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Abstract

We examine a non-local diffuse interface energy with Coulomb repulsion in three di-
mensions inspired by the Thomas-Fermi-Dirac-von Weizsäcker, and the Ohta-Kawasaki
models. We consider the corresponding mass-constrained variational problem and show
the existence of minimizers for small masses, and the absence of minimizers for large
masses.

1 Introduction

We frequently encounter variational problems featuring competing terms in studies related
to energy-driven pattern formation. The Thomas-Fermi-Dirac-von Weizsäcker (henceforth
TFDW) and the Ohta-Kawasaki models stand as representative functionals that have re-
ceived increasing attention [1, 2, 5, 7, 8, 13, 15, 16, 23, 27, 31].

The TFDW theory [19, 20] is a density functional theory that is used to approximate
the many-body Schrödinger theory. Mathematically, the TFDW theory is defined (up to
rescaling) by the energy functional

ˆ
R3

(
|∇u|2 + c1|u|

10
3 − c2|u|

8
3 − Z

u2

|x|

)
dx+

1

2

ˆ
R3

ˆ
R3

u2(x)u2(y)

|x− y|
dx dy,

with c1, c2 > 0, and Z ≥ 0, on the class of functions u ∈ H1(R3) with a prescribed
L 2-norm. Each such u represents an electron density function with mass given by its
L 2-norm. The energy is to be thought of as the energy of a system of a fixed number of
electrons interacting with a nucleus of charge Z fixed at the origin. Finding the infimum
of the energy makes sense because Chemical and Physical systems are usually found in
their most stable state, and that corresponds to the lowest energy possible. The infimum
corresponds to the ground state energy, an optimal u corresponds to a state or electronic
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configuration of optimal energy, and such u sheds light on properties of an atom.

The first density functional theory was the Thomas-Fermi (henceforth TF) theory [12,
33], a theory that captures the leading-order behavior of the ground state energy of atoms in
the large Z limit. But negative ions were absent in this theory [21]. Then, a leading-order
correction was incorporated by adding the von Weizsäcker gradient term [34] to the energy
functional. In the Thomas–Fermi–von Weizsäcker (henceforth TFW) theory, negative ions
do exist while arbitrarily negative ions do not [3]. Finally, a second-order correction to the
TF theory was obtained by adding Dirac’s term [10] to the energy functional, the term
with power 8/3.

Regarding existence of minimizers of the TFDW model, there exist ϵ1, ϵ2 > 0 such that
there exists a minimizer for masses less than Z + ϵ1 [18, 22], and there are no minimizers
for masses larger than Z + ϵ2.

On the other hand, the Ohta-Kawasaki model was originally introduced in [30] in
the context of microphase separation in diblock copolymer melts. A diblock copolymer
molecule is a linear chain consisting of two subchains made of two different monomers
joined covalently to each other. Microphase separation occurs as monomers of the same
type attract while monomers of opposite type repel.

The Ohta-Kawasaki model is defined (up to rescaling) by the energy functional

ˆ
Ω

[
ϵ

2
|∇u|2 + 1

4ϵ
(1− u2)2

]
dx+

1

2

ˆ
Ω

ˆ
Ω
G(x, y)[u(x)−m][u(y)−m] dx dy,

where Ω ⊂ R3 is a fixed open set, the domain occupied by the material, ϵ > 0 is a pa-
rameter that is proportional to the thickness of the transition regions between the two
monomers, G is the Neumann Green’s function of the Laplacian, u ∈ H1(Ω) is the scalar
order parameter, and m :=

ffl
Ω udx ∈ (−1, 1), the background charge density, is prescribed.

The function u is the difference between the averaged densities of the two monomers, so
u takes values between −1 and 1 and u = ±1 when there is a concentration of a single
monomer.

It is worth noting that the Ohta-Kawasaki model extends its relevance to a broad spec-
trum of other physical systems [4, 9, 11, 14, 17, 24, 25, 26, 28, 29]; it corresponds to a
diffuse interface version of the Liquid Drop model [6] in the sense of Γ-convergence, and to
a Cahn-Hilliard model [32] with a non-local term.

Regarding existence of minimizers, it is possible to use the direct method of the Calcu-
lus of Variations to show that a minimizer will always exist for all choices of the parameters,
and Ω smooth and bounded.
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In this work, we study the existence of minimizers of a non-local diffuse interface energy
posed on the space, inspired by the TFDW and the Ohta-Kawasaki models. More precisely,
we consider the problem

IZ (M) := inf
{

EZ (u);u ∈ Ĥ ∂M
}
,

where the energy functional EZ is defined as

EZ (u) :=

ˆ
R3

[
|∇u|2

2
+

1

2
u2(1− u)2 − V u

]
dx+

1

2

ˆ
R3

ˆ
R3

u(x)u(y)

|x− y|
dx dy.

with V : R3 → R+ given by

V (x) :=
Z

|x|
,

and

Ĥ ∂M :=
{
u ∈ Ĥ 1(R3) : u ≥ 0 a.e. in R3 with ||u||L 1(R3) = M

}
,

where Ĥ 1(R3) = C∞
0 (R3) with respect to the norm || · ||L 1(R3) + ||∇ · ||L 2(R3).

Our main result is the following one:

Theorem 1.1. There exist constants 0 < Z ≤ M1 ≤ M2 < ∞ such that:

(i) If M ≤ M1, then there is a minimizer.

(ii) If M ≥ M2, then there are no minimizers.

Remark 1.2. While we expect M1 = M2 = Z , it remains open to prove or disprove this.

The paper is organized as follows. In Section 2 we describe some basic properties of
the energy functional and its minimizers. In Section 3 we prove part (a) of Theorem 1.1.
Finally, in Section 4 we prove part (b) of Theorem 1.1. Our overall strategy is to adapt
some approaches and techniques developed in [3] for establishing the existence of minimiz-
ers of the TFW energy for sufficiently small masses, and in [13] for the nonexistence of
minimizers of the TFDW energy for large masses. There are important changes we outline
as proofs unfold.

In what follows, we use the notation

D(f, g) :=
1

2

ˆ
R3

ˆ
R3

f(x)g(y)

|x− y|
dx dy.

We will refer to D(u, u) =: D(u) as the Coulomb repulsion term, 1
2

´
R3 u

2(1−u)2 dx as the
double well term, and −

´
R3 V u dx as the attraction term. Denote by BR the ball centered

around the origin with radius R. Finally, C will denote some (positive) universal constant
that might change from line to line.
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2 General Estimates

The goal of this section is to establish some properties of the energy functional and its
minimizers.

Our first result tells us that the condition u ≥ 0 plays no role as long as ||u||L 1(R3) is
not too large.

Lemma 2.1. Let u ∈ Ĥ 1(R3). If ||u||L 1(R3) ≤ Z , then EZ (|u|) ≤ EZ (u).

Proof. We have

2D(u−, u+)−
ˆ
R3

V u− dx = 2D(u−, u+)− Z

ˆ
R3

u−(x)

|x|
dx

≤ 2D(u−, u+)− Z

ˆ
R3

u−(x)

|x|
dx

=

ˆ
R3

(
u+ ∗ | · |−1 − Z

|x|

)
u−(x) dx,

where the line over functions corresponds to their spherical average. Moreover, by equation
(35) in [21], we have

u+ ∗ | · |−1(x) ≤
||u+||L 1(R3)

|x|
, |x| > 0.

Consequently,

2D(u−, u+)−
ˆ
R3

V u− dx ≤
ˆ
R3

(
||u+||L 1(R3) − Z

) u−(x)

|x|
dx ≤ 0.

As a result,

D(u)−
ˆ
R3

V u = D(u+, u+)− 2D(u−, u+) + D(u−, u−)−
ˆ
R3

V u+ dx+

ˆ
R3

V u− dx

≥ D(u+, u+) + 2D(u−, u+) + D(u−, u−)−
ˆ
R3

V u+ dx−
ˆ
R3

V u− dx

= D(|u|, |u|)−
ˆ
R3

V |u|dx.

On the other hand, all other terms in EZ (u) do not increase if we replace u by |u|. Con-
sequently, the result follows.

Corollary 2.2. If M ≤ Z , then

IZ (M) = inf
{

EZ (u);u ∈ Ĥ 1(R3), ||u||L 1(R3) = M
}
.
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Proof. This is an immediate consequence of the previous Lemma.

The next result concerns continuity and coercivity of the energy functional.

Lemma 2.3. The energy functional EZ is continuous over Ĥ 1(R3), and the following hold
for all u ∈ Ĥ 1(R3):

EZ (u) + CZ 2 ≥
ˆ
R3

[
1

4
|∇u|2 + 1

2
u2(1− u)2

]
dx+

1

2
D(u),

EZ (u) + C

[
Z 2 +

(ˆ
R3

|∇u|2 dx
)3

]
≥
ˆ
R3

[
1

4
|∇u|2 + 1

4
(u2 + u4)

]
dx+

1

2
D(u).

Proof. The continuity of EZ is standard.
The proof of (2.3) is similar to that of Lemma 2 in [3] for the TFW energy functional.
Indeed, by −∆

(
u ⋆ | · |−1

)
= 4πu and Sobolev’s inequality, we have∣∣∣∣u ⋆ | · |−1

∣∣∣∣2
L 6(R3)

≤ C
∣∣∣∣∇ (

u ⋆ | · |−1
)∣∣∣∣2

L 2(R3)

= CD(u).

Now, pick any smooth function η : R3 → [0, 1] for which 1B1(0)η ≡ 1 and 1R3\B2(0)η ≡ 0,
and define the pair of functions V1, V2 : R3 → R by

V1(x) := V η and V2(x) := V (1− η).

Then, by −∆
(
u ⋆ | · |−1

)
= 4πu, Hölder’s inequality, Sobolev’s inequality, and Young’s

inequality, we have
ˆ
R3

V u =

ˆ
R3

V1udx+

ˆ
R3

V2udx

=

ˆ
R3

V1udx+
1

4π

ˆ
R3

(−∆V2)u ⋆ | · |−1 dx

≤ CZ
(
||u||L 6(R3) +

∣∣∣∣u ⋆ | · |−1
∣∣∣∣

L 6(R3)

)
≤ CZ [||∇u||L 2(R3) +

√
D(u)]

≤ CZ 2 +
1

4

ˆ
R3

|∇u|2 + 1

2
D(u).

Equation (2.3) then follows.
Next, to establish (2.3) we use (2.3) along with the following, which is established using
basic properties of the distribution function and Sobolev’s inequality:

ˆ
R3

u3+ dx ≤ 1

4

ˆ
R3∩{u+≤1/4}

u2+ dx+

ˆ
R3∩{1/4≤u+≤4}

u3+ dx+
1

4

ˆ
R3∩{1/4≤u}

u4+ dx
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≤ 1

4

ˆ
R3

u2+ dx+ C|{1/4 ≤ u+ ≤ 4}|+ 1

4

ˆ
R3

u4+ dx

≤ 1

4

ˆ
R3

u2+ dx+ C

ˆ
R3

u6+ dx+
1

4

ˆ
R3

u4+ dx

≤ 1

4

ˆ
R3

u2+ dx+ C

(ˆ
R3

|∇u+|2 dx
)3

+
1

4

ˆ
R3

u4+ dx

≤ 1

4

ˆ
R3

u2 dx+ C

(ˆ
R3

|∇u|2 dx
)3

+
1

4

ˆ
R3

u4 dx

Using the previous Lemma, we obtain boundedness of minimizing sequences in Ĥ 1(R3).

Corollary 2.4. Let {un}n∈N be a minimizing sequence for IZ (M) . Then, {un}n∈N is
bounded in Ĥ 1(R3).

Proof. This is an immediate consequence of the Lemma above.

In the case the is no background potential, we can say that the corresponding infimum
is the zero function.

Lemma 2.5. IZ =0 ≡ 0.

Proof. This follows immediately from EZ =0(u) ≥ 0 and

EZ =0(σ
3u(σ·)) −−−−→

σ→0+
0, u ∈ Ĥ 1(R3).

Now, we outline some properties of IZ (m).

Lemma 2.6. The following hold:

(a) m ∈ [0,∞) 7→ IZ (m) is continuous, nonincreasing, negative (except IZ (0) = 0), and
bounded below.

(b) For each M > 0, there exists 0 < m ≤ M such that IZ (M) = IZ (m) and IZ (m) is
attained.

Proof. The continuity of m ∈ [0,∞) 7→ IZ (m) follows from a standard argument based
on the variational principle and appropriate trial states.
Now, let us take 0 < m′ < m and show that IZ (m) ≤ IZ (m′). Pick two smooth functions
u1 and u2 with compact supports for which ||u1||L 1(R3) = m′ and ||u2||L 1(R3) = m −m′.
Then, for any vector x0 ∈ R3 we have

IZ (m) ≤ lim
n→∞

EZ (u1(·) + u2(·+ nx0))) = EZ (u1) + EZ =0(u2).

6



Then, we optimize the right-hand side of the equation above over all u1 and u2 and use
Lemma 2.5 to conclude that IZ (m) ≤ IZ (m′) + IZ =0(m−m′) = IZ (m′).
Negativity of IZ (m) form > 0 follows from the nonincreasingness ofm ∈ [0,∞) 7→ IZ (m)
and

EZ (σu) = −σ

ˆ
R3

V u dx+ σ2

[ˆ
R3

[
|∇u|2

2
+

1

2
(u2 − 2σu3 + σ2u4)

]
dx+ D(u)

]
< 0,

for 0 < σ ≪ 1. In turn, boundedness from below of IZ (m) is a direct consequence of
equation (2.3).
Next, let {un}n∈N be a minimizing sequence for IZ (M). By Lemma 2.4, this sequence
is bounded in H 1(R3), hence, up to a subsequence, un ⇀ um in H 1(R3) and un → um
almost everywhere in R3, for some um ∈ H 1(R3). Then, m := ||um||L 1(R3) ≤ M , and since
the energy functional is weakly lower semicontinuous in H 1(R3) and IZ is nonincreasing,

IZ (m) ≤ EZ (um) ≤ lim inf
n→∞

EZ (un) = IZ (M) ≤ IZ (m).

As a result, IZ (M) = IZ (m), where IZ (m) is attained at um. The reason why m > 0
is that IZ (M) < 0.

The following Proposition is the last ingredient we need to prove part (a) of Theorem
1.1.

Proposition 2.7. (Analogue of [3, Lemma 12]) If u ∈ Ĥ 1(R3) satisfies

−∆u+ u− 3u2 + 2u3 − V + |u| ⋆ | · |−1 ≥ 0,

then M := ||u||L 1(R3) ≥ Z .

Proof. Let us pick any smooth radial nontrivial function ξ : R3 → [0, 1] satisfying

supp ξ ⊂ B2(0) \B1(0),

and define the sequence of functions {ξn}n∈N := {ξ(n−1x)}n∈N defined over R3 and so that

supp ξn ⊂ B2n \Bn, n ∈ N.

We multiply both sides of inequality (2.7) by ξn to obtain the family of inequalities

−∆uξn + (u− 3u2 + 2u3)ξn ≥ (V − |u| ⋆ | · |−1)ξn, n ∈ N.

On the other hand, we apply Hölder’s inequality to estimate terms on the left-hand side
of (2) in terms of n as follows:∣∣∣∣ˆ

R3

(−∆u)ξn dx

∣∣∣∣ =
∣∣∣∣∣
ˆ
B2n(0)\Bn(0)

(−∆u)ξn dx

∣∣∣∣∣
7



=

∣∣∣∣∣
ˆ
B2n(0)\Bn(0)

∇u · ∇ξn dx

∣∣∣∣∣
≤ ||∇u||L 2(B2n(0)\Bn(0))||∇ξn||L 2(B2n(0)\Bn(0))

=
√
n||∇u||L 2(B2n(0)\Bn(0))||∇ξ||L 2(B2n(0)\Bn(0))

= ϵ1n
√
n,

with ϵ1n −−−→
n→∞

0,

∣∣∣∣ˆ
R3

urξn dx

∣∣∣∣ =
∣∣∣∣∣
ˆ
B2n(0)\Bn(0)

urξn dx

∣∣∣∣∣
≤
ˆ
B2n(0)\Bn(0)

|u|r dx

≤ ||ur||L 2(B2n(0)\Bn(0))||1||L 2(R3)(B2n(0)\Bn(0))

= ϵ2nn
3
2 , r = 1, 2, 3,

with ϵ2n −−−→
n→∞

0.

As for the right-hand side of equation (2), we note that

ˆ
R3

(V − |u| ⋆ | · |−1)ξn dx =

ˆ
R3

(V − |u| ⋆ | · |−1)ξn dx

=

ˆ
R3

(
Z

|x|
− |u| ⋆ | · |−1

)
ξn(x) dx

where the line over functions corresponds to their spherical average. Moreover, by equation
(35) in [21], we have that

|u| ⋆ | · |−1(x) ≤ M

|x|
, |x| > 0.

As a result, the following holds for n sufficiently large

(Z −M)

ˆ
R3

ξn(x)

|x|
dx ≤

ˆ
R3

(V − |u| ⋆ | · |−1)ξn dx.

Besides, we can compute for each n ∈ N
ˆ
R3

ξn(x)

|x|
dx = n−1

ˆ
R3

ξ(n−1x)

|n−1x|
dx = n2

ˆ
R3

ξ(x)

|x|
dx.

Consequently, (2) holds only if M ≥ Z . This concludes the proof.

Next, we relate the L 2 and the L 1-norms of a minimizer. We will need the following
estimates as part of the proof of part (b) of Theorem 1.1.
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Lemma 2.8. Assume there exists a minimizer u ∈ Ĥ 1(R3) with ∥u∥L 1(R3) = M . Then
it holds

∥u∥2L 2(R3) ≤ 2(Z + 2)M + 8πZ 2,

D(u) ≤ 2(Z + 1)M + 8πZ 2.

Proof. Note that ˆ
R3

u2 dx =

ˆ
R3∩{u≥2}

u2 dx+

ˆ
R3∩{u<2}

u2 dx

≤
ˆ
R3∩{u≥2}

u2(u− 1)2 dx+ 2

ˆ
R3∩{u<2}

udx

≤
ˆ
R3

u2(u− 1)2 dx+ 2M.

Since clearlyˆ
R3

u2(u− 1)2 dx+ D(u) ≤ EZ (u)︸ ︷︷ ︸
≤0

+Z

ˆ
B1

u

|x|
dx+ Z

ˆ
R3\B1

u

|x|
dx︸ ︷︷ ︸

≤M

≤ Z M + Z

ˆ
B1

u2

2Z
+

Z

|x|2
dx

= Z M +
∥u∥2L 2(B1)

2
+ Z 2

ˆ
B1

1

|x|2
dx

≤ Z M +
∥u∥2L 2(B1)

2
+ 4πZ 2

≤ Z M +
∥u∥2L 2(R3)

2
+ 4πZ 2,

which, plugged into (2), gives

ˆ
R3

u2 dx ≤
ˆ
R3

u2(u− 1)2 dx+ 2M ≤ (Z + 2)M +
∥u∥2L 2(R3)

2
+ 4πZ 2,

so that

∥u∥2L 2(R3) ≤ 2(Z + 2)M + 8πZ 2,

hence (2.8) is proven. Combining (2) and (2.8) gives (2.8), concluding the proof.

Lemma 2.9. (Improved version of the previous Lemma) Assume there exists a minimizer
u ∈ Ĥ 1(R3) with ∥u∥L 1(R3) = M . Then it holds

||u||2L 2(R3) ≤ C(Z 2 + Z 6),

D(u) ≤ CZ 2.

9



Proof. These are an immediate consequence of the nonpositivity of IZ (M) = EZ (u), and
equations (2.3) and (2.3).

We finalize this section by establishing estimates that play a central role in the proof
of part (b) of Theorem 1.1. The main idea is to use use localization functions to extract
information on how the mass of minimizers is distributed in R3.

We will use a suitably modified version of Lemmas 3.1 and 3.2 from [13].

Lemma 2.10. (Analogue of [13, Lemma 3.1]) For all smooth partitions of unity fi : R3 −→
[0, 1], i = 1, · · · , n, such that

∑n
i=1 f

2
i = 1, ∇fi ∈ L ∞(R3), and for all u : R3 −→ [0,+∞]

such that u ∈ H1(R3), it holds

n∑
i=1

EZ (f2
i u)− EZ (u) ≤

n∑
i=1

D(f2
i u)− D(u)

+
[ n∑

i=1

∥∇fi∥2L ∞(R3)

]ˆ
A
u2 dx+min

{
4

ˆ
A
u2 dx, 8

ˆ
A
udx

}
,

where A :=
⋃n

i=1{0 < fi < 1}.

Proof. The Coulomb repulsion part is exactly the same as in [13, Lemma 3.1].

Gradient term. Again, as done in [13, Lemma 3.1], we apply the IMS formula

n∑
i=1

ˆ
R3

|∇(f2
i

√
ρ)|2 dx−

ˆ
R3

|∇√
ρ|2 dx =

ˆ
R3

( n∑
i=1

|∇fi|2
)
ρdx

≤
( n∑

i=1

∥∇fi∥2L ∞(R3)

)ˆ
A
ρdx

with ρ = u2, hence

n∑
i=1

ˆ
R3

|∇(f2
i u)|2 dx−

ˆ
R3

|∇u|2 dx ≤
( n∑

i=1

∥∇fi∥2L ∞(R3)

)ˆ
A
u2 dx.

Double well term. Direct computations give

n∑
i=1

ˆ
R3

f4
i u

2(1− f2
i u)

2 dx−
ˆ
R3

u2(1− u)2 dx

=

ˆ
R3

n∑
i=1

(
(f2

i u)
4 − 2(f2

i u)
2 + (f2

i u)
2
)
dx−

ˆ
R3

(u4 − 2u3 + u2) dx

=

ˆ
A

[ n∑
i=1

(
(f2

i u)
4 − 2(f2

i u)
2 + (f2

i u)
2
)
− (u4 − 2u3 + u2)

]
dx,

10



since outside of A we have fi = 0 for all but one index (that we call j), and condition∑n
i=1 f

2
i = 1 forces fj = 1. The above inequality then continues as

ˆ
A

[ n∑
i=1

(
(f2

i u)
4 − 2(f2

i u)
2 + (f2

i u)
2
)
− (u4 − 2u3 + u2)

]
dx

=

ˆ
A

[
u4

( n∑
i=1

f8
i − 1

)
− 2u3

( n∑
i=1

f6
i − 1

)
+ u2

( n∑
i=1

f4
i − 1︸ ︷︷ ︸

<0

)]
dx

≤
ˆ
A

[
2u3

(
1−

n∑
i=1

f6
i

)
− u4

(
1−

n∑
i=1

f8
i

)]
dx

≤
ˆ
A
(2u3 − u4)

(
1−

n∑
i=1

f6
i

)
dx

≤
ˆ
A∩{u≤2}

2u3 dx

≤ min

{
4

ˆ
A∩{u≤2}

u2 dx, 8

ˆ
A∩{u≤2}

udx

}
≤ min

{
4

ˆ
A
u2 dx, 8

ˆ
A
udx

}
,

and the proof is complete.

Lemma 2.11. (Analogue of [13, Equation (22)]) Assume there exists a minimizer u ∈
Ĥ 1(R3) with ∥u∥L 1(R3) = M . For all r, s > 0, 0 < λ ≤ 1/2, we have

1

8

( ˆ
R3

χ+
(1+λ)rudx

)2

≤ 2sD(χ+
(1+λ)ru) +

C

λ2s2

ˆ
R3

χ+
r u

2 dx

+

(
8 +

1

4

[
sup
|z|≥r

|z|Φr(z)
])ˆ

R3

χ+
r udx,

where χ+
r := 1|x|≥r, and

Φr(x) :=
Z

|x|
−
ˆ
Br

u(y)

|x− y|
dy.

Proof. Assume there exists a minimizer u ∈ Ĥ 1(R3). As done in [13, Lemma 3.2], for
parameters s, ℓ, λ > 0, choose partitions of unity χi, i = 1, 2, such that χ2

1 + χ2
2 = 1, and

χi(x) := gi

(
ν · θ(x)− ℓ

s

)
, i = 1, 2,

where ν denotes the exterior unit normal to the ball {|x| ≤ r}, gi : R −→ R, i = 1, 2, are
smooth functions such that

g21 + g22 = 1, |g′1|2 + |g′2|2 ≤ C, g1(t) = 1 if t ≤ 0, g1(t) = 0 if t ≥ 1,
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s, ℓ are parameters to be chosen later, and θ : R3 −→ R3 is a radial function satisfying

|θ(x)| ≤ |x|, θ(x) = 0 if |x| ≤ r, θ(x) = x if |x| ≥ (1 + λ)r, |∇θ| ≤ C

λ
.

Consequently,

χ1(x) = 1 if ν · θ(x) ≤ ℓ, χ1(x) = 0 if ν · θ(x) ≥ ℓ+ s.

By Lemma 2.10, using the minimality of u we have

0 ≤ EZ (χ2
1u) + EZ =0(χ

2
2u)− EZ (u)

≤ Z

ˆ
R3

χ2
2u

|x|
dx+ D(χ2

1u) + D(χ2
2u)− D(u)

+
C

λ2s2

ˆ
ν·θ(x)−s≤ℓ≤ν·θ(x)

u2 dx+ 8

ˆ
ν·θ(x)−s≤ℓ≤ν·θ(x)

udx.

The attraction and Coulomb repulsion terms are estimated exactly as in [13, Lemma 3.2],
hence (2) gives
ˆ ˆ

|x|,|y|≥(1+λ)r
ν·y≤ℓ≤ν·x−s

u(x)u(y)

|x− y|
dx dy

≤
ˆ
ℓ≤x·θ(x)

u(x)[Φr(x)]+ dx+
C

λ2s2

ˆ
ν·θ(x)−s≤ℓ≤ν·θ(x)

u2 dx+ 8

ˆ
ν·θ(x)−s≤ℓ≤ν·θ(x)

udx,

where [·]+ denotes the positive part. By arguing like in [13, Lemma 3.2], we can get

1

8

( ˆ
R3

χ+
(1+λ)rudx

)2

≤ 2sD(χ+
(1+λ)ru) +

C

λ2s2

ˆ
R3

χ+
r u

2 dx

+

(
8 +

1

4

[
sup
|z|≥r

|z|Φr(z)
])ˆ

R3

χ+
r udx,

which is the analogue of [13, Equation (22)], and the proof is complete.

The key difference between our Lemma 2.11 and [13, Lemma 3.2] is that we have
ˆ
R3

χ+
r u

2 dx

in the upper bound on the right hand side of (2.11), instead of
ˆ
R3

χ+
r udx

as in [13, Equation (22)]. Therefore, we cannot apply the arguments from [13, Lemma 3.3],
since

lim
r→0

ˆ
R3

χ+
r u

2 dx = ∥u∥2L 2(R3)

12



might be different from

lim
r→0

ˆ
R3

χ+
r udx = ∥u∥L 1(R3) = M.

We use Lemma 2.9 to relate ∥u∥2L 2(R3) and ∥u∥L 1(R3) = M .

3 Proof of part (a) of Theorem 1.1

Proof of part (a) of Theorem 1.1. By part Lemma 2.6, there exists 0 < m ≤ M ≤ Z such
that IZ (M) = IZ (m) and IZ (m) is attained, say at u with ||u||L 1(R3) = m > 0. If
m < M , then IZ (M) = IZ (α) for m ≤ α ≤ M by the nonincreasingness of IZ . Then
u satisfies the hypothesis of Proposition 2.7, so that m ≥ Z . However, this contradicts
m < M ≤ Z . Therefore, m = M and IZ (M) is attained.

4 Proof of part (b) of Theorem 1.1

Proof of part (b) of Theorem 1.1 using Lemma 2.8. Assume there exists a minimizer u ∈
H1(R3) with ∥u∥L 1(R3) = M . Taking the limit r → 0+ in (2.11) and applying (2.8) and
(2.8) gives

1

8
M2 ≤ 2sD(u) +

C

λ2s2

ˆ
R3

u2 dx+

(
8 +

1

4

[
sup
|z|≥0

|z|Φr(z)
])

M

≤2[2(Z + 1)M + 8πZ 2]s+
C[2(Z + 2)M + 8πZ 2]

λ2s2
+

(
8 +

Z

4

)
M,

which must hold for all λ ∈ (0, 1/2], and s > 0. We can choose λ = 1/2 and optimize over
s > 0, and note that the left hand side M2/8 grows like O(M2), while the upper bound in
the right hand side of (4) grows like O(M). Thus (4) can hold only for M not too large,
and the proof is complete.

Proof of part (b) of Theorem 1.1 using Lemma 2.9). The only difference is that (4) is re-
placed by

1

8
M2 ≤ +

C

λ2s2

ˆ
R3

u2 dx+

(
8 +

1

4

[
sup
|z|≥0

|z|Φr(z)
])

M

(2.9),(2.9)

≤ 2CsZ 2 +
C(Z 2 + Z 6)

λ2s2
+

(
8 +

Z

4

)
M,

and again the left hand side term grows like O(M2), while the upper bound in the right
hand side of (4) grows like O(M). Thus (4) can hold only for M not too large, and the
proof is complete.
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