problem when confining to the lattice-like atomic structure
of crystals ([7, 8, 9, 10, 11, 13, 12, 14, 18]). It is reasonable to consider lattice-like atomic structure
since, as Weyl [52](page 291) mentioned, ”early in the history of crystallography the law of rational
indices was derived from the arrangement of the plane surfaces of crystals. It led to the hypothesis
of the lattice-like atomic structure of crystals. This hypothesis, which explains the law of rational
indices, has now been definitely confirmed by the Laue interference patterns, that are essentially
X-ray photographs of crystals”. The function Ef (L) also arises in condensed matter physics. See
Anderson [1](pages 22-24). The function Ef (L) has close connections to sphere packing [40] and
Abrikosov vortex lattices (see e.g. [2, 26, 47, 42, 43, 44, 32]).

The minimization problem (1.1) builds up intricate connection between analytical number theory
and statistical physics (see e.g. [42, 43, 45, 47, 38, 18, 19, 27, 33, 35, 36, 46, 49]). In analytical
number theory, one looks for where the minimizer is achieved; while in statistical physics, one asks
why there appears hexagonal lattice or square lattice or rhombic lattice or mix of these several
lattice shapes. It turns out these two considerations coincide. More precisely, let z ∈ H := {z =

1
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x + iy or (x, y) ∈ C : y > 0}. For lattice L with unit cell area we can use the parametrization

L =
√

1
Im(z)

(
Z⊕ zZ

)
where z ∈ H. When

f(| · |2) = e−πα|·|
2

, α > 0 and f(| · |2) =
1

| · |2s
, s > 1

denoting the Gaussian and Riesz potential respectively, the corresponding limit energy per particle
Ef (L) becomes the theta function and Epstein Zeta function respectively, namely,

θ(α, z) : =
∑
P∈L

e−πα|P|
2

=
∑

(m,n)∈Z2

e−πα
π

Im(z)
|mz+n|2 ,

ζ(s, z) : =
∑

P∈L\{0}

1

|P|2s
=

∑
(m,n)∈Z2\{0}

(Im(z))s

|mz + n|2s
.

(1.2)

Number theorist Rankin [41] initiated the study of minimizer of ζ(s, z) for some range of s, and
followed by Cassels [20], Diananda [23] and Ennola [24, 25]. They proved that the point z = ei

π
3

achieves the minimizer (up to rotation and translation). Montgomery [37] proved that θ(α, z) still
achieves the same minimizer point for all α > 0 (thus recovering the results of [41, 20, 24, 25]).
Montgomery’s Theorem [37] has profound applications in mathematical physics, see e.g. [17, 45].
When

f(·) = − log | · |
denotes the Coulomb potential, it is implicitly proved by [43] the z = ei

π
3 still achieves the min-

imizer by their constructed Coulombian renormalized energy via a regularized procedure. It was
extended to a two component Coulombian competing system by [32].

The most physically related and widely used potential is the Lennard-Jones potential. It takes
the form (see e.g. [30, 50, 31])

f(| · |2) := 4ε
(

(
σ

| · |
)12 − (

σ

| · |
)6
)
, (1.3)

where | · | is the distance between two interacting particles, ε is the depth of the potential well
(usually referred to as ’dispersion energy’), σ can be taken as the size of the repulsive core or the
effective diameter of the hard sphere atom (interaction diameter). This is a fundamental model
in physics if both attractions and repulsive interaction forces are present. It is considered an
archetype model for simple yet realistic intermolecular interactions and is not only of fundamental
importance in computational chemistry and soft-matter physics, but also for the modeling of real
substances. We refer to [16] for background and references for Lennard-Jones type potential.

The limit energy per particle (1.1) under Lennard-Jones potential (1.3) is given by

ELJ = 2εσ12
(
ζ(6, z)− bζ(3, z)

)
, b =

1

σ6
. (1.4)

The problem of optimal lattice shape to the Lennard-Jones model (1.4) is then reduced to finding
the minimizers of the following minimization problem

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
, b ∈ R (1.5)

where ζ(α, z) is the zeta-function defined in (1.2).
Bétermin and his collaborators [6, 5, 9, 16] initiated the study of lattice minimization problem

for the Lennard-Jones model (1.5). (Note that there are different notations between Bétermin’s
and ours here, while they are essentially the same (up to some constants).) Bétermin made the
following conjecture in [9], and also mentioned in [11, 14]. (Note that in the survey of crystallization
problems by Blanc-Lewin [18](pages 268-269), they pointed out ”the energy minimizer to physically
related (1.5) is still unknown”.)

Conjecture 1.1 ([9], page 4003). The solutions to Lennard-Jones model (1.5) are as follows:

(1) For π
(120)1/3

< A < ABZ ≈ 1.138, the minimizer is triangular.
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(2) For ABZ < A < A1 ≈ 1.143, the minimizer is rhombic lattice. More precisely it covers
continuously and monotonically the interval of angles [76.43, 90).

(3) For A1 < A < A2 ≈ 1.268, the minimizer is the unique minimizer.
(4) For A > A2, the minimizer is a rectangular lattice.

Here Bétermin’s parameter A (denoting the area/density of lattice) and the parameter b(scaling
of the interaction diameter) in (1.5) has the following relation:

b = 2A3. (1.6)

A numerical simulation to support Bétermin’s Conjecture 1.1 can be found in [48]. Note that
Bétermin [6, 9] rigorously proved that the minimizer is triangular for A < π

(120)1/3
by skillfully using

the result of Montgomery [37]. Montgomery’s Theorem [37] and Bétermin’s method(see Theorem
2.9 in [15] for a general criterion) does not work for the proof in cases when minimizer is no-longer
triangular and cannot find optimal bound of the minimizer is triangular as pointed out by Bétermin
[6, 9]. This suggests the need of a new method and framework to attack the minimization problem
(1.5). In addition, Bétermin [9] showed that related to case [(4)] in Conjecture 1.1, when A→ +∞,
the minimizer becomes more and more thin and rectangular.

In this paper, we consider Lennard-Jones model (1.5) and give complete solutions to (1.5) and
then answer positively and affirmatively to Conjecture 1.1 and open problem by Blanc-Lewin
[18](pages 268-269).

We state our main results in the following

Theorem 1.1. The complete solutions to the minimization problem with parameter b ∈ R

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
, b ∈ R,

are as follows: there exists three thresholds 0 < b1 < b2 < b3 <∞ such that

(1) for b ∈ (−∞, b1), the minimizer is ei
π
3 , corresponding to hexagonal/triangular lattice;

(2) for b = b1, the minimizer is ei
π
3 or eiθb1 , corresponding to hexagonal lattice or rhombic

lattice with particular angle;
(3) for b ∈ (b1, b2), the minimizer is eiθb , where θb ∈ (θb1 ,

π
2 ) and dθb

db > 0, corresponding rhom-
bic lattice with the angle ranging continuously and monotonically the interval of (θb1 ,

π
2 );

(4) for b ∈ [b2, b3], the minimizer is i, corresponding square lattice;

(5) for b ∈ (b3,∞), the minimizer is iyb, yb ∈ (1,∞), and dyb
db > 0, limb→∞ yb = ∞. Further-

more
lim
b→∞

yb

3

√
ξ(6)

2ξ(12) · b
= 1.

This minimizer corresponds to rectangular lattice whose ratio of longer side to shorter side

is increasing from 1 to ∞ with a asymptotic rate 3

√
ξ(6)

2ξ(12) · b.
Here ξ is the Riemann Zeta function and defined by

ξ(s) :=

∞∑
n=1

1

ns
.

Numerically,

b1 = 2.9465 · · · , b2 = 2.9866 · · · , b3 = 4.0774 · · · , θb1 = 1.3347 · · · .

Analytically,

b2 : =

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

|y= 1
2
,

b3 : =

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

|y=1,
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Figure 1. Location of the fundamental region and its subregions; hexagonal
point(ei

π
3 ), square point(i), and a particular rhombic point(eiθb1 ).

and b1, θb1 are determined by an equation (7.1) and Lemma 7.4. yb is the unique solution of the
equation

b =

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

for y ≥ 1. (1.7)

In summary, it admits five cases which can be summarized as follows

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
is achived at



ei
π
3 , b ∈ (−∞, b1);

ei
π
3 , or eiθb1 , θb1 = 1.3347 · · · , b = b1;

eiθb , θb ∈ (θb1 ,
π
2 ), b ∈ (b1, b2);

i, b ∈ [b2, b3];

iyb, yb > 1, (yb → 3

√
ξ(6)

2ξ(12) · b, as b→∞), b ∈ (b3,∞).

Table 1. Minimizers of
(
ζ(6, z)− bζ(3, z)

)
for b ≥ b3: numerical aspect by

the minimizer formula (1.7).

values of b Lattice shape Values of b Lattice shape
b ∈ [b3,∞) Rectangular lattice=iyb b ∈ [b3,∞) Rectangular lattice=iyb
b = b3 iyb = i b = b3 iyb = i
b = 5 iyb = i1.249803800 · · · b = 100 iyb = i3.703484053 · · ·
b = 6 iyb = i1.372027647 · · · b = 200 iyb = i4.667323033 · · ·
b = 7 iyb = i1.467520869 · · · b = 300 iyb = i5.343067509 · · ·
b = 8 iyb = i1.548848505 · · · b = 400 iyb = i5.880944029 · · ·
b = 9 iyb = i1.620862121 · · · b = 500 iyb = i6.335129562 · · ·
b = 10 iyb = i1.686088356 · · · b = 600 iyb = i6.732125854 · · ·
b = 103 iyb = i7.981906081 · · · b = 107 iyb = i171.9663699 · · ·
b = 104 iyb = i17.196633949 · · · b = 108 iyb = i370.4903128 · · ·
b = 105 iyb = i37.04903113 · · · b = 109 iyb = i798.1971821 · · ·
b = 106 iyb = i79.81971820 · · · b = 1010 iyb = i1719.663699 · · ·
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Remark 1.1. By the relation in (1.6), we give a complete proof to Conjecture 1.1.

Remark 1.2. We find that there admits two minimizers for the first threshold b = b1 up to
rotations and translations. This is a new phenomenon mathematically and we do not know any
potential physical implications.

Remark 1.3. Our method of proofs can be easily adopted to treat the more general Lenard-Jones
potential cases:

f(| · |2) := 4ε
(

(
σ

| · |
)2s1 − (

σ

| · |
)2s2

)
, s1 > s2 > 1. (1.8)

Throughout this paper we denote

H := {z = x+ iy ∈ C : y > 0},

DG := {z ∈ H : |z| > 1, 0 < x <
1

2
}.

The boundaries of DG are divided into two pieces

Γa : = {z ∈ H : Re(z) = 0, Im(z) ≥ 1},

Γb : = {z ∈ H : |z| = 1, Im(z) ∈ [

√
3

2
, 1]},

Γ = Γa ∪ Γb.

See Picture 1.
In the rest of this paper, we prove Theorem 1.1. We introduce the main ideas of the proof and

the organization of the paper. Bétermin ([9], page 4002) suggests a strategy to prove his Conjecture
1.1. For b ≥ 3.062, we partially inspired by step 1 of the strategy with the opposite direction in
proving (1.10)(Theorem 3.1). See details in Section 3. For b ≤ 3.06, we estimate the mixed order
second order derivatives

∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
;

∂2

∂y∂x

(
ζ(6, z)− bζ(3, z)

)
and reduce the minimization problem to 1

4−arc Γb. (See Propositions 4.1-4.2).) This kind of
estimate seems to be the first in the study of lattice minimization problems. We believe that there
may be more potential applications of these estimates.

In Section 2, we present some basic properties of the function
(
ζ(6, z)− bζ(3, z)

)
including its

group invariance. As a result of group invariance we deduce that

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
. (1.9)

In Section 3, we prove that

for b ≥ 3.062, min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
. (1.10)

This follows from the monotonicity in the horizontal x−direction (see Proposition 3.1)

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
≥ 0, for z ∈ DG . (1.11)

In Section 4, we prove that

for b ≤ 3.06, min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
. (1.12)

This follows from positivity of two second order derivatives (see Propositions 4.1-4.2).
In Section 5, we prove that

for b ∈ (3.06, 3.062), min
z∈H

(
ζ(6, z)− bζ(3, z)

)
is achieved at i.



6 SENPING LUO AND JUNCHENG WEI

By the results in Sections 3-5, we conclude that

for b ∈ R, min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
.

This partially answers a question by Bétermin [14], where he remarked that in the fixed density case,
the set of lattices is much larger and this is not clear why such minimizer must be in the boundary
of the fundamental domain for 2d lattices(i.e., must be either rhombic or orthorhombic)(Remark
4.3, page 15).

In Sections 6 and 7, we locate exactly where the minimizers should be for
(
ζ(6, z) − bζ(3, z)

)
when z ∈ Γa and when z ∈ Γb respectively. Finally, we give the proof of Theorem 1.1 in Section 8.

2. Preliminaries

In this section we present the relation between minimizers and lattice shapes, and some group

invariance of
(
ζ(6, z)− bζ(3, z)

)
, followed by its corresponding fundamental region.

We first fix the parametrization of a lattice in R2 (see e.g. [5, 6, 7, 8, 9, 10, 11]). Let the lattice
Λ = Za1 ⊕ Za2 be spanned by two vectors a1,a2. For convenience, we fix the area of the lattice
to be 1, namely, |a1 ∧ a2| = 1. Up to rotation and translation, one can set a1 = 1√

y (1, 0), and

a2 = 1√
y (x, y), where y > 0. In this way, |a1 ∧ a2| = 1, a2 = za1 where z = x + iy ∈ H := {z =

x + iy ∈ C : y > 0}, and Λ =
√

1
y

(
Z ⊕ zZ

)
. In particular, z = ei

π
3 corresponds to hexagonal

lattice, z = i corresponds to square lattice,z = eiθ, θ ∈ (0, π2 ) corresponds to rhombic lattice, and
z = iy, y ≥ 1 corresponds to rectangular lattice. (If y > 1 it corresponds to strict rectangular
lattice.)

Let H denote the upper half plane and S denote the modular group

S := SL2(Z) = {
(
a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z}. (2.1)

We use the following definition of fundamental domain which is slightly different from the
classical definition (see [37]):

Definition 2.1 (page 108, [29]). The fundamental domain associated to group G is a connected
domain D satisfies

• For any z ∈ H, there exists an element π ∈ G such that π(z) ∈ D;
• Suppose z1, z2 ∈ D and π(z1) = z2 for some π ∈ G, then z1 = z2 and π = ±Id.

By Definition 1, the fundamental domain associated to modular group S is

DS := {z ∈ H : |z| > 1, −1

2
< x <

1

2
} (2.2)

which is open. Note that the fundamental domain can be open. (See [page 30, [3]].)
Next we introduce another group related to the functionals ζ(s; z). The generators of the group

are given by

G : the group generated by τ 7→ −1

τ
, τ 7→ τ + 1, τ 7→ −τ . (2.3)

It is easy to see that the fundamental domain associated to group G denoted by DG is

DG := {z ∈ H : |z| > 1, 0 < x <
1

2
}. (2.4)

The following lemma characterizes the fundamental symmetries of the theta functions θ(s; z).
The proof is easy so we omit it.

Lemma 2.1. For any s > 0, any γ ∈ G and z ∈ H, ζ(s; γ(z)) = ζ(s; z).

Let
Wb(α; z) := ζ(α; z)− bζ(2α; z).

Lemma 2.2. For any α > 0, any γ ∈ G and z ∈ H, Wb(α; γ(z)) =Wb(α; z).
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3. The Horizontal monotonicity: the cases b ≥ 3.062

Recall that the partial boundary is defined as follows

Γa = {z ∈ H : Re(z) = 0, Im(z) ≥ 1};

Γb = {z ∈ H : |z| = 1, Im(z) ∈ [

√
3

2
, 1]},

Γ = Γa ∪ Γb.

Note that by group invariance(Lemma 2.2) and its fundamental region((2.4)), one has

Lemma 3.1. For all b ∈ R,

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
.

By Lemma 3.1, one can reduce the finding of the minimizer of
(
ζ(6, z) − bζ(3, z)

)
from z ∈ H

to z ∈ DG .
In this section, we aim to prove that

Theorem 3.1. • For b ≥ 3.062, then

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
.

• For b ≥ 3, then

min
z∈DG∩{y≥1}

(
ζ(6, z)− bζ(3, z)

)
= min
z∈Γa

(
ζ(6, z)− bζ(3, z)

)
.

See Picture 1 for the geometric shapes of DG , DG ∩ {y ≥ 1}, Γa and Γ. The proof of Theorem
3.1 is based on the following horizontal monotonicity:

Proposition 3.1. • For b ≥ 3.062, then

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
≥ 0, for z ∈ DG .

• For b ≥ 3, then

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
≥ 0, for z ∈ DG ∩ {y ≥ 1}.

In the rest of this Section, we prove Proposition 3.1. To prove Proposition 3.1, we first introduce
the Chowla-Selberg formula for ζ functions and related Bessel functions. The following theorem is
a classical result in number theory. (See the monograph [28](page 211).)

Theorem 3.2 (Chowla-Selberg formula, [21, 22]). The Fourier expansion of the Epstein Zeta
function is given by

ζ(s, z) =2ξ(2s)ys + 2
√
π

Γ(s− 1
2 )

Γ(s)
ξ(2s− 1)y1−s

+
8πs

Γ(s)

√
y

∞∑
n=1

σs− 1
2
(n) ·Ks− 1

2
(2mnπy) · cos(2πmnx).

(3.1)

Here ξ is the Riemann Zeta function, Γ is the Gamma function, and explicitly

ξ(s) =

∞∑
m=1

1

ms
, Γ(s) =

∫ ∞
0

e−
1
t

1

t1+s
dt.

σz(n) is the sum of the zth powers of the divisors of n. Namely,

σz(n) :=
∑
d|n

dz.
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K is the second kind modified Bessel function, has the integral form [28](pages 113-117)

Kν(x) =

∫ ∞
0

e−x cosh(t) · cosh(νt)dt.

K admits the asymptotic expansion at large x,

lim
x→∞

Ks(x)√
π
2xe
−x = 1.

In view of (3.1), the second kind modified Bessel function plays an important role in our analysis.
The next proposition contains the explicit expansions of Bessel function in some special cases. For
a detailed analysis of Bessel function we refer to the monograph [51].

Proposition 3.2 ([51]). When s is half-integer n+ 1
2 , Kn+ 1

2
admits an exact form

Kn+ 1
2
(z) =

√
π

2z
e−z

n∑
k=0

(n+ k)!

k!(n− k)!(2z)k
.

A consequence of the Chowla-Selberg formula in Theorem 3.2 yields the following.

Lemma 3.2. We have the following expansion of
(
ζ(6, z)− bζ(3, z)

)
(
ζ(6, z)− bζ(3, z)

)
=
(

2ξ(12)y6 + 2
√
π

Γ( 11
2 )

Γ(6)
ξ(11)y−5 − b

(
2ξ(6)y3 + 2

√
π

Γ( 5
2 )

Γ(3)
ξ(5)y−2

))
+

∞∑
n=1

(
n

11
2 σ−11(n)

8π6

Γ(6)

√
yK 11

2
(2πny)− bn 5

2σ−5(n)
8π3

Γ(3)

√
yK 5

2
(2πny)

)
· cos(2πnx).

As a consequence, we have the expansion for derivatives

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
=2π sin(2πx)

∞∑
n=1

(
bn

7
2σ−5(n)

8π3

Γ(3)

√
yK 5

2
(2πny)

− n 13
2 σ−11(n)

8π6

Γ(6)

√
yK 11

2
(2πny)

)
· sin(2πnx)

sin(2πx)
.

For K 5
2
(2πny) and K 11

2
(2πny), from Proposition 3.2, direct computations give

Lemma 3.3.
K 11

2
(2πny)

K 11
2

(2πy)
≤ e−2π(n−1)y for y > 0,

K 11
2

(2πy)

K 5
2
(2πy)

≤ 5.45 for y ≥ 1,

K 11
2

(2πy)

K 5
2
(2πy)

> 1 for y > 0.

There is another property of
√
yKn+ 1

2
(2πny), n ∈ Z+ we shall use later. This follows from an

observation in Proposition 3.2. Namely,

Lemma 3.4.
√
yKn+ 1

2
(2πny), n ∈ Z+ is completely monotone. i.e.,

(−1)j
dj

dyj
{√yKn+ 1

2
(2πny)} > 0, for n ∈ Z+, j ∈ Z0 and y > 0.

Proof. Note that by Proposition 3.2,
√
yKn+ 1

2
(2πny), n ∈ Z+ is a finite, positive and linear com-

bination of terms of e−ayy−b, where a, b > 0. On the other hand, it is easy to see that e−ay(a > 0)
and y−b(b > 0) both are completely monotone. Thus their product and finite, positive, and linear
combination are still completely monotone (see e.g. [6]).

�
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We shall state a comparison principle in estimates. Namely,

Lemma 3.5 (An comparison on b). If there exists b = b > 0 such that

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
≥ 0, for z ∈ R, (3.2)

where R is any subset of DG. Then for all b ≥ b, (3.2) holds.

By Lemma 3.5, in proving Proposition 3.1, one only needs to consider a particular point of the
parameter b. The proof of Lemma 3.5 is based on

∂

∂b

( ∂
∂x

(
ζ(6, z)− bζ(3, z)

))
= − ∂

∂x
ζ(3, z)

and the following lemma by [41]

Lemma 3.6.
∂

∂x
ζ(3, z) ≥ 0, for z ∈ DG .

By Lemma 3.5, to prove Proposition 3.1, it suffices a particular case, namely

Lemma 3.7 (x-monotonicity on a particular value). (1) For b = 3.062,

∂

∂x

(
ζ(6, z)− 3.062ζ(3, z)

)
≥ 0, for z ∈ DG .

(2) For b = 3,
∂

∂x

(
ζ(6, z)− 3ζ(3, z)

)
≥ 0, for z ∈ DG ∩ {y ≥ 1}.

To prove Lemma 3.7, we only prove the case (1), since the proof of case (2) is similar to a
subcase of case (1) as will see later. For convenience, we denote that

Pn(y, b) : =
(
bn

7
2σ−5(n)

8π3

Γ(3)

√
yK 5

2
(2πny)− n 13

2 σ−11(n)
8π6

Γ(6)

√
yK 11

2
(2πny)

)
Pn(y) : = Pn(y, 3.062).

(3.3)

As a consequence, one can rewrite ∂
∂x

(
ζ(6, z)− bζ(3, z)

)
by

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
=2π sin(2πx) ·

∞∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)
.

Then case (1) of Lemma 3.7 equivalents to proving

Lemma 3.8.
∞∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)
≥ 0, for z = x+ iy ∈ DG .

Here Pn(y) is defined in (3.3).

The strategy of the proof of Lemma 3.8 is as follows: by Chowla-Selberg formula we decompose
∂
∂x

(
ζ(6, z) − bζ(3, z)

)
into two parts: n ≤ 3 and n ≥ 4. We show that n ≤ 3 parts dominate the

rest.
To prove Lemma 3.8, one first has the following preliminary estimates

Lemma 3.9. For y ≥
√

3
2 ,

Pn(y) < 0, for n ≥ 2.

For P1(y), there exists yP1
∼= 0.9434111 · · · such that

P1(y) < 0, for y ∈ [

√
3

2
, yP1).

P1(y) > 0, for y ∈ (yP1 ,∞).



10 SENPING LUO AND JUNCHENG WEI

Here Pn(y) is defined in (3.3).

Proof. The fact that Pn(y) < 0 for n ≥ 2 and y ≥
√

3
2 follows directly from Lemma 3.3. The

estimate on P1(y) is by direct calculation.
�

We shall divide the proof of Lemma 3.8 into two cases, namely, case a: y ∈ [
√

3
2 , 1], case b:

y ≥ 1. Note that y ∈ [
√

3
2 , 1] and z = x+ iy ∈ DG imply that x ∈ [

√
1− y2, 1

2 ].

We shall analyze the main order terms
∑3
n=1 Pn(y) · sin(2πnx)

sin(2πx) and the error terms
∑∞
n=4 Pn(y) ·

sin(2πnx)
sin(2πx) respectively in the following. For the main order terms

∑3
n=1 Pn(y) · sin(2πnx)

sin(2πx) , direct

calculation shows that
3∑

n=1

Pn(y) · sin(2πnx)

sin(2πx)
= P1(y) + P3(y) + 2P2(y) cos(2πx) + 2P3(y) cos(4πx), (3.4)

∂

∂x

( 3∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)

)
= −2 sin(2πx) ·

(
P2(y) + 2P3(y) cos(2πx)

)
. (3.5)

Here Pn(y) is defined in (3.3). We shall prove that

Lemma 3.10. For z = x+ iy ∈ DG, it holds that

∂

∂x

( 3∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)

)
≥ 0.

By (3.5), the proof of Lemma 3.10 follows from the following

Lemma 3.11. For y ≥
√

3
2 ,

2P3(y)− P2(y) ≥ 1

10
· 2 13

2 σ−11(2)
8π6

Γ(6)
·K 11

2
(4πy) > 0.

Here Pn(y) is defined in (3.3).

Proof. By (3.3), one has the explicit expression,

2P3(y)− P2(y) = 2
13
2 σ−11(2)

8π6

Γ(6)
K 11

2
(4πy) + 2 · 3.062 · 3 7

2σ−5(3)
8π3

Γ(3)
K 5

2
(6πy)

− 3.062 · 2 7
2σ−11(2)

8π3

Γ(3)
K 5

2
(4πy)− 2 · 3 13

2 σ−11(3)
8π6

Γ(6)
K 11

2
(6πy).

Dropping the second positive term, we find that

2P3(y)− P2(y) ≥ 2
13
2 σ−11(2)

8π6

Γ(6)
K 11

2
(4πy) ·

(
1− 3.062Γ(6)

8π3Γ(3)

K 5
2
(4πy)

K 11
2

(4πy)
− 2(

3

2
)

13
2
σ−11(3)

σ−11(2)

K 11
2

(6πy)

K 11
2

(4πy)

)
≥ 2

13
2 σ−11(2)

8π6

Γ(6)
K 11

2
(4πy) ·

(
1− 3.062Γ(6)

8π3Γ(3)
− 2(

3

2
)

13
2
σ−11(3)

σ−11(2)
e−2πy

)
,

(3.6)
where we have used the fact that

K 5
2
(4πy)

K 11
2

(4πy)
≤ 1, and

K 11
2

(6πy)

K 11
2

(4πy)
≤ e−2πy

by Lemma 3.3. The proof is complete by (3.6) and the following

3.062Γ(6)

8π3Γ(3)
≤ 0.740656 · · · , and 2(

3

2
)

13
2
σ−11(3)

σ−11(2)
e−
√

3π ≤ 0.120907 · · · .

�
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By Lemma 3.10 and (3.4), one has

Lemma 3.12. For z = x+ iy ∈ DG, it holds that

3∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)
≥ P1(y) + P3(y) + 2P2(y) cos(2π

√
1− y2) + 2P3(y) cos(4π

√
1− y2).

Here Pn(y) is defined in (3.3).

For controlling the error terms
∑∞
n=4 Pn(y) · sin(2πnx)

sin(2πx) , we observe that

Lemma 3.13. For x ∈ R, n ∈ Z+, it holds that

| sin(2nπx)

sin(2πx)
| ≤ n. (3.7)

As a consequence, for y ≥
√

3
2 ,

|
∞∑
n=4

Pn(y) · sin(2πnx)

sin(2πx)
| ≤ ε1(y),

where

ε1(y) :=

∞∑
n=4

n
15
2 σ−11(n)

8π6

Γ(6)
· √yK 11

2
(2πny). (3.8)

Here Pn(y) and ε1(y) are defined in (3.3) and (3.8) respectively.

By Lemmas 3.12 and 3.13, one has

Lemma 3.14. For z ∈ DG ∩ {y ∈ [
√

3
2 , 1]},

∞∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)
≥ P1(y) + P3(y) + 2P2(y) cos(2π

√
1− y2) + 2P3(y) cos(4π

√
1− y2)− ε1(y).

By Lemma 3.14, the proof of case a: y ∈ [
√

3
2 , 1] of Lemma 3.8 is proved by the following

Lemma 3.15. For y ∈ [
√

3
2 , 1],

P1(y) + P3(y) + 2P2(y) cos(2π
√

1− y2) + 2P3(y) cos(4π
√

1− y2) ≥ 2.655 · 10−5;

ε1(y) ≤ 5.76 · 10−6.

Lemma 3.15 is proved by a direct computation.
It remains to prove case b: y ∈ [1,∞) of Lemma 3.8, which follows from

Lemma 3.16. For z ∈ DG ∩ {y ≥ 1},

∞∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)
≥ 1

2
P1(y) > 0.

Note that P1(y) > 0 for y ≥ 1 by Lemma 3.9.
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Proof. We estimate by selecting the leading order term P1(y) and by Lemmas 3.7 and 3.9,
∞∑
n=1

Pn(y) · sin(2πnx)

sin(2πx)
= P1(y) ·

(
1 +

∞∑
n=2

Pn(y)

P1(y)
· sin(2πnx)

sin(2πx)

)
≥ P1(y) ·

(
1−

∞∑
n=2

n · |Pn(y)

P1(y)
|
)

≥ P1(y) ·
(

1−
8π6

Γ(6)

3.062 8π3

Γ(3)

∞∑
n=2

n
15
2 σ−11(n)

K 11
2

(2πny)

K 5
2
(2πy)

)

≥ P1(y) ·
(

1−
5.45 8π6

Γ(6)

3.062 8π3

Γ(3)

·
∞∑
n=2

n
15
2 σ−11(n) · e−2π(n−1)y

)
≥ 1

2
P1(y).

Here we used that fact that

5.45 8π6

Γ(6)

3.062 8π3

Γ(3)

·
∞∑
n=2

n
15
2 σ−11(n) · e−2π(n−1)y ≤ 0.3234 · · · < 1

2
, for y ≥ 1

and that for y ≥ 1

K 11
2

(2πny)

K 5
2
(2πy)

≤
K 11

2
(2πny)

K 11
2

(2πy)
·
K 11

2
(2πy)

K 5
2
(2πy)

≤ 5.45e−2π(n−1)y

by Lemma 3.3. �

4. the cases b ≤ 3.06: y-convexity and y-monotonicity of x-derivative:

Recall that

Γb = {z ∈ H : |z| = 1, Im(z) ∈ [

√
3

2
, 1]}.

In this section, we aim to prove that

Theorem 4.1. For b ≤ 3.06,

min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
= min
z∈Γb

(
ζ(6, z)− bζ(3, z)

)
.

The proof of Theorem 4.1 is quite involved and is based on careful investigation of two second
order estimates as stated in the two following propositions.

Proposition 4.1 (y-convexity). For b ≤ 3.06,

∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
> 0, for z ∈ DG .

Proposition 4.2 (y-monotonicity of x-derivative). For b ≤ 3.07,

∂2

∂y∂x

(
ζ(6, z)− bζ(3, z)

)
> 0, for z = x+ iy ∈ {x ∈ [

√
3

2
], y ∈ [0,

1

2
]}.

Propositions 4.1 and 4.1 are indeed motivated by an alternative monotonicity property for the

functional
(
ζ(6, z)− bζ(3, z)

)
on the 1

4−arc Γb as follows.

Proposition 4.3. We have the following alternative monotonicity on Γb: for any z ∈ Γb and any
b ∈ R,

• either ∂
∂x

(
ζ(6, z)− bζ(3, z)

)
≥ 0,

• or ∂
∂y

(
ζ(6, z)− bζ(3, z)

)
≥ 0.
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Proof. Denote that

Wb(z) :=
(
ζ(6, z)− bζ(3, z)

)
.

Since z 7→ − 1
z , z 7→ −z ∈ G, by Lemma 2.1,

Wb(z) =Wb(
1

z
). (4.1)

Let z = r(cos(θ) + i sin(θ)) be the polar coordinate form, (4.1) reads as

Wb(r(cos(θ) + i sin(θ))) =Wb(
1

r
(cos(θ) + i sin(θ))). (4.2)

Taking derivative with respect to r on (4.2), one has

∂

∂r
Wb(r(cos(θ) + i sin(θ))) |r=1= 0. (4.3)

Which implies that

∂

∂x
Wb(cos(θ) + i sin(θ)) · cos(θ) = − ∂

∂y
Wb(cos(θ) + i sin(θ)) · sin(θ). (4.4)

Note for z ∈ Γb, z = cos(θ) + i sin(θ) with θ ∈ [π3 ,
π
2 ]. Therefore the Proposition follows by

(4.4). �

We postpone the proof of Propositions 4.1 and 4.2 to late of this section and give the proof of
Theorem 4.1 based on Propositions 4.1 and 4.2.

Proof of Theorem 4.1. We divide the fundamental region DG into two different sub-regions. We
refer the readers to see Picture 1(right one) when reading this proof. In each subregion, we use
different strategies.

Case A: DG ∩ {y ≥ 1}. Taking θ = π
2 in (4.4), one has

∂

∂y

(
ζ(6, z)− bζ(3, z)

)
|z=i= 0 for any b ∈ R.

Therefore, by Proposition 4.2, for b ≤ 3.06,

∂

∂y

(
ζ(6, z)− bζ(3, z)

)
> 0, for z = x+ iy ∈ {y = 1, x ∈ (0,

1

2
]}. (4.5)

It follows by Proposition 4.1 and (4.5) that, for b ≤ 3.06

∂

∂y

(
ζ(6, z)− bζ(3, z)

)
≥ 0, for z ∈ DG ∩ {y ≥ 1}.

It yields that, for b ≤ 3.06

min
z∈DG∩{y≥1}

(
ζ(6, z)− bζ(3, z)

)
= min
z∈{y=1,x∈[0, 12 ]}

(
ζ(6, z)− bζ(3, z)

)
.

Therefore, we then have, for b ≤ 3.06

min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG∩{y∈[

√
3

2 ,1]}

(
ζ(6, z)− bζ(3, z)

)
. (4.6)

Case B: DG ∩ {y ∈ [
√

3
2 , 1]}. We aim to prove that

For b ≤ 3.06, min
z∈DG∩{y∈[

√
3

2 ,1]}

(
ζ(6, z)− bζ(3, z)

)
= min
z∈Γb

(
ζ(6, z)− bζ(3, z)

)
.

To this end and for convenience, we denote two regions

Γu := {y = 1, x ∈ (0,
1

2
]}, Γr := {x =

1

2
, y ∈ (

√
3

2
, 1]}. (4.7)

For b ≤ 3.06, we assume that min
z∈DG∩{y∈[

√
3

2 ,1]}

(
ζ(6, z)− bζ(3, z)

)
is achieved at zb,0.
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Note that, Γb,Γu and Γr consist the boundaries of the small finite region DG ∩{y ∈ [
√

3
2 , 1]}(see

Picture 1). We prove by excluding the possibility of the minimizers occur on the upper and right
boundaries, i.e., Γu,Γr and the interior points respectively. We consider three sub-cases

Subcase B1: zb,0 /∈ Γu for b ≤ 3.06. In fact, this is a direct consequence of (4.5).
Subcase B2: zb,0 /∈ Γr for b ≤ 3.06. It follows by

for b ≤ 3.06,
∂

∂y

(
ζ(6, z)− bζ(3, z)

)
> 0, for z ∈ Γr. (4.8)

Note that ∂
∂y ζ(s, z) |

z= 1
2 +i

√
3

2

= 0 for s > 0[41, 20], then ∂
∂y

(
ζ(6, z)− bζ(3, z)

)
|
z= 1

2 +i
√

3
2

= 0 for

any b ∈ R. Therefore, by Proposition 4.1, (4.8) follows.

Subcase B3: zb,0 /∈ interior points of DG∩{y ∈ [
√

3
2 , 1]} for b ≤ 3.06. We use a contradiction

argument. Suppose that zb,0 is a interior point of DG ∩ {y ∈ [
√

3
2 , 1]} for b ≤ 3.06. Then it holds

that

for b ≤ 3.06,
∂

∂y

(
ζ(6, z)− bζ(3, z)

)
|z=zb,0= 0, and

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
|z=zb,0= 0. (4.9)

Further denote that zb,0 = x0 + iy0. Consider point x0 + i
√

1− x2
0 ∈ Γb. By Proposition 4.3, there

holds one of the following two sub-sub-cases:

Sub-sub-case B31:
∂
∂y

(
ζ(6, z)− bζ(3, z)

)
|
z=x0+i

√
1−x2

0

≥ 0. In this sub-sub-case, by Propo-

sition 4.1, ∂
∂y

(
ζ(6, z)− bζ(3, z)

)
|z=zb,0> 0. This contradicts to (4.9).

Sub-sub-case B32:
∂
∂x

(
ζ(6, z)− bζ(3, z)

)
|
z=x0+i

√
1−x2

0

≥ 0. In this sub-sub-case, by Propo-

sition 4.2, ∂
∂x

(
ζ(6, z)− bζ(3, z)

)
|z=zb,0> 0. This still contradicts to (4.9).

Combining all cases above, we complete the proof of Theorem 4.1.
�

In the rest of this section, we prove Propositions 4.1 and 4.2 separately.

4.1. Proof of Proposition 4.1. In this subsection, we shall prove the y-convexity stated in
Proposition 4.1.

We first state the following useful comparison principle.

Lemma 4.1 (An comparison on b of y-convexity). If there exists b = b > 0 such that

∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
> 0, for z ∈ DG . (4.10)

Then for all b ≤ b, (4.11) holds.

By Lemma 4.1, to prove Proposition 4.1, one only needs to consider a particular point of the
parameter b. The proof of Lemma 4.1 is based on

∂

∂b

( ∂2

∂y2

(
ζ(6, z)− bζ(3, z)

))
= − ∂2

∂y2
ζ(3, z)

and the following lemma

Lemma 4.2 (y−convexity of ζ(3, z)).

∂2

∂y2
ζ(3, z) ≥ 4 > 0, for z ∈ DG .

Note that z ∈ DG implies that y ≥
√

3
2 . In fact, we will show that

Lemma 4.3 (y−convexity of ζ(3, z)).

∂2

∂y2
ζ(3, z) ≥ 4 > 0, for z ∈ {x ∈ R} ∩ {y ∈ [

√
3

2
,∞)}. (4.11)
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Proof of Lemma 4.3. By Theorem 3.2,

∂2

∂y2
ζ(3, z) =

(
12ξ(6)y + 12

√
π

Γ( 5
2 )

Γ(3)
ξ(5)y−4

)
+

∞∑
n=1

(
n

5
2σ−5(n)

8π3

Γ(3)

∂2

∂y2
{√yK 5

2
(2πny)}

)
· cos(2πnx).

By the positiveness, comparisons and complete monotonicity of ∂2

∂y2 {
√
yK 5

2
(2πny)} in Lemmas

4.7, 4.8 and 3.4 respectively, we estimate that

∂2

∂y2
ζ(3, z) ≥

(
12ξ(6)y + 12

√
π

Γ( 5
2 )

Γ(3)
ξ(5)y−4

)
−
∞∑
n=1

(
n

5
2σ−5(n)

8π3

Γ(3)

∂2

∂y2
{√yK 5

2
(2πny)}

)
≥
(
12ξ(6)y + 12

√
π

Γ( 5
2 )

Γ(3)
ξ(5)y−4

)
−
∞∑
n=1

(
n4σ−5(n)

8π3

Γ(3)
· e−2π(n−1)y · ∂

2

∂y2
{√yK 5

2
(2πy)}

)
.

(4.12)

Note that z ∈ DG implies that y ∈ [
√

3
2 ,∞). We then divide the proof into two cases, namely, case

a: y ∈ [
√

3
2 , 1], case b: y ∈ [1,∞).

For case a: y ∈ [
√

3
2 , 1], by (4.12),

∂2

∂y2
ζ(3, z) ≥

(
12ξ(6) + 12

√
π

Γ( 5
2 )

Γ(3)
ξ(5)

)
− 8π3

Γ(3)
· ∂

2

∂y2
{√yK 5

2
(2πy)} |

y=
√

3
2

·
∞∑
n=1

(
n4σ−5(n)e−

√
3π(n−1)

)
≥26.8− 22.6 > 4.

Here we have used the fact that the monotonicity of ∂2

∂y2 {
√
yK 5

2
(2πy)} in Lemma 3.4, and the fact

that

8π3

Γ(3)
= 124.025106 · · ·

∂2

∂y2
{√yK 5

2
(2πy)} |

y=
√

3
2

= 0.170011 · · ·
∞∑
n=1

(
n4σ−5(n) · e−

√
3π(n−1) ≤ 1.104342 · · · .

For case b: y ∈ [1,∞), by (4.12),

∂2

∂y2
ζ(3, z) ≥5

5

√
(3ξ(6))4 · 12

√
π

Γ( 5
2 )

Γ(6)
ξ(5)− 8π3

Γ(3)
· ∂

2

∂y2
{√yK 5

2
(2πy)} |y=1 ·

∞∑
n=1

(
n4σ−5(n)e−2π(n−1)

)
≥20.8− 8.5 > 12.
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Here we have used that the mean value inequality, namely, ay + by4 ≥ 5 · 5
√

(a4 )4 · b for a, b, y > 0

and the monotonicity of ∂2

∂y2 {
√
yK 5

2
(2πy)} in Lemma 3.4, and the following estimates

8π3

Γ(3)
= 124.025106 · · ·

∂2

∂y2
{√yK 5

2
(2πy)} |y=1= 0.065966 · · ·

∞∑
n=1

(
n4σ−5(n) · e−

√
2π(n−1) ≤ 1.062356 · · · .

�

By Lemma 4.1, to prove Proposition 4.1, it suffices to prove that

Lemma 4.4 (y-convexity on a particular value). For b = 3.06,

∂2

∂y2

(
ζ(6, z)− 3.06ζ(3, z)

)
> 0, for z ∈ DG .

To this end, we note that by Lemma 3.2, one has

Lemma 4.5. We have the expansion of ∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
=
(

60ξ(12)y4 + 60
√
π

Γ( 11
2 )

Γ(6)
ξ(11)y−7 − b

(
12ξ(6)y + 12

√
π

Γ( 5
2 )

Γ(3)
ξ(5)y−4

))
+

∞∑
n=1

(
n

11
2 σ−11(n)

8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πny)} − bn 5

2σ−5(n)
8π3

Γ(3)

∂2

∂y2
{√yK 5

2
(2πny)}

)
· cos(2πnx).

To analyze ∂2

∂y2 {
√
yK 5

2
(2πny)} and ∂2

∂y2 {
√
yK 11

2
(2πny)}, we start with some preliminary esti-

mates

Lemma 4.6. There holds

∂2

∂y2
{√yK 5

2
(2nπy)} =2n

3
2π2e−2πny

(
1 +

3

2nπ
· 1

y
+

9

4n2π2
· 1

y2
+

9

4n3π3
· 1

y3
+

9

8n4π4
· 1

y4

)
∂2

∂y2
{√yK 11

2
(2nπy)} =2n

3
2π2e−2πny

(
1 +

15

nπ
· 1

y
+

135

4n2π2
· 1

y2
+

435

4n3π3
· 1

y3
+

4095

16n4π4
· 1

y4

+
13545

32n5π5
· 1

y5
+

14175

32n6π6
· 1

y6
+

14175

64n7π7
· 1

y7

)
By Lemma 4.6, one has the following Lemmas 4.7 and 4.8 directly.

Lemma 4.7. For y > 0, it holds that

0 <
∂2

∂y2
{√yK 5

2
(2nπy)} < ∂2

∂y2
{√yK 11

2
(2nπy)}.

Lemma 4.8. For 1 ≤ m < n ∈ Z+, it holds that

∂2

∂y2 {
√
yK 5

2
(2nπy)}

∂2

∂y2 {
√
yK 5

2
(2mπy)}

≤ (
n

m
)

3
2 e−2π(n−m)y

∂2

∂y2 {
√
yK 11

2
(2nπy)}

∂2

∂y2 {
√
yK 11

2
(2mπy)}

≤ (
n

m
)

3
2 e−2π(n−m)y
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To analyze ∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
, by Lemma 4.5 and for convenience, we denote that

A0(y; b) : = 60ξ(12)y4 + 60
√
π

Γ( 11
2 )

Γ(6)
ξ(11)y−7 − b

(
12ξ(6)y + 12

√
π

Γ( 5
2 )

Γ(3)
ξ(5)y−4

)
Aj(y; b) : =

(
n

11
2 σ−11(n)

8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πny)} − bn 5

2σ−5(n)
8π3

Γ(3)

∂2

∂y2
{√yK 5

2
(2πny)}

)
, j ≥ 1

A0(y) : = A0(y; 3.06);

Aj(y) : = Aj(y; 3.06), j ≥ 1,

(4.13)
and

Aj,+(y) : = n
11
2 σ−11(n)

8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πny)};

Aj,−(y) : = 3.06n
5
2σ−5(n)

8π3

Γ(3)

∂2

∂y2
{√yK 5

2
(2πny)}, j ≥ 1.

Then
Aj(y) = Aj,+(y)−Aj,−(y), j ≥ 1.

One first has a preliminary estimate by Lemma 4.7

Lemma 4.9. An(x) > 0 if n ≥ 2 and y > 0.

By notations in (4.13) and Lemma 4.5, one has

∂2

∂y2

(
ζ(6, z)− bζ(3, z)

)
= A0(y) +

∞∑
n=1

An(y) · cos(2πnx).

By notations in (4.13), the prove of Lemma 4.4 equivalents to the following

Lemma 4.10 (y-convexity on a particular value: alternative version).

A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx) > 0, for z ∈ DG .

Note that z ∈ DG implies that x ∈ [0, 1
2 ] and y ≥

√
3

2 . In fact we will show that

Lemma 4.11 (y-convexity on a infinite rectangular region).

A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx) > 0, for {x ∈ [0,
1

2
]} ∩ {y ∈ [

√
3

2
,∞)}.

We first estimate directly that

Lemma 4.12.

A1(y)−
∞∑
n=2

n2An(y) ≥ 3 for y ∈ [

√
3

2
, 1].

Then by a direct computation we have that

Lemma 4.13.

A0(y) +

∞∑
n=1

(−1)nAn(y) ≥ 4.688 · 10−3 for y ∈ [

√
3

2
, 1].

Lemmas 4.12 and 4.13 yields that

Lemma 4.14. [Estimate on y ∈ [
√

3
2 , 1] ]

A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx) > 0, for {x ∈ [0,
1

2
]} ∩ {y ∈ [

√
3

2
, 1]}.
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Proof of Lemma 4.14. Since x ∈ [0, 1
2 ], by Lemmas 4.12, 4.9 and 3.7,

∂

∂x

(
A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx)
)

= −2π sin(2πx) ·
∞∑
n=1

nAn(y)
sin(2πnx)

sin(2πx)

≤ −2π sin(2πx) ·
(
A1(y)− n2An(y)

)
≤ 0.

(4.14)

It follows by (4.15) and Lemma 4.12 that, for {x ∈ [0, 1
2 ]} ∩ {y ∈ [

√
3

2 , 1]},(
A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx)
)
≥
(
A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx)
)
|x= 1

2

= A0(y) +

∞∑
n=1

(−1)nAn(y)

> 0.

(4.15)

�

Lemma 4.15. For y ≥ 1,

A0(y)−
∞∑
n=1

| An(y) |≥ 5 > 0.

Proof of Lemma 4.15. One first has the preliminary estimates

A0(y) ≥ A0(1) = 24.211215 · · · ,
|A1(y)| ≤ A1(1) = 10.070150 · · · for y ≥ 1.

(4.16)

Then for the remainder terms, by Lemma 4.9, one has

∞∑
n=2

| An(y) ≤
∞∑
n=2

n
11
2 σ−11(n)

8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πny)}

≤ 8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πy)}

∞∑
n=2

n
11
2 σ−11(n) ·

∂2

∂y2 {
√
yK 11

2
(2πny)}

∂2

∂y2 {
√
yK 11

2
(2πny)}

≤ 8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πy)} |y=1 ·

∞∑
n=2

n7σ−11(n) · e−2π(n−1)y

≤ 8.666969022, for y ≥ 1.

(4.17)

Here one used that Lemmas 4.8 and 3.4 and

8π6

Γ(6)

∂2

∂y2
{√yK 11

2
(2πy)} |y=1= 35.105436 · · · and

∞∑
n=2

n7σ−11(n) · e−2π(n−1)y = 0.246883 · · · .

The result follows by (4.16) and (4.17).
�

Lemma 4.15 implies that the following estimate for y ≥ 1

Lemma 4.16. [Estimate on y ∈ [1,∞) ]

A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx) ≥ 5 > 0, for {x ∈ [0,
1

2
]} ∩ {y ∈ [1,∞)}.
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Proof of Lemma 4.16. It follows by the following observation

A0(y) +

∞∑
n=1

Aj(y) · cos(2πnx) ≥ A0(y)−
∞∑
n=1

| An(y) |

≥ 5 > 0.

�

Lemmas 4.14 and 4.16 complete the proof of Lemma 4.11 and hence Lemma 4.10.

4.2. Proof of Proposition 4.2. In this sub-section, we prove the mixed order derivative estimate
in Proposition 4.2. The strategy of the proof is similar to that of Proposition 4.1. First we have
the following comparison principle.

Lemma 4.17. If there exists b = b > 0 such that

∂2

∂y∂x

(
ζ(6, z)− bζ(3, z)

)
> 0, for z ∈ {x ∈ [0,

1

2
]} ∩ {y ∈ [

√
3

2
, 1]}. (4.18)

Then for all b ≤ b, (4.18) holds.

By Lemma 4.17, one only needs to consider a particular point of the parameter b. The proof of
Lemma 4.17 is based on

∂

∂b

( ∂2

∂y∂x

(
ζ(6, z)− bζ(3, z)

))
= − ∂2

∂y∂x
ζ(3, z)

and the following lemma

Lemma 4.18 (mixed derivative of ζ(3, z) on a rectangular region).

∂2

∂y∂x
ζ(3, z) ≥ 0, for z = x+ iy ∈ {x ∈ [0,

1

2
]} ∩ {y ∈ [

√
3

2
, 1])}. (4.19)

In fact, we shall prove that

Lemma 4.19 (mixed derivative of ζ(3, z) on a infinite rectangular region).

∂2

∂y∂x
ζ(3, z) ≥ 0, for z = x+ iy ∈ {x ∈ [0,

1

2
]} ∩ {y ∈ [

√
3

2
,∞)}. (4.20)

Proof of Lemma 4.19. We start by Theorem 3.2

∂2

∂y∂x
ζ(3, z) = 2π

∞∑
n=1

n
7
2σ−5(n)

8π3

Γ(3)

(
− ∂

∂y
{√yK 5

2
(2πny)}

)
· sin(2πnx). (4.21)

We continue by listing the factors and rewrite it by quotient forms

∂2

∂y∂x
ζ(3, z) =

16π4

Γ(3)
sin(2πx)

(
− ∂

∂y
{√yK 5

2
(2πy)}

) ∞∑
n=1

n
7
2σ−5(n)

∂
∂y{
√
yK 5

2
(2πny)}

∂
∂y{
√
yK 5

2
(2πy)}

· sin(2πnx)

sin(2πx)
.

(4.22)
By Lemmas 4.22 and 4.23, separating the term of n = 1 and the terms of n ≥ 2, one has

∂2

∂y∂x
ζ(3, z) ≥ 16π4

Γ(3)
sin(2πx) ·

(
− ∂

∂y
{√yK 5

2
(2πy)}

)
·
(

1−
∞∑
n=2

n5σ−5(n) · e−2π(n−1)y
)

≥ 8π4

Γ(3)
sin(2πx) ·

(
− ∂

∂y
{√yK 5

2
(2πy)}

)
≥ 0.

(4.23)
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Here we used that since y ≥
√

3
2

∞∑
n=2

n5σ−5(n) · e−2π(n−1)y ≤
∞∑
n=2

n5σ−5(n) · e−
√

3π(n−1)

∼= 0.147795 · · · < 1

2

(4.24)

and Lemma 3.7. The proof is complete. �

We proceed by Lemma 3.2, one then has

Lemma 4.20.

∂

∂x

∂

∂y

(
ζ(6, z)− ζ(3, z)

)
= 2π sin(2πx) ·

( ∞∑
n=1

(
n

13
2 σ−11(n)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(2πny)})

− bn 7
2σ−5(n)

8π3

Γ(3)
(− ∂

∂y
{√yK 5

2
(2πny)})

)
· sin(2πnx)

sin(2πx)

)
.

By Lemma 4.17, to prove Proposition 4.2, it suffices to prove the case when b = 3.07. Before
going to the proof, we introduce some facts on − ∂

∂y{
√
yK 5

2
(2nπy)} and − ∂

∂y{
√
yK 11

2
(2nπy)}. By

Proposition 3.2, one has the following

Lemma 4.21. Two basic identities hold

− ∂

∂y
{√yK 5

2
(2nπy)} =

√
nπe−2πny

(
1 +

3

2nπ
· 1

y
+

3

2n2π2
· 1

y2
+

3

4n3π3
· 1

y3

)
− ∂

∂y
{√yK 11

2
(2nπy)} =

√
nπe−2πny

(
1 +

15

nπ
· 1

y
+

30

n2π2
· 1

y2
+

315

4n3π3
· 1

y3
+

2205

16n4π4
· 1

y4

+
4725

32n5π5
· 1

y5
+

4725

64n6π6
· 1

y6

)
Lemmas 4.22 and 4.23 follow directly from Lemma 4.21.

Lemma 4.22. For y > 0, it holds that

0 < − ∂

∂y
{√yK 5

2
(2nπy)} < − ∂

∂y
{√yK 11

2
(2nπy)}.

Lemma 4.23. For 1 ≤ m < n ∈ Z+, it holds that
∂
∂y{
√
yK 5

2
(2nπy)}

∂
∂y{
√
yK 5

2
(2mπy)}

≤
√
n

m
e−2π(n−m)y,

∂
∂y{
√
yK 11

2
(2nπy)}

∂
∂y{
√
yK 11

2
(2mπy)}

≤
√
n

m
e−2π(n−m)y.

For convenience, we denote that

Bn(y) :=
(
n

13
2 σ−11(n)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(2πny)})− 3.07n

7
2σ−5(n)

8π3

Γ(3)
(− ∂

∂y
{√yK 5

2
(2πny)})

)
(4.25)

A direct observation on Bn(y) followed by Lemma 4.22 is

Lemma 4.24.
Bn(y) > 0 for n ≥ 2, y > 0.

Then by Lemma 4.20

∂

∂x

∂

∂y

(
ζ(6, z)− 3.07ζ(3, z)

)
= 2π sin(2πx) ·

∞∑
n=1

Bn(y) · sin(2πnx)

sin(2πx)
.

The proof of Proposition 4.2 is reduced to the following
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Lemma 4.25.
∞∑
n=1

Bn(y) · sin(2πnx)

sin(2πx)
> 0 for {x ∈ [0,

1

2
]} ∩ {y ∈ [

√
3

2
,∞)}.

Here Bn(y) is defined in (4.25).

We shall analyze the main order terms
∑3
n=1 Bn(y) · sin(2πnx)

sin(2πx) and the error terms
∑∞
n=4 Bn(y) ·

sin(2πnx)
sin(2πx) respectively in the following.

We first simplify the main order terms
∑3
n=1 Bn(y) · sin(2πnx)

sin(2πx)

Lemma 4.26.
3∑

n=1

Bn(y) · sin(2πnx)

sin(2πx)
= B1(y) + B3(y) + 2B2(y) cos(2πx) + 2B3(y) cos(4πx).

Here Bn(y) is defined in (4.25).

By Lemma 4.26,

∂

∂x

( 3∑
n=1

Bn(y) · sin(2πnx)

sin(2πx)

)
= −2 sin(2πx) ·

(
B2(y) + 2B3(y) cos(2πx)

)
. (4.26)

We shall prove that

Lemma 4.27. For {x ∈ [0, 1
2 ]} ∩ {y ∈ [

√
3

2 ,∞)}, it holds that

∂

∂x

( 3∑
n=1

Bn(y) · sin(2πnx)

sin(2πx)

)
≤ 0.

By (4.26), the proof of Lemma 4.27 is based on following lemma

Lemma 4.28.

B2(y)− 2B3(y) ≥ 1

10
· 2 13

2 σ−11(2)
8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(4πy)}) > 0 for y ≥

√
3

2
.

Here Bn(y) is defined in (4.25).

Proof of Lemma 4.28. By (4.25), one has the explicit expression,

B2(y)− 2B3(y) = 2
13
2 σ−11(2)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(4πy)})− 3.07 · 2 7

2σ−5(2)
8π3

Γ(3)
(− ∂

∂y
{√yK 5

2
(4πy)})

−2 · 3 13
2 σ−11(3)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(6πy)}) + 2 · 3.07 · 3 7

2σ−5(3)
8π3

Γ(3)
(− ∂

∂y
{√yK 5

2
(6πy)})

)
.

Denote that

Bc := 2
13
2 σ−11(2)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(4πy)})

for convenience. We then drop the last positive term and take leading order by

B2(y)− 2B3(y) ≥ Bc ·
(

1− 3.07
σ−5(2)

σ−11(2)

Γ(6)

8π3Γ(3)

∂
∂y{
√
yK 5

2
(4πy)}

∂
∂y{
√
yK 11

2
(4πy)}

− 2(
3

2
)

13
2
σ−11(2)

σ−11(3)

∂
∂y{
√
yK 11

2
(6πy)}

∂
∂y{
√
yK 11

2
(4πy)}

)
≥ Bc ·

(
1− 3.07

σ−5(2)

σ−11(2)

Γ(6)

8π3Γ(3)
− 2(

3

2
)

13
2
σ−11(2)

σ−11(3)
· e−2πy

)
.

(4.27)
Here one used that

∂
∂y{
√
yK 5

2
(4πy)}

∂
∂y{
√
yK 11

2
(4πy)}

≤ 1 and

∂
∂y{
√
yK 11

2
(6πy)}

∂
∂y{
√
yK 11

2
(4πy)}

≤ e−2πy
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by Lemmas 4.22 and 4.23. The proof is complete by (4.27) and the following

3.07
σ−5(2)

σ−11(2)

Γ(6)

8π3Γ(3)
≤ 0.7654238277 · · · and 2(

3

2
)

13
2
σ−11(2)

σ−11(3)
· e−
√

3π ≤ 0.1208493896 · · · .

�

By Lemmas 4.27 and 4.26, one has

Lemma 4.29. For {x ∈ [0, 1
2 ]} ∩ {y ∈ [

√
3

2 ,∞)}, it holds that

3∑
n=1

Bn(y) · sin(2πnx)

sin(2πx)
≥ B1(y)− 2B2(y) + 3B3(y).

Here Bn(y) is defined in (4.25).

For controlling the error terms, we denote that

ε2(y) :=

∞∑
n=4

n
15
2 σ−11(n)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(2πny)}). (4.28)

We then estimate the error terms by ε2(y)

Lemma 4.30. For y ≥
√

3
2 ,

∞∑
n=4

Bn(y) · sin(2πnx)

sin(2πx)
≥

{
0, x ∈ [0, 1

8 ]

−ε2(y), x ∈ ( 1
8 ,

1
2 ].

Here Bn(y) and ε(y) are defined in (4.25) and (4.28) respectively.

Proof of Lemma 4.30. Note that by Lemma 4.24, for n ≥ 2, Bn(y) > 0 for y > 0.
The case x ∈ ( 1

8 ,
1
2 ]: by Lemma 3.7,

∞∑
n=4

|Bn(y) · sin(2πnx)

sin(2πx)
| ≤

∞∑
n=4

n · |Bn(y)|. (4.29)

Then by Lemma 4.22, for n ≥ 4,

|Bn(y)| ≤ n 13
2 σ−11(n)

8π6

Γ(6)
(− ∂

∂y
{√yK 11

2
(2πny)}). (4.30)

Therefore the result follows by (4.29) and (4.30).

The case x ∈ [0, 1
8 ]: in this case, sin(8πx)

sin(2πx) ≥ 0. By Lemmas 3.7, 4.24 and 4.23,

∞∑
n=4

Bn(y) · sin(2πnx)

sin(2πx)
= B4(y)

sin(8πx)

sin(2πx)
·
(

1−
∞∑
n=5

sin(2πnx)

sin(8πx)
· Bn(y)

B4(y)

)
≥ B4(y)

sin(8πx)

sin(2πx)
·
(

1−
∞∑
n=5

n

4
· Bn(y)

B4(y)

)

≥ B4(y)
sin(8πx)

sin(2πx)
·
(

1− 2

∞∑
n=5

n

4
·
n

13
2 σ−11(n) 8π6

Γ(6) (− ∂
∂y{
√
yK 11

2
(2πny)})

4
13
2 σ−11(4) 8π3

Γ(3) (− ∂
∂y{
√
yK 11

2
(8πy)})

)

≥ B4(y)
sin(8πx)

sin(2πx)
·
(

1− 2

8π6

Γ(6)

8π3

Γ(3)

∞∑
n=5

σ−11(n)(
n

4
)8 · e−2π(n−1)y

)
≥ 1

2
B4(y)

sin(8πx)

sin(2πx)

≥ 0.
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Here one used that
8π6

Γ(6)

8π3

Γ(3)

∞∑
n=5

σ−11(n)(
n

4
)8 · e−2π(n−1)y ≤ 0.028 <

1

4
, for y ≥

√
3

2
.

�

By Lemmas 4.29 and 4.30, one has

Lemma 4.31. For {x ∈ [0, 1
2 ]} ∩ {y ∈ [

√
3

2 ,∞)}, it holds that

∞∑
n=1

Bn(y) · sin(2πnx)

sin(2πx)
≥ B1(y)− 2B2(y) + 3B3(y)− ε2(y).

Here Bn(y) and ε2(y) are defined in (4.25) and (4.28) respectively.

By Lemma 4.31, the proof of Lemma 4.25 reduces to

Lemma 4.32. For y ∈ [
√

3
2 , 1], it holds that(
B1(y)− 2B2(y) + 3B3(y)− ε2(y)

)
> 0.

Here Bn(y) and ε2(y) are defined in (4.25) and (4.28) respectively.

Indeed, one shows by direct computation that

Lemma 4.33. For y ∈ [
√

3
2 , 1], it holds that(

B1(y)− 2B2(y) + 3B3(y)− ε2(y)
)

≥
(
B1(y)− 2B2(y) + 3B3(y)− ε2(y)

)
|y=1= 5.87 · 10−3 > 0.

Here Bn(y) and ε2(y) are defined in (4.25) and (4.28) respectively.

5. Minimizers in the remaining cases: b ∈ (3.06, 3.062)

Recall that
Γa = {z ∈ H : Re(z) = 0, Im(z) ≥ 1};

Γb = {z ∈ H : |z| = 1, Im(z) ∈ [

√
3

2
, 1]}.

And
Γ = Γa ∪ Γb.

In Theorems 3.1 and 4.1, we have located the minimizers on the curve Γ and the 1
4−arc, i.e., Γb

for b ≥ 3.062 and b ≤ 3.06 respectively. In summary, we already obtain that

Theorem 5.1 (Theorems 3.1 and 4.1). For b ∈ (−∞, 3.06] ∪ [3.062,+∞),

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
= min
z∈Γ

(
ζ(6, z)− bζ(3, z)

)
.

Theorem 5.1 is a direct consequence of Theorems 3.1 and 4.1.
In this section, we aim to consider the remaining case of b ∈ (3.06, 3.062). The following is the

main result of this section:

Theorem 5.2. For b ∈ (3.06, 3.062),

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
is achieved at i.
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By Theorems 5.1 and 5.2, we have a global picture of the minimizers of the functional
(
ζ(6, z)−

bζ(3, z)
)

, namely,

Theorem 5.3. For b ∈ R,

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
.

Theorem 5.3 provides a unified way to locate the minimizers of the functional
(
ζ(6, z)−bζ(3, z)

)
for all b ∈ R. It remains to determine where minz∈Γ

(
ζ(6, z)− bζ(3, z)

)
should be in the next two

sections.
In the rest of this section, we shall prove Theorem 5.2.
By Theorem 3.1, for b ∈ (3.06, 3.062),

min
z∈DG∩{y≥1}

(
ζ(6, z)− bζ(3, z)

)
= min
z∈Γa

(
ζ(6, z)− bζ(3, z)

)
. (5.1)

See Picture 1 for geometric shapes DG ∩ {y ≥ 1} and Γa. On the other hand, by Theorem in the
next section, one has for b ∈ (3.06, 3.062),

min
z∈Γa

(
ζ(6, z)− bζ(3, z)

)
is achieved uniquely at i. (5.2)

By (5.1) and (5.2), for b ∈ (3.06, 3.062),

min
z∈DG∩{y≥1}

(
ζ(6, z)− bζ(3, z)

)
is achieved at i. (5.3)

To prove Theorem 5.3, by (5.3), it suffices to prove the following lemma:

Lemma 5.1. For b ∈ (3.06, 3.062),

min
z∈DG∩{y∈[

√
3

2 ,1]}

(
ζ(6, z)− bζ(3, z)

)
is achieved at i.

To prove Lemma 5.1, we split the region DG ∩ {y ∈ [
√

3
2 , 1]}(see Picture 1) into two subregions,

namely,

DG ∩ {y ∈ [

√
3

2
, 1]} =

(
DG ∩ {y ∈ [

√
21

5
, 1]}

)
∪
(
DG ∩ {y ∈ [

√
3

2
,

√
21

5
]}
)
.

In each subregion, we use different methods. In the first subregion, we have

Lemma 5.2. For b ∈ (3.06, 3.062),

min
z∈DG∩{y∈[

√
21
5 ,1]}

(
ζ(6, z)− bζ(3, z)

)
is achieved at i.

A similar way to prove Theorem 3.1 shows that

Lemma 5.3. For b ≥ 3.06,

∂

∂x

(
ζ(6, z)− bζ(3, z)

)
≥ 0, z ∈ DG ∩ {y ∈ [

√
21

5
, 1]}.

A consequence of Lemma 5.3 gives that

Lemma 5.4. For b ≥ 3.06,

min
z∈DG∩{y∈[

√
21
5 ,1]}

(
ζ(6, z)− bζ(3, z)

)
= min
z∈Γb∩{y∈[

√
21
5 ,1]}

(
ζ(6, z)− bζ(3, z)

)
.

A case of Theorem 7.1 in Section 7 shows that



EPSTEIN ZETA FUNCTIONS VS LENNARD-JONES MODELS 25

Lemma 5.5. For b ≥ 3.06,

min
z∈Γb∩{y∈[

√
21
5 ,1]}

(
ζ(6, z)− bζ(3, z)

)
is achieved at i.

Then Lemma 5.2 is prove by Lemmas 5.4 and 5.5. In second subregion DG ∩ {y ∈ [
√

3
2 ,
√

21
5 ]},

we show that

Lemma 5.6. For b ∈ (3.06, 3.062),(
ζ(6, z)− bζ(3, z)

)
−
(
ζ(6, z)− bζ(3, z)

)
|z=i≥ 10−3, for z ∈ DG ∩ {y ∈ [

√
3

2
,

√
21

5
]}.

In fact, the subregion DG ∩ {y ∈ [
√

3
2 ,
√

21
5 ]} is very small(see Picture 1) can be split into 28

sub-subregions, Lemma 5.6 is showed by direct checking. The checking is accurate since there is a
uniform positive lower bound.

Lemma 5.1 is proved by Lemmas 5.2 and 5.6. The proof of Theorem 5.2 is complete.

6. Numbers and locations of critical points of
(
ζ(6, z)− bζ(3, z)

)
when z ∈ Γa

Recall that
Γa = {z ∈ H : Re(z) = 0, Im(z) ≥ 1};

Γb = {z ∈ H : |z| = 1, Im(z) ∈ [

√
3

2
, 1]}.

And
Γ = Γa ∪ Γb.

By the main theorems in previous sections, we have reduced to the minimizers of the functional(
ζ(6, z)− bζ(3, z)

)
to the curve Γ for all b. Namely, we have

Theorem 6.1 (Theorems 3.1, 4.1 and 5.2). For b ∈ R,

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
.

We then analyze the functional
(
ζ(6, z)− bζ(3, z)

)
with parameter b on Γa and Γb in this and

next section respectively.
The following is main result of this section:

Theorem 6.2 (Location of minimizers on Γa). The minimizers of
(
ζ(6, z)− bζ(3, z)

)
on Γa

for b ∈ R are given by

min
z∈Γa

(
ζ(6, z)− bζ(3, z)

)
is achieved at

{
i; b ≤ ba;

iyb; yb > 1; b > ba.

The threshold ba and parameter yb are determined by

ba =

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

|y=1= 4.0774 · · · .

dyb
db

> 0, lim
b→∞

yb

3

√
ξ(6)

2ξ(12) · b
= 1.

Note that z ∈ Γa implies that z = iy. Theorem 6.2 is implied by the following Proposition 6.1,

which describes the global picture of the critical points of
(
ζ(6, iy) − bζ(3, iy)

)
, b ∈ R, y ∈ (0,∞)

for various parameter b.
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Proposition 6.1 (Number and location of critical points of
(
ζ(6, iy) − bζ(3, iy)

)
). The

function
(
ζ(6, iy) − bζ(3, iy)

)
, b ∈ R, y ∈ (0,∞) has one or three critical points depending on the

value of b. Define that

ba =

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

|y=1= 4.0774 · · · . (6.1)

(1) if b ≤ ba,
(
ζ(6, iy) − bζ(3, iy)

)
has only one critical point y = 1, and is increasing on

(1,∞);

(2) if b > ba,
(
ζ(6, iy)− bζ(3, iy)

)
has three critical points, 1, yb(yb > 1), 1

yb
, is decreasing on

(1, yb) and increasing on (yb,∞). limb→∞ yb =∞, further

dyb
db

> 0, lim
b→∞

yb

3

√
ξ(6)

2ξ(12) · b
= 1. (6.2)

To prove Proposition 6.1, we use the deformation:

∂

∂y

(
ζ(6, iy)− bζ(3, iy)

)
=

∂

∂y
ζ(3, iy) ·

( ∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

− b
)
. (6.3)

On the other hand, it is known that(see e.g. [41, 20])

∂

∂y
ζ(3, iy)


> 0, y > 1;

= 0, y = 1;

< 0, y ∈ (0, 1).

Then by (6.3), the proof of Proposition 6.1 is reduced to the following proposition 6.2.

Proposition 6.2 (The shape of
∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

). The function
∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

on y ∈ (0,∞) admits only one

critical point y = 1 on (0,∞). Further,

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

is decreasing on (0, 1) and is increasing on (1,∞).

The proof of Proposition 6.2 is split into several smaller lemmas in the following. Before intro-
ducing these smaller lemmas, we shall introduce some notations.

Define

X (y) : =

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

, X ′(y) =
∂

∂y

∂ζ(6,iy)
∂y

∂ζ(3,iy)
∂y

, y > 0,

Y(y) : =
∂2ζ(6, iy)

∂y2

∂ζ(3, iy)

∂y
− ∂ζ(6, iy)

∂y

∂2ζ(3, iy)

∂y2
, y > 0.

(6.4)

Then

Y(y) = X ′(y) ·
(∂ζ(3, iy)

∂y

)2
, y > 0. (6.5)

And

Y ′(y) =
∂3ζ(6, iy)

∂y3

∂ζ(3, iy)

∂y
− ∂ζ(6, iy)

∂y

∂3ζ(3, iy)

∂y3
, y > 0.

One first has the following lemma

Lemma 6.1.

X (
1

y
) = X (y).
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Consequently,

X ′(1

y
) = −y2 · X ′(y), X ′(1) = 0.

The proof of Lemma 6.1 is based on

Lemma 6.2. For any s > 0, ζ(s, iy) satisfies the functional equation:

F(
1

y
) = F(y).

Which follows from the invariance of ζ(s, z) by the transformation z → − 1
z . See Lemma 3.1.

Using Lemma 6.2 twice and taking derivatives, one gets Lemma 6.1. From Lemmas 6.1-6.2 we
deduce that

Lemma 6.3. (∂3ζ(6, iy)

∂y3

∂2ζ(3, iy)

∂y2
− ∂2ζ(6, iy)

∂y2

∂3ζ(3, iy)

∂y3

)
|y=1= 0.

Proof. Taking second and third order derivative on functional equation in Lemma 6.2, one gets

F ′′(1

y
) = 2y3F ′(y) + y4F ′′(y)

F ′′′(1

y
) = −6y4F ′(y)− 6y5F ′′(y)− y6F ′′′(y).

(6.6)

Evaluating y = 1 in (6.6), one has
F ′′′(1) = −3F ′′(1).

Then by Lemma 6.2,

∂3ζ(6, iy)

∂y3
= −3

∂2ζ(6, iy)

∂y2
,
∂3ζ(3, iy)

∂y3
= −3

∂2ζ(3, iy)

∂y2
. (6.7)

(6.7) gives the result. �

Lemma 6.4.
Y(1) = Y ′(1) = Y ′′(1) = 0. (6.8)

Proof. The part Y(1) = Y ′(1) = 0 follows directly by

∂ζ(6, iy)

∂y
|y=1= 0,

∂ζ(3, iy)

∂y
|y=1= 0 (6.9)

deduced by Lemma 6.2. The part Y ′′(1) = 0 follows by (6.9) and Lemma 6.3. �

By Lemma 6.1, to prove Proposition 6.2, it suffices to prove that

Lemma 6.5.
Y(y) > 0, for y > 1.

Here the function Y is defined in (6.4).

Since by Lemma 6.4, Y(1) = 0. Therefore to prove Lemma 6.5, we divide it into two cases,
namely, near and away from y = 1, i.e., y ∈ (1, 1.05] and y ∈ [1.05,∞). For the case away from
y = 1, namely, the case y ≥ 1.05, we estimate directly by

Lemma 6.6. It holds that
Y(y) ≥ 4.5 > 0, for y ∈ [1.05,∞).

For the case y ∈ (1, 1.05], one has by direct computation

Lemma 6.7.
Y ′′′(y) ≥ 105 > 0, for y ∈ [1, 1.05], (6.10)

and hence
Y(y) > 0, for y ∈ [1, 1.05].
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7. Number and location of critical points of
(
ζ(6, z)− bζ(3, z)

)
when z ∈ Γb

Recall that the definition of the 1
4−arc:

Γb = {z ∈ H : |z| = 1, y ∈ [

√
3

2
, 1]}.

In this section, we aim to characterize the minimizers of
(
ζ(6, z)− bζ(3, z)

)
on Γb for all b ∈ R.

It is stated in the following theorem.

Theorem 7.1 (Location of the minimizers on Γb). For the minimizers of
(
ζ(6, z)− bζ(3, z)

)
on Γb for b ∈ R, there exists thresholds b1, b2 defined by

b1 := 2.9463 · · · , b2 :=

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

|y= 1
2

= 2.9866 · · ·

such that

min
z∈Γb

(
ζ(6, z)− bζ(3, z)

)
is achieved at


ei
π
3 , b ∈ (−∞, b1);

ei
π
3 , or eiθb1 , b = b1;

eiθb , b ∈ (b1, b2);

i, b ∈ [b2,∞).

Here the argument θb1 associated to the threshold b1 is numerically computed by

θb1 := 1.33473846 · · · .

And for the argument θb associated to the parameter b, it holds that

d

db
θb > 0 and θb ∈ (θb1 ,

π

2
) for b ∈ (b1, b2).

Note that there are two thresholds exist in locating the minimizers of
(
ζ(6, z)− bζ(3, z)

)
on Γb.

Besides, when the parameter b touches the first parameter b1, there are two different minimizers.

To study to the minimizers of
(
ζ(6, z) − bζ(3, z)

)
on Γb, we first show that it is equivalent to

studying the minimizers on a straight vertical line. We state it in the following lemma:

Lemma 7.1 (From the arc Γb to the 1
2−axis).(

ζ(6, u+ i
√

1− u2)− bζ(3, u+ i
√

1− u2)
)

=
(
ζ(6,

1

2
+
i

2

√
1 + u

1− u
)− bζ(3,

1

2
+
i

2

√
1 + u

1− u
)
)

Lemma 7.1 is induced by the fact that ζ(s, z), s > 0 is variant by the transform z 7→ 1
1−z . Note

that z ∈ Γb ⇔ z = u+ i
√

1− u2, u ∈ [0, 1
2 ]. Then by Lemma 7.1, to study

(
ζ(6, z)− bζ(3, z)

)
on

Γb, it is equivalent to studying
(
ζ(6, 1

2 + iy) − bζ(3, 1
2 + iy)

)
for y ∈ [ 1

2 ,
√

3
2 ]. By Lemma 7.1, to

prove Theorem 7.1, it equivalents to prove that

Theorem 7.2 (Location of the minimizers on short interval of 1
2−axis). Let the critical

values b1, b2 be defined by

b1 := 2.9463 · · · , b2 :=

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

|y= 1
2

= 2.9866 · · · .
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Then

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
is achieved at


√

3
2 , b ∈ (−∞, b1);
√

3
2 , or yb1 , b = b1;

yb, b ∈ (b1, b2);
1
2 , b ∈ [b2,∞).

Here the minimizer yb1 is numerically computed by

yb1 := 0.6346835 · · · .

And for the minimizer yb associated to the parameter b, it holds that

d

db
yb < 0 and yb ∈ (

1

2
, yb1) for b ∈ (b1, b2).

To prove Theorem 7.2, we shall study the critical points of
(
ζ(6, 1

2 + iy) − bζ(3, 1
2 + iy)

)
for

y ∈ [ 1
2 ,
√

3
2 ]. Before this, one has the universal critical points for all b ∈ R. Namely,

Lemma 7.2. For all b ∈ R(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
|
y∈[ 12 ,

√
3

2 ]
admits two cirical points at y =

1

2
and y =

√
3

2
.

Lemma 7.2 dues to that 1
2 ,
√

3
2 are critical points of ζ(s, iy), s > 0[See e.g. [41]].

In the next, we characterize the critical points of
(
ζ(6, 1

2 + iy) − bζ(3, 1
2 + iy)

)
|
y∈[ 12 ,

√
3

2 ]
for

various b.

Proposition 7.1 (Number and location of critical points of
(
ζ(6, 1

2+iy)−bζ(3, 1
2+iy)

)
|
y∈[ 12 ,

√
3

2 ]
).

The function
(
ζ(6, 1

2 + iy)− bζ(3, 1
2 + iy)

)
|
y∈[ 12 ,

√
3

2 ]
admits 2 or 3 or 4 critical points. To classify

the critical points, we introduce the critical parameters in order:

b0 : = min
y∈[ 12 ,

√
3

2 ]

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

= 2.9322 · · · ,

y0 : = the unique minimizer of min
y∈[ 12 ,

√
3

2 ]

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

= 0.7035146 · · · ,

b2 : =

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

|y= 1
2

= 2.9866 · · · ,

b3 : =

∂ζ(6, 12 +iy)

∂y

∂ζ(3, 12 +iy)

∂y

|
y=

√
3

2

= 3.0614 · · · .

It is classified to five cases as follows:

(1) b ∈ (−∞, b0), there are only two critical points, i.e., { 1
2 ,
√

3
2 }, where 1

2 is a local maxima,
√

3
2 is a local minima;

(2) b = b0, it admits exactly three critical points, i.e., { 1
2 , y0,

√
3

2 }, where 1
2 is a local maxima,

√
3

2 is a local minima and y0 is a saddle point;

(3) b ∈ (b0, b2), there are exactly four critical points, denoted by { 1
2 , yb, yb′ ,

√
3

2 }, where 1
2 is

a local maxima,
√

3
2 is a local minima; yb is a local minima and yb′ is a local maxima,

yb ∈ ( 1
2 , y0), yb′ ∈ (y0,

√
3

2 ); further yb is decreasing with b, yb′ is increasing with b, i.e.,
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d

db
yb < 0,

d

db
yb′ > 0.

(4) b ∈ [b2, b3), there are exactly three critical points, i.e., { 1
2 , yb′′ ,

√
3

2 },
1
2 and

√
3

2 are local
minima; yb′′ is a local maxima;

(5) b ∈ [b3,∞), there are only two critical points, i.e., { 1
2 ,
√

3
2 },

1
2 is a local minima and

√
3

2 is
a local maxima.

We shall postpone the proof of Proposition 7.1 to the later and state a direct consequence of
Proposition 7.1, which can partially prove Theorem 7.2. We state in the following corollary:

Corollary 7.1.

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
is achieved at



√
3

2 , b ∈ (−∞, b0];
√

3
2 or yb, b ∈ (b0, b2);
√

3
2 or 1

2 b ∈ [b2, b3);
1
2 , b ∈ [b3,∞).

Here yb is defined in Proposition 7.1.

By Corollary 7.1, to prove Theorem 7.2, it suffices to further locate precisely the minimizer of

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6, 1

2 + iy)−bζ(3, 1
2 + iy)

)
for b ∈ (b0, b3). For this, one has the following preliminary

lemma:

Lemma 7.3 (A comparison between the values at
√

3
2 and 1

2 ). Let

b1.5 :=
ζ(6, 1

2 + i 1
2 )− ζ(6, 1

2 + i
√

3
2 )

ζ(3, 1
2 + i 1

2 )− ζ(3, 1
2 + i

√
3

2 )
= 2.9529 · · · .

Then (
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
|
y=

√
3

2

≥
(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
|y= 1

2

⇔b ≥ b1.5.
Remark 7.1. We use the notation b1.5 to denote the intermediate parameter instead of b1 and
use b1 to denote the first critical parameter to be introduced later.

Since b2 > b1.5, a direct consequence of Lemma 7.3 and Proposition 7.1 yield that

Corollary 7.2.

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
is achieved at

{
yb, b ∈ [b1.5, b2);
1
2 , b ∈ [b2, b3);

Here yb is defined in Proposition 7.1.

By Corollaries 7.1 and 7.2, to prove Theorem 7.2, it needs to locate precisely the minimizer of

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6, 1

2 + iy)− bζ(3, 1
2 + iy)

)
for b ∈ (b0, b1.5). In fact, by Corollary 7.1, one has

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
is achieved at yb or

√
3

2
, for b ∈ (b0, b1.5).

We shall further decide precisely where the minimizer is
√

3
2 and where minimizer is yb(see Picture

2 for a visible image). To this, we introduce the following function, which is the difference of

functional evaluating at yb and
√

3
2

g(b, y) : =
(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
, b ∈ (b0, b1.5)

f(b) : = g(b, yb)− g(b,

√
3

2
), b ∈ (b0, b1.5).

(7.1)
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Figure 2. The transition of minimizer of
(
ζ(6, 1

2 + iy) − bζ(3, 1
2 + iy)

)
for b ∈

(b0, b1.5) and location of yb1 .

Note that when b ∈ (b0, b1.5), both
√

3
2 and yb are critical points of

(
ζ(6, 1

2 + iy) − bζ(3, 1
2 + iy)

)
by Proposition 7.1. We shall investigate the properties of f(b) defined in (7.1) as follows:

Lemma 7.4 (A comparison between the values at
√

3
2 and yb). f(b) has the following simple

structure:

(1) f(b0) > 0;
(2) f(b1.5) < 0;
(3) d

dbf(b) < 0;
(4) f(b) admits only one root denoted by b1 in (b0, b1.5). Numerically,

b1 = 2.9463 · · · ,

and
yb1 = 0.6346835 · · · .

Proof of Lemma 7.4. Items (1), (2) are proved by direct computation. For Item (3), we compute
by (7.1)

f ′(b) =
∂yb
∂b
·
( ∂
∂y

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
|y=yb

)
+
(
ζ(6,

1

2
+ i

√
3

2
)− bζ(3,

1

2
+ iyb)

)
=
(
ζ(6,

1

2
+ i

√
3

2
)− ζ(3,

1

2
+ iyb)

)
< 0.

Here one uses that yb is the critical point of
(
ζ(6, 1

2 + iy)− bζ(3, 1
2 + iy)

)
followed by Proposition

7.1 and 1
2 + i

√
3

2 is the global minimum of ζ(s, z), s > 0([41, 20]). The existence and uniqueness of
the root f(b) = 0 follows by Item (3). The root is denoted by b1 and b1 = 2.9463 · · · numerically,
consequently, yb1 = 0.6346835 · · · . This completes the proof.

�

By Lemma 7.4, we have

Corollary 7.3.

min
y∈[ 12 ,

√
3

2 ]

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
is achieved at


√

3
2 , b ∈ (b0, b1);
√

3
2 or yb1 , b = b1;

yb, b ∈ (b1, b1.5).
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Figure 3. The minimizer y0, shape of
∂ζ(6, 1

2
+iy)

∂y

∂ζ(3, 1
2
+iy)

∂y

and solutions to b =
∂ζ(6, 1

2
+iy)

∂y

∂ζ(3, 1
2
+iy)

∂y

Here yb and b1 are defined in Proposition 7.1 and Lemma 7.4 respectively.

Note that Corollaries 7.1, 7.2 and 7.3 complete the proof of Theorem 7.2 and hence the proof
of Theorem 7.1. It remains to prove Proposition 7.1. For this, we use the following deformation:

∂

∂y

(
ζ(6,

1

2
+ iy)− bζ(3,

1

2
+ iy)

)
=

∂

∂y
ζ(3,

1

2
+ iy) ·

( ∂
∂y ζ(6, 1

2 + iy)
∂
∂y ζ(3, 1

2 + iy)
− b
)
. (7.2)

For ∂
∂y ζ(3, 1

2 + iy), it is known that(see e.g. [41, 20])

∂

∂y
ζ(3,

1

2
+ iy)

{
< 0, y ∈ ( 1

2 ,
√

3
2 );

= 0, y ∈ { 1
2 ,
√

3
2 }.

(7.3)

By (7.2) and (7.3), to prove Proposition 7.1(study the critical points of
(
ζ(6, 1

2 +iy)−bζ(3, 1
2 +iy)

)
),

it suffices to solve the equation
∂
∂y ζ(6, 1

2 + iy)
∂
∂y ζ(3, 1

2 + iy)
− b = 0, where y ∈ [

1

2
,

√
3

2
]. (7.4)

We shall study the property of
∂
∂y ζ(6,

1
2 +iy)

∂
∂y ζ(3,

1
2 +iy)

in the following proposition, it turns out that the

function looks like a quadratic function on [ 1
2 ,
√

3
2 ].

Proposition 7.2. (The shape of
∂ζ(6, 1

2
+iy)

∂y

∂ζ(3, 1
2
+iy)

∂y

on [ 1
2 ,
√

3
2 ]). There is a interior point y0 = 0.7035146 · · ·

such that
∂ζ(6, 1

2
+iy)

∂y

∂ζ(3, 1
2
+iy)

∂y

is decreasing on [ 1
2 , y0], and increasing on [y0,

√
3

2 ]. Here y0 is characterized by

y0 is the unique minimizer of min
y∈[ 12 ,

√
3

2 ]

∂
∂y ζ(6, 1

2 + iy)
∂
∂y ζ(3, 1

2 + iy)
.

Note that Proposition 7.1 follows by Proposition 7.2 in view of (7.2) and (7.4). To prove
Proposition 7.1, it suffices to prove Proposition 7.2. See Picture 3 for Propositions 7.1 and 7.2. To
prove Propositions 7.2, we do some prepare work.

We cite a useful monotonicity rule in calculus:



EPSTEIN ZETA FUNCTIONS VS LENNARD-JONES MODELS 33

Lemma 7.5 (A monotonicity rule [4]). Let a < b ∈ R, and let f, g : [a, b] → R be continuous
functions that are differentiable on (a, b), with f(a) = g(a) = 0 or f(b) = g(b) = 0. Assume that

g′(x) 6= 0 for each x in (a, b). If f ′

g′ is increasing(decreasing) on (a, b), then so is f
g .

To use Lemma 7.5, we introduce a preliminary lemma:

Lemma 7.6 (The inflexion point of ζ(3, 1
2 + iy)). There exists y0 such that

∂2

∂y2
ζ(3,

1

2
+ iy)

{
< 0, b ∈ [ 1

2 , y0);

> 0, b ∈ (y0,
√

3
2 ].

Numerically, y0 = 0.65546688 · · · .
Lemma 7.6 is deduced by the following

Lemma 7.7.
∂3

∂y3
ζ(3,

1

2
+ iy) ≥ 30 > 0 for y ∈ [

1

2
,

√
3

2
].

Lemma 7.7 is proved by direct estimates.
We state a consequence of Lemma 2.2 which is useful in our later estimates.

Lemma 7.8 (A functional equation). ζ(6, 1
2 + iy), ζ(3, 1

2 + iy) and their quotient
∂ζ(6, 1

2
+iy)

∂y

∂ζ(3, 1
2
+iy)

∂y

satisfy

the functional equation

H(
1

4y
) = H(y). (7.5)

Consequently,

H′(y) = − 1

4y2
H′( 1

4y
) and then H′(1

2
) = 0.

By Lemma 7.8, one has

Lemma 7.9 (Evaluating of derivatives at 1
2 ).(∂3ζ(6, 1

2 + iy)

∂y3

∂2ζ(3, 1
2 + iy)

∂y2
−
∂2ζ(6, 1

2 + iy)

∂y2

∂3ζ(3, 1
2 + iy)

∂y3

)
|y= 1

2
= 0.

Proof. Proof of Lemma 7.9. Since ζ(6, 1
2 + iy), ζ(3, 1

2 + iy) satisfy the functional equation (7.5)

by Lemma 7.8, by taking derivatives, one has that ζ(6, 1
2 + iy), ζ(3, 1

2 + iy) satisfy

H′′′(y) = − 1

64y4
H′′′( 1

4y
)− 3

8y5
H′′( 1

4y
)− 3

2y4
H′( 1

4y
). (7.6)

Substituting y = 1
2 in (7.6), one gets

H′′′(1

2
) = −6H′′(1

2
).

Then
∂3ζ(6, 1

2 + iy)

∂y3
|y= 1

2
= −6

∂2ζ(6, 1
2 + iy)

∂y2
|y= 1

2

∂3ζ(3, 1
2 + iy)

∂y3
|y= 1

2
= −6

∂2ζ(3, 1
2 + iy)

∂y2
|y= 1

2

(7.7)

The conclusion follows by (7.7). �

Denote that

A(y) :=
ζ(6, 1

2 + iy)

∂y
,

B(y) :=
ζ(3, 1

2 + iy)

∂y

(7.8)

By the notations in (7.8), Proposition 7.2 equivalents to
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Lemma 7.10. The monotonicity of the quotients.

(1) (A(y)

B(y)

)′
< 0 for y ∈ (

1

2
, y0);

(2) (A(y)

B(y)

)′
> 0 for y ∈ (y0,

√
3

2
).

Here y0 is defined in Proposition 7.2 and numerically y0 = 0.7035146 · · · .

To prove Proposition 7.2, it suffices to prove Lemma 7.10. We shall divide the proof into three

cases as follows: case a: [ 1
2 , 0.65]; case b: [0.65, 0.76]; case c: [0.76,

√
3

2 ].
Since (A(y)

B(y)

)′
=
A′(y)B(y)−A(y)B′(y)

B2(y)

and y0 is a critical point
(
A(y)
B(y)

)
, then(
A′(y)B(y)−A(y)B′(y)

)
|y=y0= 0. (7.9)

The proof of case b is based on an elementary identity(
A′(y)B(y)−A(y)B′(y)

)′
= A′′(y)B(y)−A(y)B′′(y). (7.10)

We then estimate A′′(y)B(y)−A(y)B′′(y) and prove case b. We estimate directly that

Lemma 7.11. For y ∈ [0.65, 0.76],

A′′(y)B(y)−A(y)B′′(y) ≥ 6.

Lemma 7.11, (7.9) and (7.10) yield that

Lemma 7.12 (case b). (A(y)

B(y)

)′
> 0 for y ∈ (y0, 0.76](A(y)

B(y)

)′
< 0 for y ∈ [0.65, y0).

Note that

A(
1

2
) = B(

1

2
) = 0, A(

√
3

2
) = B(

√
3

2
) = 0 (7.11)

followed by 1
2 ,
√

3
2 are critical points of ζ(s, 1

2 + iy), s > 0(see e.g. [41]). To prove case c, we use

Lemma 7.5 given by (7.11). Namely, we turn to compute that
(
A′(y)
B′(y)

)′
. Since(A′(y)

B′(y)

)′
=
A′′(y)B′(y)−A′(y)B′′(y)

B′2(y)

The proof of case c is based on a direct checking

Lemma 7.13. For y ∈ [0.76,
√

3
2 ],

A′′(y)B′(y)−A′(y)B′′(y) ≥ 9.

This yields that (A′(y)

B′(y)

)′
> 0 for y ∈ [0.76,

√
3

2
].

We then prove case c.
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Lemma 7.14 (case c). It holds that(A(y)

B(y)

)′
> 0 for y ∈ [0.76,

√
3

2
].

Proof. Proof of Lemma 7.14. By Lemma 7.6, B′′(y) > 0 for y ∈ [0.76,
√

3
2 ]. Then the result

follows by Lemma 7.5 and Lemma 7.13.
�

It remains to prove case a. The proof is similar to that of case c and with one more delicate
point.

We estimate directly that

Lemma 7.15 (case a). For y ∈ ( 1
2 , 0.65],

A′′(y)B′(y)−A′(y)B′′(y) < 0.

This yields that (A′(y)

B′(y)

)′
< 0 for y ∈ (

1

2
, 0.65].

Lemma 7.16 (case a). For y ∈ ( 1
2 , 0.65],

A′′(y)B′(y)−A′(y)B′′(y) < 0.

This yields that (A′(y)

B′(y)

)′
< 0 for y ∈ (

1

2
, 0.65].

Similar to the proof of case c, by Lemma 7.16, it follows that(A(y)

B(y)

)′
< 0 for y ∈ (

1

2
, 0.65].

It remains to prove Lemma 7.16.
Note that by Lemma 7.9 and notations in (7.8), one has(

A′′(y)B′(y)−A′(y)B′′(y)
)
|y= 1

2
= 0. (7.12)

In view of (7.12), to prove Lemma 7.16, we shall further divide the case a into two subcases,
namely case a1: ( 1

2 , 0.54], case a2: [0.54, 0.65].
For case a1, since

A′′′(y)B′(y)−A′(y)B′′′(y) =
(
A′′(y)B′(y)−A′(y)B′′(y)

)′
one estimates directly that

Lemma 7.17 (case a1). For y ∈ ( 1
2 , 0.54],

A′′′(y)B′(y)−A′(y)B′′′(y) ≤ −1600.

This and (7.12) yield that

A′′(y)B′(y)−A′(y)B′′(y) < 0 for y ∈ (
1

2
, 0.54].

For case a2, we estimate directly that

Lemma 7.18 (case a2). For y ∈ [0.54, 0.65],

A′′(y)B′(y)−A′(y)B′′(y) ≤ −90.

Lemma 7.16 follows by Lemmas 7.17 and 7.18.
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8. Proof of Theorem 1.1

Recall that
Γa = {z ∈ H : Re(z) = 0, Im(z) ≥ 1};

Γb = {z ∈ H : |z| = 1, Im(z) ∈ [

√
3

2
, 1]}.

And
Γ = Γa ∪ Γb.

By Theorems 3.1, 4.1 and 5.2, we obtain that

Theorem 8.1. For b ∈ R,

min
z∈H

(
ζ(6, z)− bζ(3, z)

)
= min
z∈DG

(
ζ(6, z)− bζ(3, z)

)
= min

z∈Γ

(
ζ(6, z)− bζ(3, z)

)
.

See Picture 1. Then Theorem 1.1 follows by Theorems 6.2 and 7.1 in Sections 6 and 7 respec-
tively.
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9. Appendix

On stating Lemmas 7.7, 7.11, 7.13, 7.17, 7.18, 6.6, 4.33, 4.12, 4.13, 3.15, we use the method
by a direct estimate or checking or computation. We state how the direct estimate or checking or
computation are and why work, the details of the computation are omitted.

Indeed, they are on finite and small intervals with uniform upper/lower bounds. The function
is one variable and is exponential decaying by Proposition 3.2, and can be approached by finite
terms(in fact only 2 or 3 or 4 terms is enough in these estimates), the error is very small comparing
the uniform upper/lower bounds, the computation are tedious and we omit here.
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[5] L. Bétermin and P. Zhang. Minimization of energy per particle among Bravais lattices in R2 Lennard-Jones

and Thomas-Fermi cases. Commun. Contemp. Math., 17(6) (2015), 1450049.
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