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Abstract. We study the number of positive solutions to the n-coupled elliptic system

−∆ui = µiu
2∗−1
i +

n∑
j=1, j 6=i

βiju
pij−1

i u
qij
j , ui ∈ D1,2(RN ), i = 1, 2, · · · , n,

where N ≥ 3, n ≥ 2, µi > 0, βij > 0, pij < 2∗, and pij +qij = 2∗ for i 6= j ∈ {1, 2, · · · , n}. We prove

new multiplicity and uniqueness results for positive solutions of the system, whether the system has

a variational structure or not. In some cases we provide a rather complete characterization on the

exact number of positive solutions. The results we obtain reveal that the positive solution set of

this system has very different structures in the three cases pij < 2, pij = 2, and 2 < pij < 2∗.

Moreover, when 2 < pij < 2∗, very different structures of the positive solution set can also be

seen in the case where pij close to 2 and the case where pij close to 2∗. Similar results are given

for elliptic systems with subcritical Sobolev exponents. These results substantially generalize and

improve existing results in the literature. To show the effect of the uniqueness result, we apply it

to prove existence of a positive solution to a 2-coupled nonlinear Schrödinger system with critical

exponent and LN/2(RN ) potentials.

Mathematics Subject Classification 2020: 35A25, 35B09, 35B33, 35J47, 35J50, 35Q40.

1. Introduction and the main results

In this paper, we study the number of positive solutions to the system of n-coupled equations

−∆ui + λiui =

n∑
j=1

βij |uj |qij |ui|pij−2ui in Ω, i = 1, 2, · · · , n, (1.1) eq1.1

where n ≥ 2, Ω ⊂ RN is a bounded domain or Ω = RN with N ≥ 1, λi ≥ 0 for i = 1, 2, · · · , n, βij > 0,

qij > 0, and pij + qij = r for some r ∈ (2, 2∗] and for i, j = 1, 2, · · · , n.

Recall that 2∗ = 2N/(N − 2) for N ≥ 3 and 2∗ = +∞ for N = 1, 2. Most results of the paper are

for the whole space RN and the critical Sobolev exponent r = 2∗. Results for a bounded Ω and for

r < 2∗, however, will be given.

A vector solution (u1, · · · , un) is called nontrivial if each component ui is nonzero. In the study

of (1.1) it is a key issue to distinguish nontrivial solutions from semitrivial solutions which have at

least one component being zero and at least one component being nonzero. Here we are interested in

positive solutions, that is, nontrivial solutions (u1, u2, · · · , un) with ui(x) > 0 for all i = 1, 2, · · · , n
and all x ∈ RN .

This system admits a variational structure if and only if pij = qji and
βij
pij

=
βji
pji

for all i 6= j. In

particular, if pij = qij = r
2 and βij = βji then the associated energy functional is

J(u1, · · · , un) =
1

2

n∑
i=1

∫
Ω

(|∇ui|2 + λiu
2
i )−

1

r

n∑
i,j=1

βij

∫
Ω

|uiuj |
r
2 .

In this special case, any solution (u1, u2, · · · , un) of (1.1) corresponds to a solitary wave, i.e., a solution

of the form Φi(x, t) = e
√
−1λitui(x) to the n-coupled Gross-Pitaevskii system

−
√
−1

∂Φi
∂t
−∆Φi =

n∑
j=1

βij |Φj |
r
2 |Φi|

r
2−2Φi in Ω× R+, i = 1, 2, . . . , n. (1.2) eq1.2

System (1.2) arises in mathematical models describing various phenomena in physics. In the theory

of Bose-Einstein condensates of n different hyperfine spin states, Φi is the wave function of the i-th
1
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condensate, and the constants βii and βij (i 6= j) are the intraspecies and interspecies scattering lengths

respectively; see [17, 36]. In nonlinear optics, (1.2) models n optical waves of different frequencies

which co-propagate and interact nonlinearly in a medium, or n polarization components of a wave

interacting nonlinearly at some central frequency, and Φi is the complex amplitude of the i-th electric

field envelope, or the i-th polarization component; see [1, 29, 30]. The constants βii are parameters

characteristic of self interaction, and βij (i 6= j) are for the interaction between different waves or

different polarization components. See [13, 18, 22, 44] for more physical background on (1.2).

When pij = qij = r
2 and βij = βji, system (1.1) has attracted tremendous attention and has been

studied extensively over the last two decades both by mathematicians and by theoretical physicists.

It turns out that (1.1) is much more complicated comparing to single equations. Moreover, the

more equations that make up (1.1), the more complicated this system becomes. Up to now, many

new properties of solutions, including existence and multiplicity of nontrivial solutions, segregation

and synchronization of the components of solutions, and nodal properties of solutions, which a single

equation does not possess, have been revealed; see, for example, [2, 4, 8, 9, 16, 23, 26, 27, 28, 31, 33, 37,

38, 43, 45, 46] and references therein for the subcritical case and [11, 12, 14, 15, 32, 34, 35, 41, 42, 51]

for the critical case. We remark that systems studied in the above mentioned papers all have a

variational structure and results are obtained by variational methods. In addition, most of the results

are only proved for systems with two equations.

In the current paper, we consider system (1.1), which is much more general than those with varia-

tional structure studied extensively in the literature. We first focus on the critical Sobolev exponent

case: pij + qij = 2∗, and we denote µi := βii and assume λi = 0, Ω = RN and N ≥ 3 in (1.1). This

leads us to study the system
−∆ui = µiu

2∗−1
i +

n∑
j=1, j 6=i

βiju
pij−1
i u

qij
j in RN ,

ui > 0, ui ∈ D1,2(RN ), i = 1, 2, · · · , n.
(1.3) eq1.3

Uniqueness and multiplicity of solutions to (1.3) will be investigated. We remark that in this paper

results on uniqueness, multiplicity and exact multiplicity of solutions of (1.3) are all up to translation

and dilation. A solution (u1, u2, · · · , un) of (1.3) is called a synchronized solution if there exist positive

numbers k1, k2, · · · , kn such that ui = kiU for i = 1, 2, · · · , n, where U is a positive solution of the

single equation

−∆u = u2∗−1 in RN , u ∈ D1,2(RN ).

According to [3, 40], U is unique up to translation and dilation and has the expression

U(x) =
[N(N − 2)]

N−2
4

(1 + |x|2)
N−2

2

.

Throughout the paper, we shall always assume that µi > 0 which are arranged without loss of

generality in the following order

µ1 ≤ µ2 ≤ · · · ≤ µn.

For system (1.3), we shall assume in addition that

βij > 0, pij < 2∗, pij + qij = 2∗ for i 6= j ∈ {1, 2, · · · , n}.

Various results will be obtained under this assumption and additional constraints. As a consequence

of this assumption, we have qij > 0. However, we allow pij ≤ 0 and accordingly qij ≥ 2∗ in some of

our results. For convenience, denote

B = (βij)n×n.

Our first result deals with the case pij < 2 and gives existence of 2n − 1 synchronized positive

solutions if βij (i 6= j) are suitably small and existence of one synchronized positive solution if

βij (i 6= j) are suitably large and pij = p for i 6= j. In either case, since we do not assume any

symmetry condition the system is essentially more general than those having variational structure.
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thm1.1 Theorem 1.1. Assume N ≥ 3, µi > 0, pij < 2, and qij = 2∗ − pij for i, j ∈ {1, 2, · · · , n} and i 6= j.

We have the following conclusions.

(a) If

0 < βij < β∗ :=
1

2
min

1≤i≤n

[ n∑
j=1, j 6=i

( 1

µj

)N−2
4 qij( 1

2µi

)N−2
4 (pij−2)]−1

,

then (1.3) has at least 2n − 1 synchronized positive solutions.

(b) Assume in addition that there exists p < 2 such that pij = p for i 6= j. If the matrix

B = (βij)n×n has an inverse A = (aij)n×n such that

aij > 0 for i 6= j and

n∑
j=1

aij > 0 for i = 1, 2, · · · , n,

then (1.3) has at least one synchronized positive solution.

Remark 1.1. We remark that pij ≤ 0 is allowed in Theorem 1.1, a case which has not been studied

in the literature. In Theorem 1.1(a), βij (i 6= j) are assumed to be suitably small. The proof of

Theorem 1.1 in Section 2 shows that β∗ can be replaced with

β∗∗ = max
0<δ<1

f(δ)

where

f(δ) = (1− δ) min
1≤i≤n

[ n∑
j=1, j 6=i

( 1

µj

)N−2
4 qij( δ

µi

)N−2
4 (pij−2)]−1

.

Clearly, β∗∗ ≥ f(1/2) = β∗. We shall explain that the condition on the matrix B in Theorem 1.1(b)

is satisfied if βij (i 6= j) are close to a single number β with β > µn for all i 6= j (see Proposition

2.1) or if βij (i 6= j) are appropriately grouped with entries of each group close to a single number β

properly large (see Proposition 2.2). Roughly speaking, Theorem 1.1(b) means that (1.3) has at least

one synchronized positive solution if pij = p for i 6= j and βij (i 6= j) are suitably large.

Now we consider a more specific case in which pij = p and βij = β for all i, j ∈ {1, 2, · · · , n} with

i 6= j and for some p < 2 and β > 0. For this case we have the following more refined theorem

concerning existence, uniqueness and exact multiplicity of synchronized positive solutions, as well as

uniqueness of positive solutions of (1.3).

thm1.2 Theorem 1.2. Assume N ≥ 3, µi > 0, pij = p < 2, qij = 2∗ − p and βij = β for i, j ∈ {1, 2, · · · , n}
and i 6= j. We have the following conclusions.

(a) (1.3) has at least one synchronized positive solution for any β > 0.

(b) If β ≥ µn, or if β ≥ µn − δ0 in the case µn−1 < µn where δ0 is some positive number, then

(1.3) has exactly one synchronized positive solution.

(c) There exists β0 ∈ (0, µ1) such that (1.3) has exactly 2n− 1 synchronized positive solutions for

0 < β < β0.

(d) If n = 2m, µ1 = · · · = µm =: µ′ ≤ µm+1 = · · · = µ2m =: µ′′, and

β >
(m+ 1)µ′′ − (m− 1)µ′ +

√
(m+ 1)2µ′′2 + (m− 1)2µ′2 − 2(m2 + 1)µ′µ′′

2
,

then (1.3) has exactly one positive solution.

Remark 1.2. Theorem 1.2(a)-(c) are all conclusions about positive solutions of the synchronized

type. It would be interesting to prove that the number of synchronized positive solutions is decreasing

with respect to β > 0, and right now we have a proof of this only for n = 2; see Theorem 1.5(c) below.

It would also be interesting to prove a result concerning uniqueness of positive solutions more general

than that stated in (d); cf. Theorem 1.5(b). In view of the discussions after each of the proofs of

Lemmas 3.5, 3.7 and 3.8, δ0 in (b) and β0 in (c) can be given explicitly in terms of n, N and µi. If

n = 2, that is, if the system consists of two equations, then the condition in Theorem 1.2(d) reduces

to β > µ2 +
√
µ2

2 − µ1µ2. Again, we allow p ≤ 0 in Theorem 1.2.
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Remark 1.3. The conditions of Theorem 1.2 are restrictive, but compared with the conclusions

in Theorem 1.1, those in Theorem 1.2 are much more delicate, which establish the existence of a

synchronized positive solution for any β > 0 and give the exact number of synchronized positive

solutions both for β > 0 large and β > 0 small. When the matrix B enjoys more structural conditions,

Theorem 1.2 also determines uniqueness of the positive solution of (1.3) for β > 0 large.

Remark 1.4. Let us compare our results Theorems 1.1 and 1.2 with those in the literature. First

of all, system (1.3) in Theorems 1.1 and 1.2 is much more general than the same type of systems

studied via variational methods in the papers mentioned above, and variational methods can not be

used to prove Theorems 1.1 and 1.2 since (1.3) may not have a variational structure. Especially, we

allow pij ≤ 0 and qij ≥ 2∗ in Theorems 1.1 and 1.2, a case which, to our knowledge, has not been

considered before. Note again (1.3) has a variational structure if and only if pij = qji and
βij
pij

=
βji
pji

for all i 6= j. Second, we find that the system has at least 2n − 1 synchronized positive solutions for

βij small in Theorem 1.1(a), exactly 2n − 1 synchronized positive solutions for β small in Theorem

1.2(c) and exactly one synchronized positive solution for β large in Theorem 1.2(b); these results are

completely new even for systems with variational structure, and they give a hint on the dependence of

the bifurcation diagram of the solution set on n and β. Third, we give a uniqueness result in Theorem

1.2(d) on all positive solutions of the system, and this result is also completely new for this type of

critical elliptic systems.

Remark 1.5. In the very special case where n = 2, p12 = p21 = q12 = q21 = 2∗/2, and β := β12 = β21,

(1.3) was studied in dimension N ≥ 4 in [11, 12]. For N ≥ 5, it was proved in [12, Theorem 1.6] that

(1.3) has a least energy positive solution for any β > 0 and a second positive solution which is of the

synchronized type for β > 0 suitably small. Later, it was showed in [51, Theorem 1.6] (see also [49,

Theorem 1.2]) that the above least energy positive solution must also be of the synchronized type. In

[12, Theorem 1.7] and [49, Theorem 1.2], it was established that the least energy positive solution is

unique for β > 0 large. Our Theorems 1.1 and 1.2 considerably improve those existence, uniqueness

and multiplicity results in several aspects: the system considered here is much more general, our

results also cover the dimension N = 3, the multiplicity conclusions in Theorems 1.1 and 1.2 are much

stronger, and the results on exact multiplicity of synchronized positive solutions and on the uniqueness

of all positive solutions are completely new.

In both Theorem 1.1 and Theorem 1.2, we have studied the case pij < 2. Now we consider the

case pij = 2. We have the following result about exact number of synchronized positive solutions, and

nonexistence and uniqueness of positive solutions of (1.3).

thm1.3 Theorem 1.3. Assume N ≥ 3, µi > 0, pij = 2, qij = 2∗ − 2, and βij = β for i, j ∈ {1, 2, · · · , n} and

i 6= j. We have the following conclusions.

(a) (1.3) has a synchronized positive solution if and only if β > µn or 0 < β < µ1 or β = µ1 = µn.

Moreover, if β > µn or 0 < β < µ1 then (1.3) has exactly one synchronized positive solution

and if β = µ1 = µn then (1.3) has infinitely many synchronized positive solutions.

(b) If µ1 ≤ β ≤ µn and µ1 6= µn then (1.3) has no positive solution.

(c) If β > µn then (1.3) has exactly one positive solution.

Remark 1.6. Comparing Theorem 1.2 with Theorem 1.3, we can see two distinct structures of the

solution set in the cases pij = p < 2 and pij = 2. For pij = p < 2 and for any β > 0, the system has

a synchronized positive solution, while for pij = 2 and for µ1 ≤ β ≤ µn with µ1 6= µn, the system has

no positive solution. For pij = p < 2 and for β > 0 small, the system has exactly 2n − 1 synchronized

positive solutions, while for pij = 2 and for β < µ1, the system has exactly one synchronized positive

solution. These differences give a hint on bifurcation phenomena of the solution set from the exponent

pij = 2.

Remark 1.7. The assumptions in Theorem 1.3 make it impossible for the system to possess a vari-

ational structure, and no variational approach is applicable. In addition, Theorem 1.3 not only gives

the exact number of synchronized positive solutions depending on the size of β, but also confirms
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the uniqueness of positive solutions for β > µn. In the very special case where n = 2, N = 4,

β12 = β21 = β and p12 = p21 = q12 = q21 = 2, existence and nonexistence of positive solutions of (1.3)

were investigated in [11] by variational methods.

The last case in which we deal with (1.3) is pij ∈ (2, 2∗). The following theorem, as compared with

Theorems 1.1-1.3, exhibits a completely new feature of the structure of the solution set in this case.

thm1.4 Theorem 1.4. Assume N ≥ 3, µi > 0, 2 < pij < 2∗, qij = 2∗−pij, and βij > 0 for i, j ∈ {1, 2, · · · , n}
and i 6= j. Then

(a) (1.3) has a synchronized positive solution.

Assume moreover pij = p ∈ (2, 2∗), qij = 2∗ − p, βij = β for i, j ∈ {1, 2, · · · , n} and i 6= j. We have

the following conclusions.

(b) If 0 < β ≤ µ1, or if 0 < β ≤ µ1 + δ0 in the case µ1 < µ2 where δ0 is some positive number,

then (1.3) has exactly one synchronized positive solution.

(c) If β > µj then there exists p1 = p1(β) ∈ (2, 2∗) such that for p ∈ (2, p1) (1.3) has at least

2j − 1 synchronized positive solutions. In particular, if β > µn then for p larger than and

sufficiently close to 2, (1.3) has at least 2n − 1 synchronized positive solutions.

(d) If β > µ1 and

µ1

β
2 +

(
1− µ1

β

)
2∗ ≤ p < 2∗,

then (1.3) has exactly one synchronized positive solution. In particular, this result together

with (b) implies that for any β > 0, (1.3) has exactly one synchronized positive solution if p

is less than and sufficiently close to 2∗.

Remark 1.8. Theorem 1.4 reveals that the structure of the solution set of (1.3) in the case 2 <

pij < 2∗ is incredibly different from what have been described in Theorems 1.1-1.3 in the cases pij < 2

and pij = 2. Let us examine more closely these differences only in the special case pij = p and

βij = β. When β is suitably small, (1.3) has exactly 2n − 1 synchronized positive solutions for p < 2

but exactly one synchronized positive solution for 2 ≤ p < 2∗. When β > µn, (1.3) has exactly one

synchronized positive solution for p ≤ 2 but at least 2n−1 synchronized positive solutions for p larger

than and sufficiently close to 2. For any β > 0, (1.3) has a synchronized positive solution if p 6= 2

and p < 2∗, but for µ1 ≤ β ≤ µn with µ1 6= µn, (1.3) does not have any positive solution if p = 2.

When 2 < p < 2∗, a significant difference of the structure of the solution set can also be seen between

p sufficiently close to 2∗ and p sufficiently close to 2. From these results we see that the structure of

the solution set of (1.3) is very complex and strongly depends on n, βij and pij .

Remark 1.9. The case pij ∈ (2, 2∗) was rarely investigated in the literature and we are only aware

of the paper [50] where a synchronized positive solution for any β > 0 was obtained for (1.3) in the

case where n = 2, N = 3, β12 = β21 = β and p12 = p21 = q12 = q21 = 3. Again, the system considered

here is much more general and the conclusions of Theorem 1.4 are much stronger.

For (1.3) with two equations, that is, for n = 2, we now refine some of the results in Theorems

1.1-1.3 above, and we rewrite (1.3) as
−∆u = µ1u

2∗−1 + β1u
p1−1vq1 in RN ,

−∆v = µ2v
2∗−1 + β2v

p2−1uq2 in RN ,
u > 0, v > 0, u, v ∈ D1,2(RN ).

(1.4) eq1.4

Again, we may assume without loss of generality that 0 < µ1 ≤ µ2. In the following theorem, stronger

results than those above on multiple synchronized positive solutions, exact multiplicity of synchronized

positive solutions, and uniqueness of positive solutions will be exhibited for (1.4). We first formulate

the following assumption.
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(A) For i, j ∈ {1, 2} such that i 6= j,

βi >


either 2µj if pi = 2,

or 2
N−2

4
qi+2

N−2

(
µi

2−pi

)1−N−2
4 qi(µj

qi

)N−2
4 qi

if 4− 2∗ < pi < 2,

or µ
1−N−2

4 qi
i µ

N−2
4 qi

j if pi ≤ 4− 2∗.

Note that this assumption totally consists of nine cases of combinations of p1 and p2 depending on

either p1 = 2, or 4− 2∗ < p1 < 2, or p1 < 4− 2∗ and either p2 = 2, or 4− 2∗ < p2 < 2, or p2 < 4− 2∗.

As examples, we only list the following two cases: p1 < 4− 2∗ < p2 = 2 and 4− 2∗ < p1, p2 < 2.

thm1.5 Theorem 1.5. Assume N ≥ 3, µi > 0, βi > 0, pi ≤ 2, and qi = 2∗ − pi for i = 1, 2.

(a) If for i, j ∈ {1, 2} and i 6= j, pi < 2 and

βi < 2−
N−2

4 qiµ
1−N−2

4 qi
i µ

N−2
4 qi

j ,

then (1.4) has at least three synchronized positive solutions.

(b) If (A) is satisfied, then (1.4) has a unique positive solution.

(c) Assume moreover p := p1 = p2 < 2 and β := β1 = β2. We have the following conclusions.

(c1) If µ := µ1 = µ2, then (1.4) has exactly three synchronized positive solutions for 0 < β <

β0 and exactly one synchronized positive solution for β ≥ β0, where β0 = 2µ
2(N−1)−(N−2)p .

(c2) If µ1 < µ2, then there exists β0 ∈ (0, µ1) such that (1.4) has exactly three synchronized

positive solutions for 0 < β < β0, exactly two synchronized positive solutions for β = β0,

and exactly one synchronized positive solution for β > β0.

Remark 1.10. Let us say some words about the relationship between Theorem 1.5 and Theorems

1.1-1.3. Theorem 1.5(a) improves Theorem 1.1(a) by allowing β1 and β2 from different ranges whose

intersection is (0, β∗), where β∗ is the number defined in Theorem 1.1(a) and it has the following

expression for n = 2:

β∗ = min
i,j∈{1,2},i6=j

2−
N−2

4 qiµ
1−N−2

4 qi
i µ

N−2
4 qi

j .

By allowing β1 6= β2 and p1 6= p2, Theorem 1.5(b) essentially generalizes Theorem 1.2(d) and Theorem

1.3(c) for n = 2. Clearly, Theorem 1.5(c) refines Theorem 1.2(a), (b) and (c) in the case n = 2. From

the discussion after the proof of Theorem 1.5(c) in Section 6, we shall see that if N = 8, p = 4
3 and

µ1 < µ2 then β0 is the unique positive root of the quartic polynomial

f(β) = −27β4 + 18µ1µ2β
2 − 4(µ3

1 + µ3
2)β + µ2

1µ
2
2.

For many problems in nonlinear analysis, existence of solutions of some elliptic equations can be

derived from uniqueness of positive solutions of their limit equations. To show that this general

principle also applies to the current situation and to illustrate the effect of the uniqueness result in

Theorem 1.5(b), we shall apply it to prove existence of a solution of the nonlinear Schrödinger system
−∆u+ V1(x)u = µ1u

2∗−1 + pβ
2∗ u

p−1vq in RN ,
−∆v + V2(x)v = µ2v

2∗−1 + qβ
2∗ v

q−1up in RN ,
u > 0, v > 0, u, v ∈ D1,2(RN )

(1.5) eq1.5

in the case where N ≥ 5, V1, V2 ∈ LN/2(RN ) ∩ L∞loc(RN ), 0 < µ1 ≤ µ2, p, q ∈ (1, 2], p + q = 2∗, and

β > 0. As ‖V1‖LN/2(RN ) + ‖V2‖LN/2(RN ) → 0, the limit system of (1.5) is
−∆u = µ1u

2∗−1 + pβ
2∗ u

p−1vq in RN ,
−∆v = µ2v

2∗−1 + qβ
2∗ v

q−1up in RN ,
u > 0, v > 0, u, v ∈ D1,2(RN ),

(1.4′)

which is exactly (1.4) when we choose there

p1 = q2 = p, p2 = q1 = q, β1 =
pβ

2∗
, β2 =

qβ

2∗
.
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Here we use the current symbols for convenience in the discussion concerning Theorem 1.6 below.

We introduce the notation

µ̃12 =
2
N−2

4 q+2

(N − 2)p

( µ1

2− p

)1−N−2
4 q(µ2

q

)N−2
4 q

, µ̃21 =
2
N−2

4 p+2

(N − 2)q

( µ2

2− q

)1−N−2
4 p(µ1

p

)N−2
4 p

,

µ̂12 =
1

p
µ

1−N−2
4 q

1 µ
N−2

4 q
2 , µ̂21 =

1

q
µ

1−N−2
4 p

2 µ
N−2

4 p
1 ,

and define

β0 =



2∗µ2, if N = 5, p = 2, q = 4
3 ,

2∗max{µ1, (
√

2µ
3/2
2 )/(

√
3µ

1/2
1 )}, if N = 5, q = 2, p = 4

3 ,

2∗max{µ̃12, µ̃21}, if 4− 2∗ < p, q < 2,

2∗max{µ̃12, µ̂21}, if 1 < q ≤ 4− 2∗ < p < 2,

2∗max{µ̂12, µ̃21}, if 1 < p ≤ 4− 2∗ < q < 2,

2∗max{µ̂12, µ̂21}, if 1 < p, q ≤ 4− 2∗.

Since p, q ∈ (1, 2] and p+ q = 2∗, the dimension must be N = 5 if p = 2 or q = 2. The dimension

can be any N ≥ 5 if p, q < 2. For (1.4′) with β > β0, it can be checked that the condition of

Theorem 1.5(b) is satisfied, and then (1.4′) has exactly one positive solution, which is a synchronized

positive solution according to the proof of Theorem 1.5(b) in Section 6. More precisely, by the proofs

of Lemmas 6.1 and 6.2, this unique solution takes the form (k1U, k2U), where k1, k2 are positive

numbers satisfying 0 < ki < (2µi)
−(N−2)/4 and are uniquely determined by µ1, µ2, β, p, q through the

system of algebraic equations

µ1k
q
1 − k

2−p
1 +

pβ

2∗
kq2 = 0, µ2k

p
2 − k

2−q
2 +

qβ

2∗
kp1 = 0.

Use | · |r to represent the standard norm in Lr(RN ) and S the optimal constant of the Sobolev

embedding D1,2(RN ) ↪→ L2∗(RN ). Recall that

S = inf
u∈D1,2(RN ), u 6=0

|∇u|22/|u|22∗ , |∇U |22 = |U |2
∗

2∗ = SN/2.

thm1.6 Theorem 1.6. Assume N ≥ 5, µi > 0, β > β0, p, q ∈ (1, 2] with p + q = 2∗, V1, V2 ∈ LN/2(RN ) ∩
L∞loc(RN ) are nonnegative functions, and(

1 +
k2

1|V1|N/2 + k2
2|V2|N/2

(k2
1 + k2

2)S

)N/2
< min

{
µ
−(N−2)/2
1

k2
1 + k2

2

,
µ
−(N−2)/2
2

k2
1 + k2

2

, 2

}
. (1.6) eq1.6

Then problem (1.5) admits a positive solution.

Remark 1.11. For β > β0, we have 0 < ki < (2µi)
−(N−2)/4 as mentioned above, and then since

µ1 ≤ µ2 it is clear that (1.6) holds if(
1 +
|V1|N/2 + |V2|N/2

S

)N
2

< min

{
(2µ1)

N−2
2

µ
N−2

2
1 + µ

N−2
2

2

, 2

}
.

Note that this last inequality can only be satisfied when µ2/µ1 is not large enough. However, for any

fixed N, p, q, µ1, µ2 and V1, V2 with |V1|N/2 + |V2|N/2 small enough, (1.6) always holds if we enlarge

β0 adequately, regardless of the size of µ2/µ1. The reason for this is that k2
1 + k2

2 can be very small if

β > β0 and β0 is very large (see Remark 6.1).

Remark 1.12. A result of the same type as in Theorem 1.6 was first given in [6] for scalar field

equations, which has been extended in [24] to system (1.5) with p = q = 2 in dimension N =

4. Theorem 1.6 extends the result of [24] to higher dimensions N ≥ 5. To prove the existence

result Theorem 1.6, we need the uniqueness result Theorem 1.5(b) together with some new ideas

incorporated.
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Let us briefly sketch the ideas of the proofs of the above theorems. Most arguments of our proofs are

new and are different from the methods used in the above mentioned papers. We shall prove Theorem

1.1 via the Brouwer degree theory. A synchronized positive solution (k1U, k2U, · · · , knU) of (1.3)

corresponds to a positive solution of the algebraic system fi(k1, k2, · · · , kn) = 0 (i = 1, · · · , n) defined

in (2.1). For βij (i 6= j) small enough, we shall find 2n − 1 mutually disjoint cuboids in (0,+∞)n so

that the Brouwer degree of (f1, · · · , fn) on each cuboid is nonzero, which shows that (1.3) has at least

2n − 1 synchronized positive solutions. However, for βij (i 6= j) large enough, the algebraic system

fi(k1, k2, · · · , kn) = 0 may have no solution in any of those cuboids. The idea is that using the matrix

A we convert the system in (2.1) to another algebraic system gi(k1, k2, · · · , kn) = 0 (i = 1, · · · , n) so

that a new cuboid can be constructed on which (g1, · · · , gn) has a nonzero Brouwer degree.

The idea of the proof of Theorem 1.2 is completely different. To prove Theorem 1.2(a), (b) and

(c), we shall introduce a group of algebraic equations Gs(τ) = 0 and show that the number of

synchronized positive solutions of (1.3) is either equal to the number of positive solutions of a single

algebraic equation (in the case β ≥ µn) or equal to the sum of the number of positive solutions of

a group of at most 2n algebraic equations (in the case β < µn). We shall then study the number of

positive solutions of these algebraic equations to achieve the conclusions. We prove Theorem 1.2(d)

by showing that any positive solution must be of the synchronized type by comparing the components

of the solution pairwise. Such an idea was first used in [47] and later generalized in [25], but still some

essential new observations have to be incorporated into the proof.

The proof of Theorem 1.3 is relatively easy. Theorem 1.3(a) is proved by studying the associated

algebraic system. Theorem 1.3(b) is obtained via an observation as in [5, Theorem 1.2]. Theorem

1.3(c) is verified using an idea from [47].

Again, Theorem 1.4(a) is proved via the Brouwer degree theory. The techniques for proving Theo-

rem 1.4(b), (c) and (d) share some similarities with the proof of Theorem 1.2(a), (b) and (c), although

the proofs are quite different in detail. Giving the functions Gs adjusted meaning, we also introduce a

group of algebraic equations Gs(τ) = 0, and show that the number of synchronized positive solutions

of (1.3) is either equal to the number of positive solutions of a single algebraic equation (in the case

β ≤ µ1) or equal to the sum of the number of positive solutions of a group of at most 2n algebraic

equations (in the case β > µ1). Theorem 1.4(b) and (d) are verified by showing that there is only one

equation Gs(τ) = 0 which has exactly one solution. Theorem 1.4(c) is established by showing that

there are at least 2j − 1 equations Gs(τ) = 0 and any of them has at least one solution.

Once more, Theorem 1.5(a) and the existence part of Theorem 1.5(b) are proved using the Brouwer

degree theory. In particular, under the conditions of Theorem 1.5(b) we shall prove that the algebraic

system

µ1k
q1
1 − k

2−p1
1 + β1k

q1
2 = 0, µ2k

q2
2 − k

2−p2
2 + β2k

q2
1 = 0

has a solution (k1, k2) in Q4 = (0, (2µ1)−(N−2)/4) × (0, (2µ2)−(N−2)/4). We shall show the following

astonishing result: Existence of a solution of this algebraic system in Q4 not only implies uniqueness of

positive solutions of (1.4) but also implies uniqueness of solutions of the algebraic system itself in the

whole R+×R+. In particular, this proves the uniqueness part of Theorem 1.5(b). We prove Theorem

1.5(c) by carefully analysing properties of the four algebraic equations Gs(τ) = 0, s = 1, 2, 3, 4,

depending on β.

With Theorem 1.5(b) in hand, we apply it to prove Theorem 1.6 using ideas from [6, 24]. Through-

out the paper, only Theorem 1.6 is proved via variational methods and Theorems 1.1-1.5 cannot be

obtained this way due to the lacking of variational structure.

The methods used to prove Theorems 1.1-1.4 are applicable to the following system with subcritical

exponent {
−∆ui + ui = µiu

r−1
i +

∑n
j=1, j 6=i βiju

pij−1
i u

qij
j in RN ,

ui > 0, ui ∈ H1(RN ), i = 1, 2, · · · , n,
(1.7) eq1.7

where N ≥ 1, n ≥ 2, 2 < r < 2∗, 2∗ = +∞ if N = 1, 2 and 2∗ = 2N/(N − 2) if N ≥ 3, µi > 0,

βij > 0, pij < r, and pij + qij = r for i 6= j ∈ {1, 2, · · · , n}. We shall give results on this system and

shall discuss briefly applications of our methods to other related systems.
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Before closing this section, we give a consequence of Theorems 1.2-1.5 on exact number of solutions

of the problem 
−∆ui = µiu

2∗−1
i +

n∑
j=1, j 6=i

βiju
pij−1
i u

qij
j in RN ,

ui > 0, ui ∈W 1,2
loc (RN ) ∩ C0(RN ), i = 1, 2, · · · , n.

(1.8) eq1.8

We first recall a result which is essentially due to [21].

lem1.1 Lemma 1.1. Assume N ≥ 3, µi > 0, βij > 0, pij + qij = 2∗, and qij > 0 for i, j ∈ {1, 2, · · · , n}
and i 6= j. Let (u1, u2, · · · , un) be a weak solution of (1.8). Then (u1, u2, · · · , un) is a synchronized

solution of (1.3).

Remark 1.13. Lemma 1.1 under the additional assumptions pij ≥ 1 and n = 2 is proved in [21];

see [21, Theorems 3.1 and 3.2] and their proofs. The same methods yield the result in its present

generality. By Lemma 1.1, Theorem 1.2(d) is a consequence of Theorem 1.2(b) and Theorem 1.3(c) is

a consequence of Theorem 1.3(a). The reason we still keep Theorem 1.2(d) and Theorem 1.3(c) is that

their proofs given in Sections 3 and 4 work for more general systems, say for subcritical systems like

(1.7) (see the results in Section 7), while the methods in [21] for proving Lemma 1.1 is not applicable

to subcritical systems.

As a direct consequence of Theorems 1.2-1.5 combined with Lemma 1.1, we have the following

result on exact number of solutions of (1.8).

thm1.7 Theorem 1.7. Assume N ≥ 3, µi > 0, pij = p, qij = 2∗ − p and βij = β for i, j ∈ {1, 2, · · · , n} and

i 6= j. We have the following conclusions.

(a) Let p < 2. If either β ≥ µn or β ≥ µn − δ0 in the case µn−1 < µn where δ0 is some positive

number, then (1.8) has exactly one solution.

(b) Let p < 2. Then there exists β0 ∈ (0, µ1) such that (1.8) has exactly 2n − 1 solutions for

0 < β < β0.

(c) Let p = 2. If β > 0 and β 6∈ [µ1, µn] then (1.8) has exactly one solution.

(d) Let 2 < p < 2∗. If either 0 < β ≤ µ1, or 0 < β ≤ µ1 + δ0 in the case µ1 < µ2 where δ0 is

some positive number, or β > µ1 and µ1

β 2 +
(

1− µ1

β

)
2∗ ≤ p < 2∗, then (1.8) has exactly one

solution.

(e) Let n = 2 and p < 2.

(e1) If µ := µ1 = µ2, then (1.8) has exactly three solutions for 0 < β < β0 and exactly one

solution for β ≥ β0, where β0 = 2µ
2(N−1)−(N−2)p .

(e2) If µ1 < µ2, then there exists β0 ∈ (0, µ1) such that (1.8) has exactly three solutions for

0 < β < β0, exactly two solutions for β = β0, and exactly one solution for β > β0.

Remark 1.14. The systems considered in this paper are in the cooperative case, that is βij > 0.

Systems with critical exponent in the repulsive case, that is βij < 0, have also been studied; see, for

example, [19, 20] for radial and nonradial bifurcation results.

The paper is organized as follows. We prove Theorems 1.1, 1.2, 1.3, 1.4 and 1.5 in Sections 2, 3,

4, 5 and 6, respectively. We shall give in Section 7 results on (1.7) similar as Theorems 1.1-1.4. In

Section 8 we study (1.5) and prove Theorem 1.6.

2. Proof of Theorem 1.1

In this section, we assume N ≥ 3, µi > 0, pij < 2, and qij = 2∗ − pij for i, j ∈ {1, 2, · · · , n}
and i 6= j. We prove Theorem 1.1 using the Brouwer degree theory. Elliptic system (1.3) has a

synchronized positive solution of the form

(k1U, k2U, · · · , knU)
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if and only if (k1, k2, · · · , kn) is a positive solution of the algebraic system

fi(k1, k2, · · · , kn) := µik
2∗−2
i +

n∑
j=1, j 6=i

βijk
pij−2
i k

qij
j − 1 = 0, i = 1, 2, · · · , n. (2.1) eq2.1

For a vector solution k = (k1, k2, · · · , kn) of (2.1), we call it a positive solution if ki > 0 for all i. We

denote f = (f1, f2, · · · , fn). We shall first prove Theorem 1.1(a), showing that there exists β∗ > 0

such that if 0 < βij < β∗ then the above algebraic system has at least 2n − 1 positive solutions. The

idea is to find 2n− 1 mutually disjoint n-dimensional cuboids in (0,+∞)n so that the Brouwer degree

of f on each cuboid is nonzero and thus the algebraic system (2.1) has a solution in each of these

n-dimensional cuboids.

Proof of Theorem 1.1(a). First note that

fi

(
k1, · · · , ki−1,

( 1

2µi

)N−2
4

, ki+1, · · · , kn
)

= −1

2
+

n∑
j=1, j 6=i

βijk
qij
j

( 1

2µi

)N−2
4 (pij−2)

and

fi

(
k1, · · · , ki−1,

( 1

µi

)N−2
4

, ki+1, · · · , kn
)

=

n∑
j=1, j 6=i

βijk
qij
j

( 1

µi

)N−2
4 (pij−2)

.

Define

β∗ =
1

2
min

1≤i≤n

[ n∑
j=1, j 6=i

( 1

µj

)N−2
4 qij( 1

2µi

)N−2
4 (pij−2)]−1

.

From the above observation we see that if 0 < βij < β∗ then

fi

(
k1, · · · ,

( 1

2µi

)N−2
4

, · · · , kn
)
< 0 < fi

(
k1, · · · ,

( 1

µi

)N−2
4

, · · · , kn
)

(2.2) eq2.2

for all kj ∈ (0, ( 1
µj

)
N−2

4 ] with j 6= i and all i = 1, 2, · · · , n. This implies the Brouwer degree

deg(f,Ω, 0) = 1,

where Ω is an n-dimensional cuboid defined as

Ω :=

n∏
i=1

(( 1

2µi

)N−2
4

,
( 1

µi

)N−2
4
)
.

Thus f(k) = 0 has a solution in Ω. In the following we assume that 0 < βij < β∗ for i 6= j.

Let 1 ≤ ν ≤ n − 1. There are Cνn = n!
ν!(n−ν)! different ways to decompose the index set I :=

{1, 2, · · · , n} into two disjoint nonempty subsets I1 and I2 so that the first subset I1 has ν indices. For

each of these decompositions, we prove that the algebraic system (2.1) has a solution (k1, k2, · · · , kn)

so that ki ∈ (0, ( 1
2µi

)
N−2

4 ) if i ∈ I1 while ki ∈ (( 1
2µi

)
N−2

4 , ( 1
µi

)
N−2

4 ) if i ∈ I2. If this is the case, then

the algebraic system (2.1) has

1 + C1
n + C2

n + · · ·+ Cn−1
n = 2n − 1

positive solutions. Therefore system (1.3) has at least 2n − 1 synchronized positive solutions.

Without loss of generality, we assume that I1 = {1, · · · , ν} and I2 = {ν + 1, · · · , n} and we prove

that the system has a solution in the n-dimensional cuboid

Ω1 :=

ν∏
i=1

(
ε,
( 1

2µi

)N−2
4
)
×

n∏
i=ν+1

(( 1

2µi

)N−2
4

,
( 1

µi

)N−2
4
)
,
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for some ε > 0 which will be specified next. Let ki ∈ [ε, ( 1
2µi

)
N−2

4 ] for i = 1, 2, · · · , ν and ki ∈
[( 1

2µi
)
N−2

4 , ( 1
µi

)
N−2

4 ] for i = ν + 1, · · · , n. If 1 ≤ i ≤ ν then

fi

(
k1, · · · , ki−1, ε, ki+1, · · · , kn

)
= µiε

2∗−2 +

n∑
j=1, j 6=i

βijk
qij
j εpij−2 − 1

> βin

( 1

2µn

)N−2
4 qin

εpin−2 − 1 > 0 (2.3) eq2.3

for ε > 0 sufficiently small, since kn ≥ ( 1
2µn

)
N−2

4 and pin < 2. Using (2.2) and (2.3), we see that

deg(f,Ω1, 0) = (−1)ν .

This implies that f(k) = 0 has a solution in Ω1. �

Now we turn to prove Theorem 1.1(b). In this case, it is not possible to find a positive solution of

(2.1) in any of the n-dimensional cuboids constructed above. Indeed, it seems to be impossible to find

an n-dimensional cuboid on which f itself has a nonzero degree. The idea to prove Theorem 1.1(b) is

that we use the inverse matrix A of B = (βij)n×n to convert system (2.1) into a new system g(k) = 0

so that an n-dimensional cuboid on which g has a nonzero Brouwer degree can be constructed.

Proof of Theorem 1.1(b). Let q = 2∗ − p. Then qij = q for i 6= j. Using the inverse matrix

A = (aij)n×n of B = (βij)n×n, we write system (2.1) as

(kq1, k
q
2, · · · , kqn)T = A(k2−p

1 , k2−p
2 , · · · , k2−p

n )T ,

where (c1, c2, · · · , cn)T means the transpose of a vector (c1, c2, · · · , cn). Define

gi(k1, k2, · · · , kn) := kqi −
n∑
j=1

aijk
2−p
j , i = 1, 2, · · · , n.

Then we convert (2.1) into

gi(k1, k2, · · · , kn) = 0, i = 1, 2, · · · , n. (2.4) eq2.4

Since q = 2∗ − p > 2 − p, we can choose T > 0 sufficiently large such that, for all kj ∈ (0, T ] with

j 6= i,

gi(k1, · · · , ki−1, T, ki+1, · · · , kn) ≥ T q −
( n∑
j=1

aij

)
T 2−p > 0.

Let ε ∈ (0, T ). Since p < 2, aij > 0 for i 6= j, and
∑n
j=1 aij > 0 for i = 1, 2, · · · , n, we have

gi(k1, · · · , ki−1, ε, ki+1, · · · , kn) ≤ εq −
( n∑
j=1

aij

)
ε2−p < 0,

for all kj ∈ [ε, T ] with j 6= i, provided that ε is small enough. Set g = (g1, · · · , gn). Then

deg(g, (ε, T )n, 0) = 1.

Therefore, (2.4) has a solution in (ε, T )n. �

In the following two propositions, we provide some examples to illustrate nature of the condition

on the matrix B in Theorem 1.1(b). The first proposition is for any n but only for βij close to a single

number, while the second proposition is for more flexible βij which may be close to different numbers

but only for n = 3, 4. One may give more examples in this direction.

prop2.1 Proposition 2.1. Let β be a number such that β > µn. There exists δ0 > 0 such that if |βij−β| < δ0
for i 6= j then the matrix B = (βij)n×n has an inverse A = (aij)n×n such that

aij > 0 for i 6= j and

n∑
j=1

aij > 0 for i = 1, 2, · · · , n. (2.5) eq2.5
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Proof. Replace βij (i 6= j) in B with β and denote the new matrix by B∗. Since β > µn, we have

∆n(µ1, µ2, · · · , µn) := det(B∗) =

n∏
j=1

(µj − β)
(

1 +

n∑
k=1

β

µk − β

)
6= 0.

Then B∗ has an inverse matrix A∗ = (a∗ij)n×n and a direct computation shows that

a∗ij =


−β

∆n(µ1, µ2, · · · , µn)

n∏
k=1, k 6=i,j

(µk − β) if i 6= j,

∆n−1(µ1, · · · , µi−1, µi+1, · · · , µn)

∆n(µ1, µ2, · · · , µn)
if i = j.

Here, the product
∏n
k=1, k 6=i,j(µk − β) is understood to be 1 if n = 2. By this expression, we have

a∗ij > 0 for i 6= j and

n∑
j=1

a∗ij =

∏n
j=1,j 6=i(β − µj)

|∆n(µ1, µ2, · · · , µn)|
> 0,

for i = 1, 2, · · · , n. The result follows by continuity. �

The proof of Proposition 2.1 also shows that if all βij ’s (i 6= j) are a single β and if 0 < β < µ1

then the elements off the main diagonal of the inverse matrix A of B are all negative; this is in sharp

contrast with the case β > µn.

The formula for
∑n
j=1 a

∗
ij shows that

∑n
j=1 a

∗
ij ' 1

β for β sufficiently large and for all i = 1, 2, · · · , n.

By the proof of Theorem 1.1(b), for any ε and T such that

0 < ε <

 min
1≤i≤n

n∑
j=1

aij


N−2

4

≤

 max
1≤i≤n

n∑
j=1

aij


N−2

4

< T,

we have

gi(k1, · · · , ki−1, ε, ki+1, · · · , kn) < 0 < gi(k1, · · · , ki−1, T, ki+1, · · · , kn).

For βij close to β with β being sufficiently large, since
∑n
j=1 aij '

1
β for all i, if (k1, k2 · · · , kn) is any

positive solution of the equation g(k1, k2, · · · , kn) = 0 then it must be that ki ' β−
N−2

4 for all i. This

justifies the statement before the proof of Theorem 1.1(b) that under the assumptions of Theorem

1.1(b), it is impossible to obtain a solution (k1, k2 · · · , kn) of the equation f(k1, k2, · · · , kn) = 0 in any

cuboids constructed in the proof of Theorem 1.1(a).

prop2.2 Proposition 2.2. A matrix which is sufficiently close to any of the three matrices

(a) B =

 µ1 β1 β1

β1 µ2 β2

β1 β2 µ3

 with

{
β1 > max{µ1, β2},
β2 ≥ µ2 + µ3,

(b) B =


µ1 β1 β1 β1

β1 µ2 β2 β2

β1 β2 µ3 β2

β1 β2 β2 µ4

 with

{
β1 > max{µ1, β2},
β2 > max{µ2, µ3, µ4},

(c) B =


µ1 β2 β1 β1

β2 µ2 β1 β1

β1 β1 µ3 β3

β1 β1 β3 µ4

 with


β1 ≥ max{β2, β3},
β2 ≥ µ1 + µ2,

β3 ≥ µ3 + µ4

has an inverse A = (aij)n×n such that

aij > 0 for i 6= j and
∑
j

aij > 0 for all i.
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Proof. By elementary but tedious computations, it can be verified that a matrix B in any of the

three forms (a), (b), and (c) has the required property. Then its small perturbation has the same

property as continuity shows. �

From Proposition 2.1 we see that if all βij ’s (i 6= j) are a single β, then the inverse A of B exists

and satisfies (2.5) for β suitably large. But if βij ’s (i 6= j) are not the same, except being suitably

large they generally have to satisfy additional structural conditions to guarantee that the inverse A

of B exists and satisfies (2.5); this is illustrated in Proposition 2.2.

Let the structural conditions for the three matrices B considered in Proposition 2.2 be satisfied. It

can be proved that if β1 is sufficiently large with all the other entries being fixed then
∑n
j=1 aij '

1
β1

for all i. Therefore, for the matrices B considered in Proposition 2.2 with β1 being sufficiently large,

any solution of the equation f(k1, k2, · · · , kn) = 0 cannot be obtained in any cuboid constructed as in

the proof of Theorem 1.1(a).

3. Proof of Theorem 1.2

In this section we always assume that N ≥ 3, µi > 0, pij = p < 2, qij = 2∗ − p and βij = β for

i, j ∈ {1, 2, · · · , n} and i 6= j. Denote q = qij = 2∗ − p. Note that (k1U, k2U, · · · , knU) is a positive

solution of (1.3) if and only if ki > 0 and (k1, k2, · · · , kn) is a solution of the system

µik
2∗−1
i + βkp−1

i

n∑
j=1,j 6=i

kqj = ki, i = 1, 2, · · · , n.

Letting ti = kqi , in order to study the number of synchronized positive solutions of (1.3) we are led to

study the number of solutions (t1, t2, · · · , tn) with ti > 0 of the nonlinear algebraic system

µiti + β

n∑
j=1, j 6=i

tj = t
2−p
q

i , i = 1, 2, · · · , n. (3.1) eq3.1

Indeed, the number of synchronized positive solutions of (1.3) is equal to the number of positive

solutions (t1, t2, · · · , tn) of (3.1).

To study the number of positive solutions of system (3.1), we convert it into another algebraic

system with extended number of equations. For simplicity of notation, we denote

α :=
2− p
q

=
2− p
2∗ − p

=
q + 2− 2∗

q
.

Then α ∈ (0, 1) and (t1, t2, · · · , tn) is a positive solution of (3.1) if and only if, for some τ > 0,

(t1, t2, · · · , tn, τ) is a positive solution of the nonlinear expanded algebraic system with n+1 equations{
tαi + (β − µi)ti = τ, i = 1, 2, · · · , n,
β
∑n
i=1 ti = τ.

(3.2) eq3.2

In view of the above reasoning, we have proved the following lemma.

lem3.1 Lemma 3.1. The number of synchronized positive solutions of (1.3) is equal to the number of positive

solutions of (3.2).

We now show that the number of positive solutions of (3.2) is equal to either the number of positive

solutions of a single equation (in the case β ≥ µn) or the number of positive solutions of any one of a

group of at most 2n equations (in the case β < µn). To facilitate our further discussion, we introduce

some notations. Denote

fi(t) = tα + (β − µi)t, i = 1, 2, · · · , n.
If β ≥ µn then β ≥ µi for all i since µ1 ≤ µ2 ≤ · · · ≤ µn. This case is simple. For each i, fi is

strictly increasing from (0,+∞) onto (0,+∞) and fi has an inverse function hi : (0,+∞)→ (0,+∞).

Then fi(ti) = tαi + (β − µi)ti = τ if and only if hi(τ) = ti and the number of positive solutions of

system (3.2) is equal to the number of positive solutions of the single equation

β

n∑
i=1

hi(τ) = τ, τ ∈ (0,+∞). (3.3) eq3.3
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A

τ

tT ′
i T T ′′

i SiSn

τ = fn(t)

τ = fi(t)

Figure 1. The case p < 2 and 0 < β < µi

The case β < µn is far more complex. In this case fn achieves its maximum

A = A(β) :=
α

α
1−α − α

1
1−α

(µn − β)
α

1−α
=

[((2− p)/q)
(N−2)(2−p)

4 − ((2− p)/q)
(N−2)q

4 ]

(µn − β)
(N−2)(2−p)

4

at

T = T (β) :=
( α

µn − β

) 1
1−α

=
( 2− p
q(µn − β)

) (N−2)q
4

,

fn is strictly increasing in (0, T ] and strictly decreasing in [T,+∞). For each i, there exists uniquely

a number T ′i such that

0 < T ′i ≤ T, fi(T
′
i ) = A,

and that fi|(0,T ′i ] is strictly increasing from (0, T ′i ] onto (0, A]. We denote the inverse function of

fi|(0,T ′i ] by hi : (0, A] → (0, T ′i ]. Note that we have given hi different meanings, which shall incur no

confusion. We shall use other symbols like this. If β < µi for some i then there exists uniquely a

second number T ′′i such that

T ≤ T ′′i , fi(T
′′
i ) = A,

and that fi|[T ′′i ,Si) is strictly decreasing from [T ′′i , Si) onto (0, A], where

Si :=
( 1

µi − β

) 1
1−α

=
( 1

µi − β

) (N−2)q
4

.

In this case we denote the inverse function of fi|[T ′′i ,Si) by ki : (0, A]→ [T ′′i , Si). Clearly, T ′n = T ′′n = T ,

each hi (i = 1, 2, · · · , n) is well defined, but ki is well defined if and only if β < µi. For 0 < β < µi,

the graphs of fn and fi are illustrated in Figure 1.

Let j ≥ 0 be the smallest integer such that β < µj+1 and k the smallest integer such that µk+1 =

· · · = µn with k ≥ j. Let (t1, t2, · · · , tn, τ) be a positive solution of (3.2). Then

0 < τ = fn(tn) ≤ max
t≥0

fn(t) = A,

ti = hi(τ) ∈ (0, T ′i ] for i = 1, 2, · · · , j, and either ti = hi(τ) ∈ (0, T ′i ] or ti = ki(τ) ∈ [T ′′i , Si) for

i = j + 1, j + 2, · · · , n. Note that for j + 1 ≤ i ≤ k and τ ∈ (0, A)

hi(τ) < hi(A) = T ′i < T < T ′′i = ki(A) < ki(τ),

and for k + 1 ≤ i ≤ n and τ ∈ (0, A)

hi(τ) < hi(A) = T ′i = T = T ′′i = ki(A) < ki(τ).

The index set {j + 1, j + 2, · · · , k} has 2k−j subsets which we mark as J1, J2, · · · , J2k−j . We

understand that this index set is the empty set if k = j. Let σ∗ be the number of Js for which the

equality

β
∑
i∈I\Js

hi(A) + β
∑
i∈Js

ki(A) = A (3.4) eq3.4
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holds. Recall that I = {1, 2, · · · , n}. Then σ∗ is the number of positive solutions (t1, · · · , tn, τ) of

system (3.2) with τ = A. We label with I1, I2, · · · , I2n−j the 2n−j subsets of the index set {j + 1, j +

2, · · · , n}. For s = 1, 2, · · · , 2n−j , let σs be the number of solutions of the equation

β
∑
i∈I\Is

hi(τ) + β
∑
i∈Is

ki(τ) = τ, τ ∈ (0, A). (3.5) eq3.5

Set σ∗∗ =
∑2n−j

s=1 σs. The number of positive solutions (t1, · · · , tn, τ) of system (3.2) with τ ∈ (0, A)

equals σ∗∗.

We summarize the above conclusions in the next lemma.

lem3.2 Lemma 3.2. (a) If β ≥ µn then the number of positive solutions of system (3.2) is equal to the

number of solutions of the single equation (3.3).

(b) If β < µn and j ≥ 0 is the smallest integer such that β < µj+1 then the number of positive

solutions of system (3.2) equals σ∗+σ∗∗, with σ∗ and σ∗∗ being defined as above via equations

(3.4) and (3.5).

We have seen that to study the number of positive solutions of system (3.2) is equivalent to study

the number of positive solutions of (3.3) (if β ≥ µn) or to study the number of positive solutions of

(3.5) plus the number of Js satisfying (3.4) (if β < µn). We shall fulfil this task with a series of lemmas

in what follows and prove at appropriate stages Theorem 1.2(a), (b), (c), and (d), respectively.

lem3.3 Lemma 3.3. If β ≥ µn then (3.2) has a unique positive solution.

Proof. Since β ≥ µn, by Lemma 3.2(a), the number of positive solutions of system (3.2) equals the

number of solutions of the single equation (3.3). Since 0 < α < 1 and limτ→0+
hi(τ)
τ1/α = 1, we have

β
∑n
i=1 hi(τ) < τ for τ > 0 sufficiently small. If β > µn then limτ→+∞

hn(τ)
τ = 1

β−µn , and if β = µn

then limτ→+∞
hn(τ)
τ = limτ→+∞ τ

1
α−1 = +∞. In either case we have β

∑n
i=1 hi(τ) > τ for τ > 0

sufficiently large. Then we see that (3.3) has a solution. Set G1(τ) := β
∑n
i=1 hi(τ) − τ . Since for

τ ∈ (0,+∞),

G′1(τ) = β

n∑
i=1

h′i(τ)− 1 = β

n∑
i=1

1

αhα−1
i (τ) + β − µi

− 1

and hαi (τ) + (β − µi)hi(τ) = τ , we see that

G′1(τ) > β

n∑
i=1

1

hα−1
i (τ) + β − µi

− 1 =
β

τ

n∑
i=1

hi(τ)− 1 =
1

τ
G1(τ).

This implies G′1(τ) > 0 when G1(τ) = 0. Therefore (3.3) has a unique solution and (3.2) has a unique

positive solution. �

lem3.4 Lemma 3.4. For any β > 0, (3.2) has a positive solution.

Proof. If β ≥ µn then the result follows from Lemma 3.3. Now we assume 0 < β < µn. Then all

the functions hi : (0, A] → (0, T ′i ], i = 1, 2, · · · , n, are defined. Set G1(τ) := β
∑n
i=1 hi(τ) − τ for

τ ∈ (0, A]. If G1(A) = 0 then we are done since σ∗ ≥ 1. If G1(A) > 0 then the equation G1(τ) = 0

has a solution in (0, A) since G1(τ) < 0 for τ > 0 sufficiently small as seen in the proof of Lemma 3.3.

In the remaining case G1(A) < 0, we set G2(τ) := β
∑n−1
i=1 hi(τ) + βkn(τ)− τ for τ ∈ (0, A]. Since

G2(A) = β

n−1∑
i=1

hi(A) + βkn(A)−A = β

n∑
i=1

hi(A)−A = G1(A) < 0

and since

lim
τ→0+

G2(τ) = βSn > 0,

the equation G2(τ) = 0 has a solution in (0, A). This shows that if G1(A) 6= 0 then for at least one s,

(3.5) has a solution. In summary, (3.2) has a positive solution for any β > 0. �

Proof of Theorem 1.2(a). The result follows from Lemmas 3.1 and 3.4. �
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The next lemma shows that the region of β in which (3.2) has a unique positive solution as concluded

in Lemma 3.3 can be enlarged if µn−1 < µn.

lem3.5 Lemma 3.5. Assume µn−1 < β < µn and

1

β
+

(N − 2)q

4(µn − β)
≥
n−1∑
i=1

1

µn − µi
. (3.6) eq3.6

Then (3.2) has a unique positive solution.

Proof. Let G1(τ) and G2(τ) be defined as in Lemma 3.4. As in the proof of Lemma 3.3, we have

G′1(τ) >
1

τ
G1(τ), τ ∈ (0, A). (3.7) eq3.7

Note that

G′2(τ) =

n−1∑
i=1

β

αhα−1
i (τ) + β − µi

+
β

αkα−1
n (τ) + β − µn

− 1, τ ∈ (0, A),

and that αhα−1
i (τ) + β − µi > 0 and αkα−1

n (τ) + β − µn < 0. For τ ∈ (0, A), since hi(τ) < hn(τ) < T

for 1 ≤ i ≤ n− 1 and kα−1
n (τ) > µn−β, and since αTα−1 +β = µn, using the assumption we see that

G′2(τ) <

n−1∑
i=1

β

µn − µi
− β

(1− α)(µn − β)
− 1 ≤ 0. (3.8) eq3.8

Since µn−1 < β < µn there are only two equations in the form of (3.5): G1(τ) = 0 and G2(τ) = 0,

τ ∈ (0, A). Clearly G1(A) = G2(A). If G1(A) = G2(A) = 0 then σ∗ = 1 and by (3.7) and (3.8) the

two equations G1(τ) = 0 and G2(τ) = 0 have no solution in (0, A). If G1(A) = G2(A) > 0 then σ∗ = 0

and by (3.7) and (3.8) again the equation G1(τ) = 0 has a unique solution in (0, A) while G2(τ) = 0

has no solution in (0, A). If G1(A) = G2(A) < 0 then σ∗ = 0 and by (3.7) and (3.8) once more the

equation G1(τ) = 0 has no solution in (0, A) while G2(τ) = 0 has a unique solution in (0, A). This

implies, by Lemma 3.2(b), (3.2) has a unique positive solution. �

Note that assumption (3.6) holds if β < µn and β is sufficiently close to µn, and in particular if

µn −
(N − 2)q

4

(
n−1∑
i=1

(µn − µi)−1

)−1

≤ β < µn.

Proof of Theorem 1.2(b). The result follows from Lemmas 3.1, 3.3 and 3.5. �

The next lemma gives a multiplicity result on positive solutions of (3.2).

lem3.6 Lemma 3.6. If β < µ1 and

β(µn − β)
(N−2)(2−p)

4

n∑
i=1

(µi − β)−
(N−2)q

4 ≤
(2− p

q

) (N−2)(2−p)
4 −

(2− p
q

) (N−2)q
4

, (3.9) eq3.9

then (3.2) has at least 2n − 1 positive solutions.

Proof. For the 2n subsets I1, I2, · · · , I2n of the index set I = {1, 2, · · · , n}, we assume I1 = ∅ so that

Is 6= ∅ for s 6= 1. For s = 1, 2, · · · , 2n, define

Gs(τ) = β
∑
i∈I\Is

hi(τ) + β
∑
i∈Is

ki(τ)− τ, τ ∈ (0, A].

Since β < µ1 ≤ µ2 ≤ · · · ≤ µn, for τ ∈ (0, A] we have h1(τ) ≤ h2(τ) ≤ · · · ≤ hn(τ) ≤ T and

k1(τ) ≥ k2(τ) ≥ · · · ≥ kn(τ) ≥ T . Then for any s, by (3.9),

Gs(A) ≤ β
n∑
i=1

ki(A)−A < β

n∑
i=1

Si −A ≤ 0.

For 2 ≤ s ≤ 2n, since Is 6= ∅ we have

lim
τ→0+

Gs(τ) = β
∑
i∈Is

Si > 0.
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Therefore for s = 2, 3, · · · , 2n, Gs(τ) = 0 has a solution in (0, A). That is, for s = 2, 3, · · · , 2n, (3.5)

has a solution and σs ≥ 1. This implies that (3.2) has at least 2n − 1 positive solutions, since for

s1 6= s2, the two equations Gs1(τ) = 0 and Gs2(τ) = 0 give different solutions of (3.2). �

Assumption (3.9) holds for β > 0 small enough. In the following two lemmas, we give two different

types of conditions both of which guarantee that (3.2) has exactly 2n − 1 positive solutions.

lem3.7 Lemma 3.7. If β < µ1 and there exists ν ∈ (0, 1) such that

β(µn − β)
(N−2)q

4 −1
n∑
i=1

(µi − β)−
(N−2)q

4 ≤ ν
((2− p

q

) (N−2)q
4 −1

−
(2− p

q

) (N−2)q
4
)

(3.10) eq3.10

and

β
( n− 1

ν−4/[(N−2)(2−p)] − 1
− (N − 2)(2− p)

4

)
≤ µn, (3.11) eq3.11

then (3.2) has exactly 2n − 1 positive solutions.

Proof. Let Gs be as in the proof of Lemma 3.6. For τ ∈ [νA,A], by assumption (3.10),

β

n∑
i=1

ki(τ) < β

n∑
i=1

Si ≤ νA ≤ τ.

This implies that Gs(τ) = 0 has no solution in [νA,A] for any s = 1, 2, · · · , 2n and that G1(τ) =

β
∑n
i=1 hi(τ) − τ = 0 has no solution in (0, A] since G1(τ) < 0 for τ > 0 small, G1(A) < 0, and

G′1(τ) > 1
τG1(τ) for τ ∈ (0, A).

Now assume τ ∈ (0, νA). For s = 2, 3, · · · , 2n, Is 6= ∅ and

G′s(τ) = β
∑
i∈I\Is

1

αhα−1
i (τ) + β − µi

+ β
∑
i∈Is

1

αkα−1
i (τ) + β − µi

− 1.

We have αhα−1
i (τ) + β − µi ≥ αhα−1

n (τ) + β − µn > 0 for i ∈ I\Is and 0 > αkα−1
i (τ) + β − µi >

−(1− α)(µn − β) for i ∈ Is. Inserting these estimates into the formula for G′s(τ) yields

G′s(τ) <
(n− 1)β

αhα−1
n (τ) + β − µn

− β

(1− α)(µn − β)
− 1,

since the first summation in the expression of G′s(τ) has at most n−1 terms. Use αhα−1
n (τ)+β−µn > 0

and hαn(τ) + (β − µn)hn(τ) = τ to deduce that, for τ ∈ (0, νA), hn(τ) < ( τ
1−α )1/α < ( νA

1−α )1/α. Then,

using the expression of A, we have αhα−1
n (τ) + β − µn > (ν

α−1
α − 1)(µn − β) > 0. By assumption

(3.11), we then see that for τ ∈ (0, νA) and s = 2, 3, · · · , 2n,

G′s(τ) <
(n− 1)β

(ν
α−1
α − 1)(µn − β)

− β

(1− α)(µn − β)
− 1 < 0.

Since Gs(νA) < 0 and limτ→0+ Gs(τ) > 0, each equation Gs(τ) = 0 has exactly one solution in

(0, νA). This implies that (3.2) has exactly 2n − 1 positive solution. �

The assumptions of Lemma 3.7 are satisfied for β > 0 sufficiently small, and in particular, for β > 0

such that β ≤ 1
2µ1, β ≤ 24/[(N−2)(2−p)]−1

n−1 µn, and

β ≤ 2

(N − 2)(2− p)

(2− p
q

) (N−2)q
4

µ
1− (N−2)q

4
n

(
n∑
i=1

(
µi −

1

2
µ1

)− (N−2)q
4

)−1

.

lem3.8 Lemma 3.8. If β < µ1,

β(µn − β)
(N−2)q

4 −1
n∑
i=1

(µi − β)−
(N−2)q

4 <
(2− p

q

) (N−2)q
4 −1

−
(2− p

q

) (N−2)q
4

, (3.12) eq3.12

and
n∑
i=2

β

χi(β)
− (N − 2)qβ

4(µn − β)
≤ 1, (3.13) eq3.13
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where

χi(β) :=
2− p
q

( 4

(N − 2)q

) 4
(N−2)(2−p)

[
β

n∑
j=1

(µj − β)−
(N−2)q

4

]− 4
(N−2)(2−p) − (µi − β),

then (3.2) has exactly 2n − 1 positive solutions.

Proof. Let Gs be as in Lemma 3.6. If i ≤ j and τ ∈ (0, A) then αhα−1
i (τ) + β − µi ≥ αhα−1

j (τ) +

β − µj > 0 and −(1 − α)(µn − β) < αkα−1
i (τ) + β − µi < 0. This implies, for s = 2, 3, · · · , 2n and

τ ∈ (0, A),

G′s(τ) < β

n∑
i=2

1

αhα−1
i (τ) + β − µi

− β

(1− α)(µn − β)
− 1.

For any s, by assumption (3.12),

Gs(A) ≤ β
n∑
i=1

ki(A)−A = β

n∑
i=1

T ′′i −A < β

n∑
i=1

Si −A < 0.

This implies in particular that G1(τ) = 0 has no solution in (0, A] and for s = 2, 3, · · · , 2n, Gs(τ) = 0

has a solution in (0, A). For s = 2, 3, · · · , 2n, if τ ∈ (0, A) is a solution of Gs(τ) = 0 then

τ = β
∑
i∈I\Is

hi(τ) + β
∑
i∈Is

ki(τ) < β

n∑
i=1

Si = β

n∑
i=1

(µi − β)−
1

1−α .

Since αhα−1
i (τ)− (µi − β) > 0 and hαi (τ)− (µi − β)hi(τ) = τ , we have

hi(τ) <
( τ

1− α

)1/α

< (1− α)−(1/α)
(
β

n∑
j=1

(µj − β)−
1

1−α

)1/α

.

This estimate implies αhα−1
i (τ)− (µi − β) > χi(β). By assumption (3.12) again,

χi(β) ≥ α(1− α)
1−α
α

[
β

n∑
j=1

(µj − β)−
1

1−α

]− 1−α
α − (µn − β) > 0.

Then we have αhα−1
i (τ)− (µi−β) > χi(β) > 0. Now, for s = 2, 3, · · · , 2n and τ ∈ (0, A), if Gs(τ) = 0

then using (3.13)

G′s(τ) <

n∑
i=2

β

χi(β)
− β

(1− α)(µn − β)
− 1 ≤ 0.

This implies, for s = 2, 3, · · · , 2n, there exists exactly one τ ∈ (0, A) such that Gs(τ) = 0 and (3.2)

has exactly 2n − 1 positive solutions. �

All the conditions of Lemma 3.8 are met in particular for β > 0 such that β < 1
2µ1, β ≤ 1

n−1µn,

and

β ≤ 4

(N − 2)(2− p)

(2− p
q

) (N−2)q
4

(2µn)1− (N−2)q
4

(
n∑
i=1

(
µi −

1

2
µ1

)− (N−2)q
4

)−1

.

since, according to the last inequality, it can be checked that χi(β) ≥ µn for all i.

Under the assumptions of Lemmas 3.7 and 3.8, we have proved that for s = 2, 3, · · · , 2n and

τ ∈ (0, A), G′s(τ) < 0 if Gs(τ) = 0. The uniqueness of solution of the equation Gs(τ) = 0 is then

a consequence of that fact. We remark that it is generally impossible to have G′s(τ) < 0 for all

τ ∈ (0, A). In fact, if n ∈ I\Is and µn−1 < µn then limτ→A− G
′
s(τ) = +∞, since as τ → A−, the term

βh′n(τ) in the expression of G′s(τ) tends to +∞ and all the other terms tend to finite numbers.

Proof of Theorem 1.2(c). The result follows from Lemmas 3.1, 3.6, 3.7 and 3.8. �
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Proof of Theorem 1.2(d). Now we prove the uniqueness result. We have β > µ′′ ≥ µ′ by the

assumption. Then according to Lemma 3.3, (3.1) has a unique positive solution which we denote

by (t1, t2, · · · , tn). Let (u1, u2, · · · , un) be any positive solution of (1.3) and set kj = t
1/q
j and Uj =

k−1
j uj . Existence of (u1, u2, · · · , un) is guaranteed by Lemma 3.3. Since µ1 = · · · = µm = µ′ and

µm+1 = · · · = µ2m = µ′′, it is easy to see that t1 = · · · = tm and tm+1 = · · · = t2m. Therefore,

k1 = · · · = km and km+1 = · · · = k2m. In order to see that (u1, u2, · · · , un) is the unique positive

solution of (1.3) it suffices to prove that U1 = U2 = · · · = Un = U .

We first prove that U1 = · · · = Um and Um+1 = · · · = U2m, and for this we only prove U1 = U2

since the proof of other equalities is the same. Suppose U1 6= U2 and assume Ω = {x ∈ RN |U1(x) >

U2(x)} 6= ∅. For convenience, we denote µ := µ′ and t := t1 = t2. Then U1 and U2 satisfies
−∆U1 = t−α

(
µtU2∗−1

1 + βtUp−1
1 Uq2 + β

n∑
j=3

tjU
p−1
1 Uqj

)
,

−∆U2 = t−α
(
µtU2∗−1

2 + βtUq1U
p−1
2 + β

n∑
j=3

tjU
p−1
2 Uqj

)
.

Multiplying the first equation with U2 and the second equation with U1 and taking integral on Ω

yields∫
Ω

[
(−∆U1)U2 + (∆U2)U1

]
= t−α

∫
Ω

(
µtU2∗−1

1 U2 + βtUp−1
1 Uq+1

2 − µtU2∗−1
2 U1 − βtUq+1

1 Up−1
2

)
+ t−αβ

n∑
j=3

tj

∫
Ω

Uqj U1U2

(
Up−2

1 − Up−2
2

)
∆
= I1 + I2.

For the left hand side, we have

LHS =

∫
∂Ω

(
− ∂U1

∂n
+
∂U2

∂n

)
U1 ≥ 0.

There are two terms on the right hand side. The second term I2 < 0, since p < 2 and U1 > U2 imply

the integrand of I2 is negative on Ω. To estimate the integral in I1 we split and recombine the four

terms of its integrand as

µtU2∗−1
1 U2 + βtUp−1

1 Uq+1
2 − µtU2∗−1

2 U1 − βtUq+1
1 Up−1

2

= µtUp−1
1 U2

(
Uq1 − U

q
2

)
+ (β + µ)tUp−1

1 Uq+1
2 + µtU1U

p−1
2

(
Uq1 − U

q
2

)
− (β + µ)tUq+1

1 Up−1
2 .

Then, since U1 > U2 on Ω and µ < β+µ
2 , rearrange the terms on the right hand side and factorize to

see that

µtU2∗−1
1 U2 + βtUp−1

1 Uq+1
2 − µtU2∗−1

2 U1 − βtUq+1
1 Up−1

2

<
β + µ

2
t
(
Uq+1

1 U2 + U1U
q+1
2

)(
Up−2

1 − Up−2
2

)
< 0.

Thus I1 < 0. Then we arrive at a contradiction 0 ≤ I1 + I2 < 0. Therefore U1 = · · · = Um and

Um+1 = · · · = U2m.

Now we prove U1 = Um+1. Since we have proved U1 = · · · = Um and Um+1 = · · · = U2m, U1 and

Um+1 satisfy {
−∆U1 = t1−α1

(
µ′ + (m− 1)β

)
U2∗−1

1 +mβt−α1 tm+1U
p−1
1 Uqm+1,

−∆Um+1 = t1−αm+1

(
µ′′ + (m− 1)β

)
U2∗−1
m+1 +mβt1t

−α
m+1U

q
1U

p−1
m+1.

If U1 6= Um+1, we may assume Ω = {x ∈ RN |U1(x) > Um+1(x)} 6= ∅. Then taking integral on Ω we

have∫
Ω

[
(−∆U1)Um+1 + (∆Um+1)U1

]
=

∫
Ω

(
t1−α1

(
µ′ + (m− 1)β

)
U2∗−1

1 Um+1 +mβt−α1 tm+1U
p−1
1 Uq+1

m+1

− t1−αm+1

(
µ′′ + (m− 1)β

)
U1U

2∗−1
m+1 −mβt1t

−α
m+1U

q+1
1 Up−1

m+1

)
.
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For the left hand side,

LHS =

∫
∂Ω

(
− ∂U1

∂n
+
∂Um+1

∂n

)
U1 ≥ 0.

Denote by G the integrand on the right hand side and split the four terms and recombine them as

G = t1−α1

(
µ′ + (m− 1)β

)
Up−1

1 Um+1

(
Uq1 − U

q
m+1

)
+ Up−1

1 Uq+1
m+1

+ t1−αm+1

(
µ′′ + (m− 1)β

)
U1U

p−1
m+1

(
Uq1 − U

q
m+1

)
− Uq+1

1 Up−1
m+1,

since by (3.1) t1 and tm satisfy the equations(
µ′ + (m− 1)β

)
t1−α1 +mβt−α1 tm+1 = 1 =

(
µ′′ + (m− 1)β

)
t1−αm+1 +mβt1t

−α
m+1. (3.14) eq3.14

From the facts that µ′ ≤ µ′′ < β and (β − µ′)t1 + tα1 = (β − µ′′)tm+1 + tαm+1, it can be deduced that

t1 ≤ tm+1 and (β − µ′′)tm+1 ≤ (β − µ′)t1. (3.15) eq3.15

Now using the assumption in Theorem 1.2(d) we see that β2 −
(
(m+ 1)µ′′ − (m− 1)µ′

)
β + µ′µ′′ > 0,

that is
µ′′ + (m− 1)β

mβ
<
β − µ′′

β − µ′
. (3.16) eq3.16

Combining the second inequality in (3.15) and (3.16) we have(
µ′′ + (m− 1)β

)
tm+1 < mβt1. (3.17) eq3.17

This together with the second equality in (3.14) implies
(
µ′′+ (m− 1)β

)
t1−αm+1 <

1
2 . Since µ′ ≤ µ′′ and

t1 ≤ tm, by (3.17) we have
(
µ′ + (m − 1)β

)
t1 < mβtm+1, which combined with the first equality in

(3.14) leads to
(
µ′+ (m− 1)β

)
t1−α1 < 1

2 . Inserting these inequalities into the expression of G, we have

on Ω

G <
1

2

(
Uq+1

1 Um+1 + U1U
q+1
m+1

)(
Up−2

1 − Up−2
m+1

)
< 0.

But this gives a contradiction 0 ≤
∫

Ω
G < 0. Therefore, U1 = U2 = · · · = Un. Then U1 = U2 = · · · =

Un = U and uniqueness of positive solutions of (1.3) follows. �

4. Proof of Theorem 1.3

In this section we prove Theorem 1.3 and we always assume N ≥ 3, µi > 0, pij = 2, qij = 2∗−2, and

βij = β for i, j ∈ {1, 2, · · · , n} and i 6= j. Recall that µ1 ≤ µ2 ≤ · · · ≤ µn. Note (k1U, k2U, · · · , knU)

is a synchronized positive solution of (1.3) if and only if (k1, k2, · · · , kn) is a positive solution of the

algebraic system

µik
2∗−2
i + β

n∑
j=1,j 6=i

k2∗−2
j = 1, i = 1, 2, · · · , n.

Proof of Theorem 1.3. (a) We write the above system in the following form

1 + (β − µ1)k2∗−2
1 = 1 + (β − µ2)k2∗−2

2 = · · · = 1 + (β − µn)k2∗−2
n = β

n∑
j=1

k2∗−2
j . (4.1) eq4.1

If (4.1) has a positive solution then it has to be that β > µn or 0 < β < µ1 or β = µ1 = µn.

Conversely, if β > µn or 0 < β < µ1, then (4.1) has a unique positive solution (k1, k2, · · · , kn) and

ki =
(

(β − µi)
( n∑
j=1

β

β − µj
− 1
))−(N−2)

4

,

and if β = µ1 = µn then any (k1, k2, · · · , kn) with positive components satisfying β
∑n
j=1 k

2∗−2
j = 1

is a solution of (4.1).

(b) Since µ1 ≤ β ≤ µn and µ1 6= µn, we may assume for some i ∈ {1, 2, · · · , n− 1}, µi ≤ β ≤ µi+1

and either µi < β or β < µi+1. If (1.3) has a positive solution (u1, u2, · · · , un), subtracting the
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(i+ 1)-th equation multiplied with ui from the i-th equation multiplied with ui+1 and taking integral,

we have a contradiction

0 =

∫
RN

(
(µi − β)u2∗−1

i ui+1 + (β − µi+1)uiu
2∗−1
i+1

)
< 0.

(c) Let (u1, u2, · · · , un) be any positive solution of (1.3) and (k1, k2, · · · , kn) be the unique positive

solution of (4.1). Set Ui = 1
ki
ui and ti = k2∗−2

i . It suffices to prove that

U1 = U2 = · · · = Un = U.

If not, we may assume Ω = {x ∈ RN |U1(x) > U2(x)} 6= ∅. From the first two equations of (1.3){
−∆U1 = µ1t1U

2∗−1
1 + βt2U1U

2∗−2
2 + β

∑n
j=3 tjU1U

2∗−2
j ,

−∆U2 = µ2t2U
2∗−1
2 + βt1U

2∗−2
1 U2 + β

∑n
j=3 tjU2U

2∗−2
j ,

we have∫
Ω

(
(−∆U1)U2 + (∆U2)U1

)
=

∫
Ω

(
µ1t1U

2∗−1
1 U2 + βt2U1U

2∗−1
2 − µ2t2U1U

2∗−1
2 − βt1U2∗−1

1 U2

)
.

Since β > µ1, this leads to a contradiction

0 ≤
∫
∂Ω

(
− ∂U1

∂n
+
∂U2

∂n

)
U1 =

∫
Ω

t1(µ1 − β)U1U2

(
U2∗−2

1 − U2∗−2
2

)
< 0.

The proof is finished. �

5. Proof of Theorem 1.4

In this section we assume N ≥ 3, µi > 0, 2 < pij < 2∗, pij + qij = 2∗, and βij > 0.

Proof of Theorem 1.4(a). Consider the algebraic system in (2.1):

fi(k1, k2, · · · , kn) := µik
2∗−2
i +

n∑
j=1, j 6=i

βijk
pij−2
i k

qij
j − 1 = 0, i = 1, 2, · · · , n.

Since 2 < pij < 2∗ and pij + qij = 2∗, if ε > 0 is small enough then

fi(k1, · · · , ε, · · · , kn) < 0 < fi(k1, · · · , µ−(N−2)/4
i , · · · , kn)

for all kj ∈ [ε, µ
−(N−2)/4
j ] with j 6= i and all i = 1, 2, · · · , n. This implies the Brouwer degree

deg(f,Ω, 0) = 1,

where Ω is an n-dimensional cuboid defined as Ω :=
∏n
i=1

(
ε, µ

−(N−2)/4
i

)
. This yields a synchronized

positive solution of (1.3). �

For the rest of this section, we assume in addition that pij = p ∈ (2, 2∗), qij = q = 2∗ − p, βij = β

for i, j ∈ {1, 2, · · · , n} and i 6= j. We shall use the same symbols as in Section 3, but with adjusted

meanings.

Recall that α = 2−p
q . Unlike the number α ∈ (0, 1) in Section 3, here α ranges from −∞ to 0.

As we have seen in Section 3, the number of synchronized positive solutions of (1.3) is equal to the

number of positive solutions (t1, · · · , tn, τ) of (3.2). As in Section 3, define fi(t) for t ∈ (0,+∞) and

i = 1, 2, · · · , n.

Recall that µ1 ≤ µ2 ≤ · · · ≤ µn. If β ≤ µ1 then, for all i, fi is strictly decreasing from (0, Si)

onto (0,+∞) and fi|(0,Si) has an inverse decreasing function hi : (0,+∞) → (0, Si), where Si =

(µi − β)−
1

1−α = (µi − β)−
(N−2)q

4 if β < µi and Si = +∞ if β = µi. In this case the number of

synchronized positive solutions of (1.3) is equal to the number of positive solutions of the single

algebraic equation

G1(τ) := β

n∑
i=1

hi(τ)− τ = 0, τ ∈ (0,+∞). (5.1) eq5.1
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A

τ

tT ′
i T T ′′

i

τ = fi(t)τ = f1(t)

Figure 2. The case p > 2 and β > µi

Since G1 is strictly decreasing and since

lim
τ→0+

G1(τ) = β

n∑
i=1

Si > 0, lim
τ→+∞

G1(τ) = −∞,

(5.1) has a unique solution. Thus we have the following lemma.

lem5.1 Lemma 5.1. If β ≤ µ1 then (1.3) has exactly one synchronized positive solution.

Now we turn to consider the case β > µ1. In this case, f1 achieves its minimum

A := min
0<t<+∞

f1(t) =
(−α)

α
1−α + (−α)

1
1−α

(β − µ1)
α

1−α
=

((p− 2)/q)(N−2)(2−p)/4 + ((p− 2)/q)(N−2)q/4

(β − µ1)(N−2)(2−p)/4

at

T :=
( −α
β − µ1

) 1
1−α

=
( p− 2

q(β − µ1)

)(N−2)q/4

.

For each i, there exists uniquely a number T ′i such that

0 < T ′i ≤ T, fi(T
′
i ) = A,

and that fi|(0,T ′i ] is strictly decreasing from (0, T ′i ] onto [A,+∞), and we denote the inverse decreasing

function of fi|(0,T ′i ] by hi : [A,+∞) → (0, T ′i ]. For some i, if β > µi then there exists uniquely a

second number T ′′i such that

T ≤ T ′′i , fi(T
′′
i ) = A,

and that fi|[T ′′i ,+∞) is strictly increasing from [T ′′i ,+∞) onto [A,+∞), and we denote the inverse

increasing function of fi|[T ′′i ,+∞) by ki : [A,+∞) → [T ′′i ,+∞). Note that T ′1 = T ′′1 = T , all hi
(i = 1, 2, · · · , n) are defined, and ki is well defined if and only if β > µi. In addition, for τ ∈ [A,+∞),

hn(τ) ≤ · · · ≤ h2(τ) ≤ h1(τ) ≤ h1(A) = T

and, if β > µi,

ki(τ) ≥ · · · ≥ k2(τ) ≥ k1(τ) ≥ k1(A) = T.

For β > µi, the graphs of f1 and fi are illustrated in Figure 2.

We define σ∗ as follows. We denote I = {1, 2, · · · , n} as in Section 2. Let j be the largest

subscript such that µj < β, k the largest subscript such that µ1 = µ2 = · · · = µk with k ≤ j, and

J1, J2, · · · , J2j−k the subsets of the index set {k+ 1, k+ 2, · · · , j}. Note that the index set is empty if

k = j and we only have J1 in this case which is the empty set. Define σ∗ to be the number of index

sets Js for which the equality

β
∑
i∈I\Js

hi(A) + β
∑
i∈Js

ki(A) = A (5.2) eq5.2

holds. Note that σ∗ is the number of positive solutions (t1, · · · , tn, τ) of (3.2) with τ = A. The index

set {1, 2, · · · , j} has 2j subsets which we label with I1, I2, · · · , I2j . For the sake of later discussion, we
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assume I1 = ∅. For s = 1, 2, · · · , 2j , let σs be the number of solutions of the equation

β
∑
i∈I\Is

hi(τ) + β
∑
i∈Is

ki(τ) = τ, τ ∈ (A,+∞). (5.3) eq5.3

Denote σ∗∗ =
∑2j

s=1 σs. Then σ∗∗ is the number of positive solutions (t1, · · · , tn, τ) of (3.2) with

τ > A.

At this point, we have proved the next lemma.

lem5.2 Lemma 5.2. Let β > µ1. Then the number of synchronized positive solutions of (1.3) equals σ∗+σ∗∗.

We now prove Theorem 1.4(b).

Proof of Theorem 1.4(b). The result follows from Lemma 5.1 if β ≤ µ1. Now we assume µ1 <

β < µ2. For τ ∈ [A,+∞), define

G1(τ) := β

n∑
i=1

hi(τ)− τ, G2(τ) := β

n∑
i=2

hi(τ) + βk1(τ)− τ.

According to Lemma 5.2, the number of synchronized positive solutions of (1.3) equals the number of

solutions of G1(τ) = 0 in [A,+∞) plus the number of solutions of G2(τ) = 0 in (A,+∞). Note that

G1(A) = G2(A), G1(τ) is strictly decreasing in [A,+∞) and limτ→+∞G1(τ) = −∞. Since for τ large

enough

G2(τ) ' β

β − µ1
τ − τ =

µ1

β − µ1
τ,

we see that limτ→+∞G2(τ) = +∞. We claim the existence of a δ0 ∈ (0, µ2 − µ1) such that G2

is strictly increasing in [A,+∞) if µ1 < β < µ1 + δ0. If this is the case, then G1(τ) = 0 has a

unique solution in [A,+∞) and G2(τ) = 0 has no solution in (A,+∞) when G1(A) ≥ 0, and vice

versa, G1(τ) = 0 has no solution in [A,+∞) and G2(τ) = 0 has a unique solution in (A,+∞) when

G1(A) < 0. Therefore (1.3) has exactly one synchronized positive solution for µ1 < β < µ1 + δ0. This

together with Lemma 5.1 concludes Theorem 1.4(b).

Indeed, for τ ∈ (A,+∞) and i ≥ 2, since α < 0 and hi(τ) < hi(A) < T , we have, αhα−1
i (τ)+β−µi <

αTα−1 + β − µi < 0. We also have 0 < αkα−1
1 (τ) + β − µ1 < β − µ1. Then, for τ ∈ (A,+∞),

G′2(τ) =

n∑
i=2

β

αhα−1
i (τ) + β − µi

+
β

αkα−1
1 (τ) + β − µ1

− 1 > −
n∑
i=2

β

µi − µ1
+

β

β − µ1
− 1.

From this estimate, it is easy to find a positive number δ0 such that if µ1 < β ≤ µ1 + δ0 then for

τ ∈ (A,+∞), G′2(τ) > 0 and thus G2(τ) is strictly increasing in [A,+∞). �

Now we prove Theorem 1.4(c). We assume β > µ1 and let j be the largest integer such that β > µj .

For s = 2, · · · , 2j , we define

Gs(τ) := β
∑
i∈I\Is

hi(τ) + β
∑
i∈Is

ki(τ)− τ, τ ∈ [A,+∞),

and we consider the equation Gs(τ) = 0 for τ ∈ (A,+∞). Since ∅ 6= Is ⊂ {1, · · · , j} and for τ

large enough Gs(τ) '
∑
i∈Is

βτ
β−µi − τ , we have limτ→+∞Gs(τ) = +∞. To achieve the conclusion of

Theorem 1.4(c), we prove that Gs(A) < 0 if p > 2 and p is sufficiently close to 2. We have

Gs(A) = β
∑
i∈I\Is

T ′i + β
∑
i∈Is

T ′′i −A ≤ nβT ′′j −A.

We need to estimate A and T ′′j and we first have the next lemma.

lem5.3 Lemma 5.3. Assume 2 < p < 1 + 2∗

2 . Then

min{1,
√
β − µ1} ≤ A ≤

(
ee
−1

+ 1
)

max{1,
√
β − µ1}.
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Proof. Since 2 < p < 1 + 2∗

2 , we have −1 < α = 2−p
2∗−p < 0. It is easy to see that 1 ≤ (−α)

α
1−α ≤ ee−1

,

0 < (−α)
1

1−α < 1, and

min{1,
√
β − µ1} ≤ (β − µ1)−

α
1−α ≤ max{1,

√
β − µ1}.

Then the result follows from the definition of A. �

The estimate of T ′′j is a little more delicate. Since T ′′j depends on p implicitly we write T ′′j = T ′′j (p)

and we have the following lemma.

lem5.4 Lemma 5.4. For any ν ∈ (0, 1) we have

T ′′j (p) = O((p− 2)ν) as p→ 2+.

Proof. Assume 2 < p < 1 + 2∗

2 . Then (−α)ν ∈ (0, 1). Since A = (T ′′j )α + (β − µj)T ′′j ≥ (β − µj)T ′′j ,

we have T ′′j ≤ 1
β−µjA. Using Lemma 5.3, we obtain an upper bound for T ′′j :

T ′′j ≤M :=
1

β − µj
(ee
−1

+ 1
)

max{1,
√
β − µ1}.

By the Young inequality, we have

A = (T ′′j )α + (β − µj)T ′′j ≥
(
r(β − µj)T ′′j

) 1
r
(
s(T ′′j )α

) 1
s ,

where r = 1
(−α)ν and s = 1

1−(−α)ν . Since α < 0, using the upper bound of T ′′j yields

A ≥ r 1
r s

1
s (β − µj)

1
rM

α
s (T ′′j )

1
r .

Then we have T ′′j ≤ r−1s−
r
s (β − µj)−1M−

rα
s Ar, that is,

T ′′j ≤ (β − µj)−1(−α)ν(1− (−α)ν)(−α)−ν−1M (−α)1−ν+αA(−α)−ν .

In view of the expression of A, we see that

A(−α)−ν = (−α)−(−α)1−ν/(1−α)(1− α)(−α)−ν (β − µ1)(−α)1−ν/(1−α),

from which a simple computation shows that limα→0− A
(−α)−ν = 1. Moreover,

lim
α→0−

(1− (−α)ν)(−α)−ν−1M (−α)1−ν+α = e−1.

Since p→ 2+ is equivalent to α→ 0−, we have, as p→ 2+,

T ′′j (p) = O((−α)ν) = O((p− 2)ν).

The proof is complete. �

Proof of Theorem 1.4(c). Fix ν ∈ (0, 1). By Lemmas 5.3 and 5.4, there exist C = C(β) > 0 and

p0 = p0(β) > 2 such that for p ∈ (2, p0) and s = 2, · · · , 2j ,

Gs(A) ≤ nβT ′′j −A ≤ C(p− 2)ν −min{1,
√
β − µ1}.

Then there exists p1 = p1(β) ∈ (2, p0) such that for p ∈ (2, p1) and for s = 2, · · · , 2j , Gs(A) < 0. This

implies that, for s = 2, · · · , 2j , the equation Gs(τ) = 0 has a solution in (A,+∞) as Gs(τ) > 0 for τ

sufficiently large. Then by Lemma 5.2, (1.3) has at least 2j − 1 synchronized positive solutions. �

Proof of Theorem 1.4(d). For s = 2, 3, · · · , 2j , since Is 6= ∅ and ki(τ) ≥ k1(τ), we have

Gs(τ) = β
∑
i∈I\Is

hi(τ) + β
∑
i∈Is

ki(τ)− τ > βk1(τ)− τ, τ ∈ [A,+∞).

Since k1(τ) ≥ k1(A) = T and α < 0, we see that kα−1
1 (τ) ≤ Tα−1 = µ1−β

α . Using the assumption

p ≥ µ1

β 2 +
(

1− µ1

β

)
2∗ yields µ1−β

α ≤ µ1. Thus we have, for s = 2, · · · , 2j and τ ∈ [A,+∞),

Gs(τ) > βk1(τ)− [kα1 (τ) + (β − µ1)k1(τ)] = k1(τ)(µ1 − kα−1
1 (τ)) ≥ 0.
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This implies for s = 2, · · · , 2j , Gs(τ) = 0 has no solution in [A,+∞). Since G1(τ) = β
∑n
i=1 hi(τ)− τ

is strictly decreasing and limτ→+∞G1(τ) = −∞ and since

G1(A) > βh1(A)−A = βk1(A)−A ≥ 0,

G1(τ) = 0 has exactly one solution in [A,+∞). Therefore, (1.3) has a unique synchronized positive

solution. �

6. Proof of Theorem 1.5

In this section we assume N ≥ 3, µi > 0, βi > 0, pi ≤ 2, and qi = 2∗ − pi for i = 1, 2 and prove

Theorem 1.5. Let k1 > 0 and k2 > 0. Then (k1U, k2U) is a synchronized positive solution of (1.4) if

and only if (k1, k2) is a positive solution of the system{
f1(k1, k2) := µ1k

q1
1 − k

2−p1
1 + β1k

q1
2 = 0,

f2(k1, k2) := µ2k
q2
2 − k

2−p2
2 + β2k

q2
1 = 0.

(6.1) eq6.1

Proof of Theorem 1.5(a). We assume pi < 2. Set for j = 1, 2, αj = (2µj)
−N−2

4 and τj = µ
−N−2

4
j .

For k2 ∈ [0, τ2], since p1 + q1 = 2∗ and β1 < 2−
N−2

4 q1µ
1−N−2

4 q1
1 µ

N−2
4 q1

2 , we see that

f1(α1, k2) ≤ −µ1(2µ1)−
N−2

4 q1 + β1µ
−N−2

4 q1
2 < 0.

In addition, for k2 ∈ (0, τ2],

f1(τ1, k2) > µ
1−N−2

4 q1
1 − µ−

N−2
4 (2−p1)

1 = 0.

We have showed that f1(α1, k2) < 0 < f1(τ1, k2) for k2 ∈ (0, τ2]. In the same way, we have f2(k1, α2) <

0 < f2(k1, τ2) for k1 ∈ (0, τ1]. This implies

deg((f1, f2), Q1, (0, 0)) = 1 for Q1 := (α1, τ1)× (α2, τ2).

Then (6.1) has a solution in Q1. Since p1 < 2 and q1 > 0, for k2 ∈ [α2, τ2] and ε > 0 sufficiently small,

f1(ε, k2) = µ1ε
q1 − ε2−p1 + β1k

q1
2 > 0.

Fix such an ε > 0. Then we have f1(α1, k2) < 0 < f1(ε, k2) for k2 ∈ [α2, τ2] and f2(k1, α2) < 0 <

f2(k1, τ2) for k1 ∈ [ε, α1]. Therefore,

deg((f1, f2), Q2, (0, 0)) = −1 for Q2 := (ε, α1)× (α2, τ2),

and (6.1) has a solution in Q2. Similarly,

deg((f1, f2), Q3, (0, 0)) = −1 for Q3 := (α1, τ1)× (ε, α2),

and (6.1) has a solution in Q3. Then (1.4) has three synchronized positive solutions. �

We now study existence of solutions of (6.1) in Q4 := (0, α1) × (0, α2). As an astonishing fact we

shall see that existence of a solution of (6.1) in Q4 not only implies that (6.1) has a unique solution

in (0,+∞)× (0,+∞) but also implies that (1.4) has exactly one positive solution.

Set Ii = [0, αi] and gi(t) = µit
qi − t2−pi . It is easy to see that

inf
t∈Ii

gi(t) = −1 if pi = 2, (6.2) eq6.2

inf
t∈Ii

gi(t) = − 4

N − 2
q
−N−2

4 qi
i

( µi
2− pi

)1−N−2
4 qi

if 4− 2∗ < pi < 2, (6.3) eq6.3

and

inf
t∈Ii

gi(t) = −µi(2µi)−
N−2

4 qi if pi ≤ 4− 2∗. (6.4) eq6.4

lem6.1 Lemma 6.1. Under assumption (A), (6.1) has a solution in Q4.
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Proof. Let k1 ∈ [0, α1]. We have

f1(k1, α2) ≥ inf
t∈I1

g1(t) + β1(2µ2)−
N−2

4 q1 .

Using assumption (A), we see that f1(k1, α2) > 0 by (6.2) if p1 = 2, by (6.3) if 4−2∗ < p1 < 2, and by

(6.4) if p1 ≤ 4−2∗. Now we show that f1(k1, ε) < 0 for k1 ∈ [ε, α1] and for ε > 0 small. We first consider

the case p1 < 2. Then g1(t) < 0 for t ∈ (0, α1], g1(0) = 0, and g′1(t) = µ1q1t
q1−1 − (2 − p1)t1−p1 < 0

for t > 0 small as p1 + q1 = 2∗ > 2. Then for ε > 0 small and for k1 ∈ [ε, α1],

f1(k1, ε) ≤ max
t∈[ε,α1]

g1(t) + β1ε
q1 = g1(ε) + β1ε

q1 = (µ1 + β1)εq1 − ε2−p1 < 0.

If p1 = 2 then q1 = 4
N−2 . For ε > 0 small and for k1 ∈ [ε, α1],

f1(k1, ε) ≤ max
t∈[ε,α1]

g1(t) + β1ε
q1 = g1(α1) + β1ε

q1 = −1

2
+ β1ε

q1 < 0.

The above discussion shows that there exists ε ∈ (0,min{α1, α2}) such that f1(k1, ε) < 0 < f1(k1, α2)

for k1 ∈ [ε, α1]. In exactly the same way, we have f2(ε, k2) < 0 < f2(α1, k2) for k2 ∈ [ε, α2]. Denote

Qε4 := (ε, α1)× (ε, α2). Then

deg((f1, f2), Qε4, (0, 0)) = −1.

Therefore, (6.1) has a solution in Qε4 ⊂ Q4. �

lem6.2 Lemma 6.2. If (6.1) has a solution in Q4 then (1.4) has a unique positive solution.

Proof. Let us fix a solution (k1, k2) ∈ Q4 of (6.1). Then (k1U, k2U) is a positive solution of (1.4).

Now let (u, v) be any positive solution of (1.4). Set u = k1ϕ and v = k2ψ. Then (ϕ,ψ) is a positive

solution of 
−∆ϕ = µ1k

2∗−2
1 ϕ2∗−1 + β1k

p1−2
1 kq12 ϕ

p1−1ψq1 in RN ,
−∆ψ = µ2k

2∗−2
2 ψ2∗−1 + β2k

q2
1 k

p2−2
2 ϕq2ψp2−1 in RN ,

ϕ, ψ ∈ D1,2(RN ).

We prove that ϕ = ψ. If not we may assume that Ω = {x ∈ RN |ϕ(x) > ψ(x)} 6= ∅. Then∫
Ω

[(−∆ϕ)ψ − (−∆ψ)ϕ] =

∫
Ω

[
µ1k

2∗−2
1 ϕ2∗−1ψ + β1k

p1−2
1 kq12 ϕ

p1−1ψq1+1

− µ2k
2∗−2
2 ϕψ2∗−1 − β2k

q2
1 k

p2−2
2 ϕq2+1ψp2−1

]
.

The left hand side is nonnegative. Denote the integrand of the right hand side by G. Since (k1, k2) is

a solution of (6.1) and since pi + qi = 2∗, we have

G = ϕψ
[
µ1k

2∗−2
1 ϕp1−2(ϕq1 − ψq1) + ϕp1−2ψq1 + µ2k

2∗−2
2 ψp2−2(ϕq2 − ψq2)− ϕq2ψp2−2

]
.

Since (k1, k2) ∈ Q4 implies µ1k
2∗−2
1 < 1

2 and µ2k
2∗−2
2 < 1

2 and since qi > 0, pi ≤ 2, we have on Ω

G <
1

2
ϕψ
[
ϕq2(ϕp2−2 − ψp2−2) + ψq1(ϕp1−2 − ψp1−2)

]
≤ 0.

We arrive at a contradiction. Then ϕ = ψ ∈ D1,2(RN ) is a positive solution of the equation −∆u =

u2∗−1. Therefore, ϕ = ψ = U . �

Proof of Theorem 1.5(b). Combining Lemma 6.1 and Lemma 6.2 we obtain the conclusion of

Theorem 1.5(b). �

As a byproduct of the above discussions, we have the following astonishing result asserting that if

(6.1) has a solution in Q4 then not only (6.1) has exactly one solution in Q4 but it also has exactly

one solution in the whole (0,+∞)× (0,+∞).

prop6.1 Proposition 6.1. If (6.1) has a solution in Q4 then (6.1) has a unique solution in (0,+∞)×(0,+∞).

Proof. If (6.1) has two solutions in (0,+∞)× (0,+∞), then (1.4) has at least two positive solutions.

But this is a contradiction with Lemma 6.2. �
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rem6.1 Remark 6.1. For m ≥ 2, let αi(m) = (mµi)
−N−2

4 , Ii(m) = (0, αi(m)), and Q4(m) = I1(m)× I2(m).

Then

inf
t∈Ii(m)

gi(t) =


−1 if pi = 2,

− 4
N−2q

−N−2
4 qi

i

(
µi

2−pi

)1−N−2
4 qi

if 2m−2∗

m−1 < pi < 2,

−(m− 1)µi(mµi)
−N−2

4 qi if pi ≤ 2m−2∗

m−1 .

Now we assume, for i, j ∈ {1, 2} such that i 6= j,

βi >


either mµj if pi = 2,

or 4
N−2

(
µi

2−pi

)1−N−2
4 qi(mµj

qi

)N−2
4 qi

if 2m−2∗

m−1 < pi < 2,

or (m− 1)µ
1−N−2

4 qi
i µ

N−2
4 qi

j if pi ≤ 2m−2∗

m−1 .

Then the proof of Lemma 6.1 shows that (6.1) has a solution in Q4(m). By Proposition 6.1, for all

m ≥ 2, this solution obtained in Q4(m) must be the unique solution (k1, k2) obtained in Q4. This

means that, under the above assumption, 0 < ki < αi(m). Therefore, ki (i = 1, 2) are sufficiently

small if βi (i = 1, 2) are sufficiently large, since limm→+∞ αi(m) = 0.

Now we prove Theorem 1.5(c) and in this particular case we rewrite (1.4) as
−∆u = µ1u

2∗−1 + βup−1vq in RN ,
−∆v = µ2v

2∗−1 + βuqvp−1 in RN ,
u > 0, v > 0, u, v ∈ D1,2(RN ).

(6.5) eq6.5

Recall that we assume N ≥ 3, µ2 ≥ µ1 > 0, β > 0, p < 2, and q = 2∗ − p in Theorem 1.5(c).

We first consider the case µ := µ1 = µ2 and prove the first part of Theorem 1.5(c). By Theorem

1.2(b), (6.5) has exactly one synchronized positive solution if β ≥ µ. Now we assume 0 < β < µ.

Since µ1 = µ2, we have

h(τ) := h1(τ) = h2(τ) and k(τ) := k1(τ) = k2(τ) for 0 ≤ τ ≤ A.

Recall that β0 = 2µ
2(N−1)−(N−2)p , α = 2−p

q = 2−p
2∗−p , and

A =
(
α

α
1−α − α

1
1−α
)
(µ− β)−

α
1−α , T = h(A) = k(A) = α

1
1−α (µ− β)−

1
1−α .

By the discussions in Section 3, to study the number of synchronized positive solutions of (6.5) we

need to consider for τ ∈ (0, A] the number of zeros of the three functions

G1(τ) = 2βh(τ)− τ, G2(τ) = β(h(τ) + k(τ))− τ, G3(τ) = 2βk(τ)− τ.

We have G1(A) = G2(A) = G3(A) = 2βT − A. Using the formulas for β0, T , and A, it is easy to see

that 0 < β0 < µ and

G1(A) = G2(A) = G3(A)


< 0, if 0 < β < β0,

= 0, if β = β0,

> 0, if β0 < β < µ.

We first show that G2 is strictly decreasing in (0, A]. This is not obvious since the term βh(τ) in

G2(τ) is strictly increasing in (0, A] and especially limτ→A− h
′(τ) = +∞.

lem6.3 Lemma 6.3. G′2(τ) < 0 for τ ∈ (0, A).

Proof. For τ ∈ (0, A), G′2(τ) = β
H(τ) + β

K(τ) − 1, where H(τ) = αhα−1(τ) + β − µ and K(τ) =

αkα−1(τ) + β − µ. We have

d

dτ
H2(τ) = 2H(τ)H ′(τ) = 2H(τ)α(α− 1)hα−2(τ)h′(τ) = 2α(α− 1)hα−2(τ).

For τ ∈ (0, A), since h(τ) < h(A) = T and α ∈ (0, 1), we have d
dτH

2(τ) < 2α(α − 1)Tα−2. Taking

integral from τ to A and in view of the fact that H(A) = αhα−1(A) + β − µ = 0, we see that

−H2(τ) < 2α(α− 1)Tα−2(A− τ). Then

H(τ) >
√

2α(1− α)Tα−2(A− τ) for 0 < τ < A.
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In the same way, using the facts k(τ) > k(A) = T and K(τ) < K(A) = 0, we have

K(τ) > −
√

2α(1− α)Tα−2(A− τ) for 0 < τ < A.

Therefore, H(τ) +K(τ) > 0 and

G′2(τ) =
β(H(τ) +K(τ))

H(τ)K(τ)
− 1 < 0 for 0 < τ < A.

The proof is complete. �

Proof of Theorem 1.5(c) in the case µ1 = µ2. By Lemma 6.3, G2 is strictly decreasing in (0, A].

From the discussion in Section 3, we know that G1(0) = 0, G1(τ) < 0 for τ > 0 small, G′1(τ) > 0

when τ ∈ (0, A) is a solution of G1(τ) = 0, and

lim
τ→A−

G′1(τ) = lim
τ→A−

2β

H(τ)
− 1 = +∞.

Moreover, G2(0) > 0, G3(0) > 0, and G3 is also strictly decreasing in (0, A].

If β0 < β < µ then G1(A) = G2(A) = G3(A) > 0. In this case neither G2(τ) = 0 nor G3(τ) = 0

has any solution in (0, A), and G1(τ) = 0 has in (0, A) exactly one solution denoted by τ1. Then (6.5)

has exactly one synchronized positive solution (h1/q(τ1)U, h1/q(τ1)U).

If β = β0 then G1(A) = G2(A) = G3(A) = 0. In this case no equation Gi(τ) = 0 (i = 1, 2, 3) has

any solution in (0, A). Then (T 1/qU, T 1/qU) is the unique synchronized positive solution of (6.5).

If 0 < β < β0 then G1(A) = G2(A) = G3(A) < 0. In this case G1(τ) = 0 has no solution in (0, A)

and both G2(τ) = 0 and G3(τ) = 0 have a unique solution in (0, A), denoted by τ2 and τ3 respectively.

We then conclude that (6.5) has exactly three synchronized positive solutions (h1/q(τ2)U, k1/q(τ2)U),

(k1/q(τ2)U, h1/q(τ2)U), and (k1/q(τ3)U, k1/q(τ3)U). �

Now we turn to consider the case µ1 < µ2. By Theorem 1.2(b), (6.5) has exactly one synchronized

positive solution if β ≥ µ2. In what follows, we assume 0 < β < µ2 and we write

A = A(β) =
(
α

α
1−α − α

1
1−α
)
(µ2 − β)−

α
1−α and T = T (β) = α

1
1−α (µ2 − β)−

1
1−α

to stress the dependence on β. Set, for τ ∈ [0, A(β)],

G1(τ) = G1(β, τ) = β(h1(β, τ) + h2(β, τ))− τ, G2(τ) = G2(β, τ) = β(h1(β, τ) + k2(β, τ))− τ.

If β < µ1, we also set, for τ ∈ [0, A(β)],

G3(τ) = G3(β, τ) = β(k1(β, τ) + k2(β, τ))− τ, G4(τ) = G4(β, τ) = β(k1(β, τ) + h2(β, τ))− τ.

Again we add β as an independent variable and write hi(τ) = hi(β, τ) and ki(τ) = ki(β, τ) in the

above expressions in order to emphasize dependence on β of the functions hi, ki and Gi. Define for

0 < β < µ2

η1(β) = G1(β,A(β)) = G2(β,A(β)) = β(h1(β,A(β)) + h2(β,A(β)))−A(β),

and for 0 < β < µ1

η2(β) = G3(β,A(β)) = G4(β,A(β)) = β(k1(β,A(β)) + h2(β,A(β)))−A(β).

We show that both η1 and η2 are strictly increasing functions.

lem6.4 Lemma 6.4. η′1(β) > 0 for β ∈ (0, µ2) and η′2(β) > 0 for β ∈ (0, µ1).

Proof. For 0 < β < µ2, since h2(β,A(β)) = T (β) we have η1(β) = βh1(β,A(β)) + βT (β) − A(β).

Then, since A′(β) = T (β), we see that

η′1(β) = h1(β,A(β)) + β
[∂h1

∂β
(β,A(β)) +

∂h1

∂τ
(β,A(β))

dA

dβ

]
+ βT ′(β).

For later discussions, we denote, for τ ∈ (0, A(β)),

Hi(β, τ) = αhα−1
i (β, τ) + β − µi, Ki(β, τ) = αkα−1

i (β, τ) + β − µi.
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ττ

G2(β, τ)

G1(β, τ)
A(β)

G2(β, τ)

G1(β, τ)

A(β)

η1(β)

Case : β̃ < β < µ2, η1(β) > 0 Case : 0 < β < β̃, η1(β) < 0

η1(β)

Figure 3. The graphs of G1 and G2

From the equation hα1 (β,A(β)) + (β − µ1)h1(β,A(β)) = A(β), we have

∂h1

∂β
(β,A(β)) +

∂h1

∂τ
(β,A(β))

dA

dβ
=
T (β)− h1(β,A(β))

H1(β,A(β))
> 0

since T (β) > h1(β,A(β)) and H1(β,A(β)) > 0. This implies η′1(β) > 0 for 0 < β < µ2 since we also

have T ′(β) > 0. Similarly, we have

η′2(β) = k1(β,A(β)) + β
[∂k1

∂β
(β,A(β)) +

∂k1

∂τ
(β,A(β))

dA

dβ

]
+ βT ′(β)

and
∂k1

∂β
(β,A(β)) +

∂k1

∂τ
(β,A(β))

dA

dβ
=
T (β)− k1(β,A(β))

K1(β,A(β))
.

Since T (β) < k1(β,A(β)) and K1(β,A(β)) < 0, η′2(β) > 0 for β ∈ (0, µ1) and we arrive at the

conclusion. �

In the next lemma, we give properties of the two functions G1(β, τ) and G2(β, τ) as well as η1(β) =

G1(β,A(β)) = G2(β,A(β)), which will be used to study the number of zeros τ ∈ (0, A(β)] of the two

equations G1(β, τ) = 0 and G2(β, τ)=0 for 0 < β < µ2. We illustrate the graphs of G1 and G2 in

Figure 3. It can be seen that these graphs and part of the vertical axis form a loop.

lem6.5 Lemma 6.5. Let 0 < β < µ2. We have the following properties for G1, G2 and η1:

(a) G1(β, 0) = 0, G1(β, τ) < 0 for τ > 0 small, ∂
∂τG1(β, τ) > 0 if G1(β, τ) = 0, and ∂

∂τG1(β, τ)→
+∞ as τ → A(β)−;

(b) G2(β, 0) > 0, G2(β, τ) is strictly decreasing in τ ∈ [0, A(β)], and ∂
∂τG2(β, τ) → −∞ as

τ → A(β)−;

(c) there exists β̃ ∈ (0, µ2) such that η1(β) < 0 if 0 < β < β̃, η1(β) = 0 if β = β̃, and η1(β) > 0

if β̃ < β < µ2.

Proof. (a) In account of the discussions in Section 3, we see that G1(β, 0) = 0, G1(β, τ) < 0 for τ > 0

small, and ∂
∂τG1(β, τ) > 0 if G1(β, τ) = 0. For τ ∈ (0, A(β)), we have

∂

∂τ
G1(β, τ) =

β

H1(β, τ)
+

β

H2(β, τ)
− 1.

By the fact that Hi(β, τ) > 0 and limτ→A(β)− H2(β, τ) = αTα−1(β) + β − µ2 = 0, we arrive at

limτ→A(β)−
∂
∂τG1(β, τ) = +∞.

(b) We have G2(β, 0) = βk2(β, 0) = β(µ2 − β)−
1

1−α > 0. As in the proof of Lemma 6.3, we have

H2
1 (β,A(β))−H2

1 (β, τ) < 2α(α− 1)Tα−2(β)(A(β)− τ) < K2
2 (β,A(β))−K2

2 (β, τ).

Since

K2(β, τ) < K2(β,A(β)) = 0 < H1(β,A(β)) < H1(β, τ), (6.6) eq6.6
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it can be deduced that for 0 < τ < A(β)

H1(β, τ) >
√

2α(1− α)Tα−2(β)(A(β)− τ) > −K2(β, τ) > 0.

Therefore,
∂

∂τ
G2(β, τ) =

β(H1(β, τ) +K2(β, τ))

H1(β, τ)K2(β, τ)
− 1 < 0 for 0 < τ < A(β),

which implies G2(β, τ) is strictly decreasing in τ ∈ [0, A(β)]. In account of (6.6) again, we have

limτ→A(β)−
∂
∂τG2(β, τ) = −∞.

(c) We estimate η1(β) as

η1(β) ≤ 2βT (β)−A(β) = 2βα
1

1−α (µ2 − β)−
1

1−α −
(
α

α
1−α − α

1
1−α
)
(µ2 − β)−

α
1−α

and

η1(β) ≥ βT (β)−A(β) = βα
1

1−α (µ2 − β)−
1

1−α −
(
α

α
1−α − α

1
1−α
)
(µ2 − β)−

α
1−α ,

from which we see that limβ→0+ η1(β) = −
(
α

α
1−α −α

1
1−α
)
µ
− α

1−α
2 < 0 and limβ→µ−2

η1(β) = +∞. Then

using Lemma 6.4 we claim that there exists β̃ ∈ (0, µ2) such that η1(β) < 0 if 0 < β < β̃, η1(β) = 0 if

β = β̃, and η1(β) > 0 if β̃ < β < µ2. �

Let us now assume 0 < β < µ1 and study properties of G4(β, τ) which is the most complex function

among all the Gi (i = 1, 2, 3, 4). We set

γ(β) := min
0≤τ≤A(β)

G4(β, τ).

lem6.6 Lemma 6.6. There exists τ = τ(β) ∈ (0, A(β)) such that ∂
∂τG4(β, τ) < 0 for τ ∈ (0, τ(β)) and

∂
∂τG4(β, τ) > 0 for τ ∈ (τ(β), A(β)). As a consequence,

γ(β) = min
0≤τ≤A(β)

G4(β, τ) = G4(β, τ(β)).

Proof. For τ ∈ (0, A(β)),
∂

∂τ
G4(β, τ) =

β

K1(β, τ)
+

β

H2(β, τ)
− 1.

Since limτ→0+ K1(β, τ) = −(1− α)(µ1 − β) and limτ→0+ H2(β, τ) = +∞, we see that

lim
τ→0+

∂

∂τ
G4(β, τ) = − β

(1− α)(µ1 − β)
− 1 < 0.

Since K1(β, τ) < αkα−1
1 (β,A(β)) + β − µ1 < 0, H2(β, τ) > 0, and limτ→A(β)− H2(β, τ) = 0, we have

lim
τ→A(β)−

∂

∂τ
G4(β, τ) = +∞.

Then the minimum γ(β) can only be attained at some τ in the open interval (0, A(β)), where
∂
∂τG4(β, τ) = 0. We show that there is only one such τ . Let τ ∈ (0, A(β)) be such that ∂

∂τG4(β, τ) = 0.

Then
1

H3
2 (β, τ)

=
1

β3
− 1

K3
1 (β, τ)

− 3

βK1(β, τ)H2(β, τ)
.

Using this equation, we compute the second partial derivative of G4 with respect to τ :

∂2

∂τ2
G4(β, τ) = βα(1− α)

(
kα−2

1 (β, τ)− hα−2
2 (β, τ)

K3
1 (β, τ)

+ hα−2
2 (β, τ)

( 1

β3
− 3

βK1(β, τ)H2(β, τ)

))
.

Since α ∈ (0, 1), k1(β, τ) > h2(β, τ) > 0 and K1(β, τ) < 0 < H2(β, τ), we have ∂2

∂τ2G4(β, τ) > 0. This

implies that there is exactly one τ = τ(β) ∈ (0, A(β)) such that ∂
∂τG4(β, τ(β)) = 0 and the result

follows. �

The next lemma shows that γ(β) is strictly increasing in β ∈ (0, µ1).

lem6.7 Lemma 6.7. γ′(β) > 0 for β ∈ (0, µ1).
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ττ

G3(β, τ)

G4(β, τ)

A(β)

η2(β)

Case : 0 < β < β0, γ(β) < 0

G3(β, τ)

G4(β, τ)
η2(β)
γ(β)

A(β)τ(β)

Case : β0 < β < µ1, γ(β) > 0

τ(β)

γ(β)

Figure 4. The graphs of G3 and G4

Proof. Indeed, for β ∈ (0, µ1),

dγ(β)

dβ
=

∂

∂β
G4(β, τ(β)) +

∂

∂τ
G4(β, τ(β))

dτ(β)

dβ
=

∂

∂β
G4(β, τ(β)).

Taking partial derivative in the equation kα1 (β, τ) + (β − µ1)k1(β, τ) = τ with respect to β, we obtain
∂
∂β k1(β, τ) = − k1(β,τ)

K1(β,τ) . Similarly, ∂
∂βh2(β, τ) = − h2(β,τ)

H2(β,τ) . Then

dγ(β)

dβ
= k1(β, τ(β)) + h2(β, τ(β)) + β

(
− k1(β, τ(β))

K1(β, τ(β))
− h2(β, τ(β))

H2(β, τ(β))

)
.

Using again the fact that K−1
1 +H−1

2 = β−1 at τ = τ(β), we arrive at

dγ(β)

dβ
= k1(β, τ(β)) +

β

K1(β, τ(β))
(h2(β, τ(β))− k1(β, τ(β))).

Since k1(β, τ(β)) > h2(β, τ(β)) > 0 and K1(β, τ(β)) < 0, we obtain γ′(β) > 0, as required. �

lem6.8 Lemma 6.8. We have

lim
β→µ−1

η2(β) = lim
β→µ−1

γ(β) = +∞

and

lim
β→0+

η2(β) = lim
β→0+

γ(β) = −
(
α

α
1−α − α

1
1−α
)
µ
− α

1−α
2 < 0.

Proof. For β ∈ (0, µ1), since k1(β, τ) >
(

α
µ1−β

) 1
1−α

, we see that

η2(β) > γ(β) ≥ βα
1

1−α (µ1 − β)−
1

1−α −
(
α

α
1−α − α

1
1−α
)
(µ2 − β)−

α
1−α .

This implies limβ→µ−1
η2(β) = limβ→µ−1

γ(β) = +∞. Since 0 < k1(β,A(β)) + h2(β,A(β)) < 2(µ1 −
β)−

1
1−α , we have, for β ∈ (0, µ1),

−A(β) < γ(β) < η2(β) < 2β(µ1 − β)−
1

1−α −A(β),

and thus

lim
β→0+

η2(β) = lim
β→0+

γ(β) = − lim
β→0+

A(β) = −
(
α

α
1−α − α

1
1−α
)
µ
− α

1−α
2 < 0.

The proof is complete. �

In the next lemma, we list properties of G3, G4, η2 and γ which will be used to study the number

of zeros τ ∈ (0, A(β)] of the two equations G3(β, τ) = 0 and G4(β, τ)=0 for β ∈ (0, µ1). We illustrate

the graphs of G3 and G4 in Figure 4. These graphs and part of the vertical axis make up a loop.

lem6.9 Lemma 6.9. G3, G4, η2 and γ have the following properties:

(a) G3(β, τ) > G4(β, τ) for 0 ≤ τ < A(β);

(b) G3(β, τ) is strictly decreasing in τ ∈ [0, A(β)];

(c) G4(β, τ) is strictly decreasing in τ ∈ [0, τ(β)] and strictly increasing in τ ∈ [τ(β), A(β)];

(d) η2(β) and γ(β) are strictly increasing in β ∈ (0, µ1);
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(e) there exist β̂ ∈ (0, µ1) and β0 ∈ (β̂, µ1) such that η2(β) < 0 if 0 < β < β̂, η2(β) = 0 if β = β̂,

and η2(β) > 0 if β̂ < β < µ1, and that γ(β) < 0 if 0 < β < β0, γ(β) = 0 if β = β0, and

γ(β) > 0 if β0 < β < µ1.

Proof. (a) This is directly from the definitions of G3 and G4.

(b) This is true since both k1(β, τ) and k2(β, τ) are strictly decreasing in τ ∈ [0, A(β)].

(c) This is deduced from Lemma 6.6.

(d) This follows from Lemmas 6.4 and 6.7.

(e) This is a consequence of (d) combined with Lemma 6.8. �

Proof of Theorem 1.5(c) in the case µ1 < µ2. As we have seen before, to find the exact number

of synchronized positive solutions of (6.5) it is sufficient to study the exact number of solutions of the

four equations Gi(τ) = Gi(β, τ) = 0 in τ ∈ (0, A(β)] for i = 1, 2, 3, 4.

Let us first consider the two equations G1(β, τ) = 0 and G2(β, τ) = 0 for β ∈ (0, µ2). By Lemma

6.5, if 0 < β < β̃ then the equation G1(β, τ) = 0 has no solution and the equation G2(β, τ) = 0

has exactly one solution τ1 which lies in (0, A(β)); if β = β̃ then the two equations have the same

solution τ = A(β); and if β̃ < β < µ2 then the first equation has exactly one solution τ2 which

lies in (0, A(β)) and the second equation has no solution. In each of these three cases, exactly one

synchronized positive solution, which is (h
1/q
1 (τ1)U, k

1/q
2 (τ1)U) if 0 < β < β̃, (h

1/q
1 (A)U, h

1/q
2 (A)U) if

β = β̃, or (h
1/q
1 (τ2)U, h

1/q
2 (τ2)U) if β̃ < β < µ2, of equation (6.5) with 0 < β < µ2 can be deduced

from the two equations G1(β, τ) = 0 and G2(β, τ) = 0.

Second, we consider the two equations G3(β, τ) = 0 and G4(β, τ) = 0 for β ∈ (0, µ1). By Lemma

6.9, if 0 < β < β̂ then each of the two equationsG3(β, τ) = 0 andG4(β, τ) = 0 has exactly one solution,

denoted τ3 and τ4 respectively, which lies in (0, A(β)); if β = β̂ then the equation G3(β, τ) = 0 has no

solution in (0, A(β)), the equation G4(β, τ) = 0 has exactly one solution τ5 which is in (0, A(β)), and

both the equations have the same solution τ = A(β); if β̂ < β < β0 then the equation G3(β, τ) = 0

has no solution and the equation G4(β, τ) = 0 has exactly two solutions τ6 and τ7 which lie in

(0, A(β)); if β = β0 then the equation G3(β, τ) = 0 has no solution and the equation G4(β, τ) = 0

has exactly one solution τ8 in (0, A(β)); if β0 < β < µ1 then both G3(β, τ) = 0 and G4(β, τ) = 0

have no solution. This implies that the two equations G3(β, τ) = 0 and G4(β, τ) = 0 produce exactly

two synchronized positive solutions for (6.5) with 0 < β < β0, which are (k
1/q
1 (τ3)U, k

1/q
2 (τ3)U)

and (k
1/q
1 (τ4)U, h

1/q
2 (τ4)U) for 0 < β < β̂, (k

1/q
1 (τ5)U, h

1/q
2 (τ5)U) and (k

1/q
1 (A)U, T 1/qU) for β =

β̂, and (k
1/q
1 (τ6)U, h

1/q
2 (τ6)U) and (k

1/q
1 (τ7)U, h

1/q
2 (τ7)U) for β̂ < β < β0; they yield exactly one

synchronized positive solution for (6.5) with β = β0 which is (k
1/q
1 (τ8)U, h

1/q
2 (τ8)U); and they result

in no synchronized positive solution for (6.5) with β > β0.

We remark that the synchronized positive solution obtained via G1(β, τ) = 0 and G2(β, τ) = 0 is

different from those obtained via G3(β, τ) = 0 and G4(β, τ) = 0. Combining the results obtained via

the equations Gi(β, τ) = 0, i = 1, 2, 3, 4, we see that (6.5) has exactly three synchronized positive

solutions if 0 < β < β0, exactly two synchronized positive solutions if β = β0, and exactly one

synchronized positive solution if β > β0. �

In the special case where N = 8 and p = q = 4
3 , we present an elementary proof of Theorem

1.5(c) and give a more specific expression for β0. In the present case, in account of the discussions at

the beginning of Section 3, the number of synchronized positive solutions of (6.5) is equal to the the

number of positive solutions of the system

µ1t1 + βt2 = t
1
2
1 , βt1 + µ2t2 = t

1
2
2 .

Set x =
√
t1 and y =

√
t2. Then we rewrite the above system as

µ1x
2 + βy2 = x, βx2 + µ2y

2 = y. (6.7) eq6.7

We solve the first equation for y and obtain

y =

√
x− µ1x2

β
. (6.8) eq6.8
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Inserting this expression into the second equation, after simplifying it we have an equation for x:

(β2 − µ1µ2)2x3 + 2µ2(β2 − µ1µ2)x2 + (βµ1 + µ2
2)x− β = 0. (6.9) eq6.9

Here we use the fact that we are searching for positive solutions and thus x 6= 0. If β =
√
µ1µ2

then (6.9) is a linear equation and (6.7) has a unique positive solution
( µ

1/2
1

µ
3/2
1 +µ

3/2
2

,
µ
1/2
2

µ
3/2
1 +µ

3/2
2

)
. In

what follows we assume β 6= √µ1µ2. Then (6.9) is a cubic equation. Recall that the general cubic

ax3 + bx2 + cx+ d has three distinct real roots if and only if its discriminant

∆ := 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 > 0

and has only one real root if ∆ < 0. The cubic may have only one real root or two distinct real roots

if ∆ = 0. For (6.9) the discriminant is

∆ = β2(β2 − µ1µ2)2
(
− 27β4 + 18β2µ1µ2 − 4β(µ3

1 + µ3
2) + µ2

1µ
2
2

)
.

Set

f(β) = −27β4 + 18β2µ1µ2 − 4β(µ3
1 + µ3

2) + µ2
1µ

2
2. (6.10) eq6.10

The elementary inequality βµ1µ2 ≤ 3β3 + 1
9µ

3
1 + 1

9µ
3
2 implies that f ′(β) = −108β3 +36βµ1µ2−4(µ3

1 +

µ3
2) ≤ 0 and f ′(β) = 0 if and only if µ1 = µ2 = 3β. Thus f ′(β) < 0 except for the case µ1 = µ2 = 3β.

If µ1 = µ2 = 3β then f(β) = f ′(β) = f ′′(β) = 0 and f ′′′(β) = −648β < 0. In any case, the quartic

polynomial f(β) in (6.10) has a unique positive zero, denoted β0, so that f(β0) = 0, f(β) > 0 for

0 < β < β0, and f(β) < 0 for β > β0. Since µ2
1µ2 ≤ 4

√
2µ3

1+µ3
2

6 and µ1µ
2
2 ≤

µ3
1+2µ3

2

3 , we have

f(µ1) = µ1(−31µ3
1 − 4µ3

2 + 18µ2
1µ2 + µ1µ

2
2) ≤ −µ1

3

(
(92− 36

√
2)µ3

1 + µ3
2

)
< 0.

This shows that β0 ∈ (0, µ1). The above discussion shows that (6.9) has exactly one real solution for

β > β0 and exactly three real solutions for 0 < β < β0. Writing (6.9) in the form

x
[
(β2 − µ1µ2)x+ µ2

]2
+ β(µ1x− 1) = 0,

we see that its real solutions must lie in the range (0, µ−1
1 ). Thus any real solution of (6.9) uniquely

determines a positive y through (6.8). Therefore, (6.7) has exactly one positive solution for β > β0 and

exactly three positive solutions for 0 < β < β0, which implies that (1.3) has exactly one synchronized

positive solution for β > β0 and exactly three synchronized positive solutions for 0 < β < β0.

Now we determine the number of positive solutions of (6.7) for β = β0. We first consider the case

µ1 = µ2 and we observe that β0 = 1
3µ1 through the above discussion. Let β = β0 in this case. Then

equation (6.9) is reduced to

64β4x3 − 48β3x2 + 12β2x− β = 0.

From this equation and (6.8) we see that (6.7) has exactly one positive solution x = y = 1
4β . Now we

assume µ1 6= µ2 and show that (6.9) has exactly two real solutions. If not, then it has only one real

solution x0 which must satisfy

x0 =
2µ2

3(µ1µ2 − β2)
, x2

0 =
βµ1 + µ2

2

3(µ1µ2 − β2)2
, x3

0 =
β

(µ1µ2 − β2)2
.

But these expressions imply µ1 = µ2 = 3β, a contradiction.

7. Results on systems with subcritical exponents

Let N ≥ 1 and n ≥ 2. The arguments used above are applicable to system (1.7) with subcritical

exponents:  −∆ui + ui = µiu
r−1
i +

n∑
j=1, j 6=i

βiju
pij−1
i u

qij
j in RN ,

ui > 0, ui ∈ H1(RN ), i = 1, 2, · · · , n,
where 0 < µ1 ≤ · · · ≤ µn, βij > 0, 2 < r < 2∗, pij < r, and pij + qij = r for i 6= j ∈ {1, 2, · · · , n}.
For this system synchronized positive solutions are of the form (k1U, · · · , knU) with ki positive and

U being the unique positive radial solution of

−∆u+ u = ur in RN , u ∈ H1(RN ).
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We have the following four theorems, which are stated without proofs since their proofs are easy

adaptations of those of Theorems 1.1-1.4. We remark that in this section results on uniqueness,

multiplicity and exact multiplicity of solutions are all up to translation.

thm7.1 Theorem 7.1. Assume N ≥ 1, µi > 0, 2 < r < 2∗, pij < 2, and pij+qij = r for i 6= j ∈ {1, 2, · · · , n}.
We have the following conclusions.

(a) There exists β∗ > 0 such that if 0 < βij < β∗ then (1.7) has at least 2n − 1 synchronized

positive solutions.

(b) Assume in addition that there exists p < 2 such that pij = p for i 6= j. If the matrix B has an

inverse A = (aij)n×n such that

aij > 0 for i 6= j and

n∑
j=1

aij > 0 for i = 1, 2, · · · , n,

then (1.7) has at least one synchronized positive solution.

Remark 7.1. As for the critical case an explicit β∗ can be given in terms of µi, r, and pij .

thm7.2 Theorem 7.2. Assume N ≥ 1, µi > 0, 2 < r < 2∗, pij = p < 2, qij = r − p and βij = β for

i, j ∈ {1, 2, · · · , n} and i 6= j. We have the following conclusions.

(a) (1.7) has at least one synchronized positive solution for any β > 0.

(b) If β ≥ µn, or if µn−1 < µn and β ≥ µn − δ0 where δ0 is some positive number, then (1.7) has

exactly one synchronized positive solution.

(c) There exists β0 ∈ (0, µ1) such that (1.7) has exactly 2n− 1 synchronized positive solutions for

0 < β < β0.

(d) Assume moreover n = 2m, µ1 = · · · = µm =: µ′ ≤ µm+1 = · · · = µ2m =: µ′′, and

β >
(m+ 1)µ′′ − (m− 1)µ′ +

√
(m+ 1)2µ′′2 + (m− 1)2µ′2 − 2(m2 + 1)µ′µ′′

2
.

Then (1.7) has exactly one positive solution.

thm7.3 Theorem 7.3. Assume N ≥ 1, µi > 0, 2 < r < 2∗, pij = 2, qij = r − 2, and βij = β for

i, j ∈ {1, 2, · · · , n} and i 6= j. We have the following conclusions.

(a) (1.7) has a synchronized positive solution if and only if β > µn or 0 < β < µ1 or β = µ1 = µn.

Moreover, if β > µn or 0 < β < µ1 then (1.7) has exactly one synchronized positive solution

and if β = µ1 = µn then (1.7) has infinitely many synchronized positive solutions.

(b) If µ1 ≤ β ≤ µn and µ1 6= µn then (1.7) has no positive solution.

(c) If β > µn then (1.7) has exactly one positive solution.

thm7.4 Theorem 7.4. Assume N ≥ 1, µi > 0, 2 < r < 2∗, 2 < pij < r, pij + qij = r, and βij > 0. Then

(a) (1.7) has a synchronized positive solution.

Assume moreover pij = p ∈ (2, r), qij = r − p, βij = β for i, j ∈ {1, 2, · · · , n} and i 6= j. Then we

have the following conclusions.

(b) If 0 < β ≤ µ1, or if µ1 < µ2 and β < µ1 + δ0 where δ0 is some positive number, then (1.7)

has exactly one synchronized positive solution.

(c) If β > µj then there exists p1 = p1(β) ∈ (2, r) such that for p ∈ (2, p1) (1.7) has at least 2j −1

synchronized positive solutions. In particular, if β > µn then for p larger than and sufficiently

close to 2, (1.7) has at least 2n − 1 synchronized positive solutions.

(d) If β > µ1 and
µ1

β
2 +

(
1− µ1

β

)
r ≤ p < r,

then (1.7) has exactly one synchronized positive solution. In particular, for any β > 0, (1.7)

has exactly one synchronized positive solution if p < r and p is sufficiently close to r.
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The methods used in this paper are also applicable to other systems of elliptic equations, for

example, to the m-Laplacian system

−∆mui + λi|ui|m−2ui =

n∑
j=1

βij |uj |qij |ui|pij−2ui in Ω, i = 1, 2, · · · , n,

where ∆mu = div(|∇u|m−2∇u), 1 < m < N , λi ≥ 0, βij > 0, pij + qij = r for some r ≤ m∗ = mN
N−m ,

and Ω is either a bounded domain in RN or the whole RN .

8. Proof of Theorem 1.6

In this section we always assume that N ≥ 5, µi > 0, p, q ∈ (1, 2], p + q = 2∗, β > β0, and

V1, V2 ∈ L
N
2 (RN ) ∩ L∞loc(RN ) are nonnegative functions. By the maximum principle, nontrivial

solutions of the system
−∆u+ V1(x)u = µ1(u+)2∗−1 + pβ

2∗ (u+)p−1(v+)q in RN ,
−∆v + V2(x)v = µ2(v+)2∗−1 + qβ

2∗ (u+)p(v+)q−1 in RN ,
u, v ∈ D1,2(RN )

(8.1) eq8.1

are positive solutions of (1.5), where u+ = max{u, 0} and v+ = max{v, 0}. Note that (8.1) has a

variational structure. We shall prove as in [24] the existence of a nontrivial solution of (8.1) by a

variational approach.

We first introduce some notation and recall some known facts. Let ‖ · ‖ and | · |s be the usual

norms in D1,2(RN ) and Ls(RN ) respectively. Set H = D1,2(RN )×D1,2(RN ) equipped with the norm

‖(u, v)‖ = (‖u‖2 + ‖v‖2)
1
2 . Clearly, critical points of the energy functional

I(u, v) =
1

2
‖(u, v)‖2 +

1

2

∫
RN

(
V1(x)u2 + V2(x)v2

)
− 1

2∗

∫
RN

(
µ1(u+)2∗ + β(u+)p(v+)q + µ2(v+)2∗

)
defined on H are solutions of system (8.1). In order to avoid semitrivial critical points, we need to

also consider for j = 1, 2 the scalar field equation −∆u + Vj(x)u = µj(u
+)2∗−1, u ∈ D1,2(RN ), and

its associated functional φj . Define the infimum

c = inf
(u,v)∈N

I(u, v) > 0

on the Nehari manifold

N = {(u, v) ∈ H | (u, v) 6= (0, 0), 〈I ′(u, v), (u, v)〉 = 0}.

For j = 1, 2, let γj be the infimum of the functional φj on its Nehari manifold. If V1 = V2 = 0, we

denote I, N , c and γj by I∞, N∞, c∞ and γj∞, respectively. Since Vj ≥ 0 and Vj ∈ L
N
2 (RN ), the

argument in [6, Proposition 2.2] implies that

γj = γj∞ =
1

N
µ

(2−N)/2
j SN/2. (8.2) eq8.2

It is also well known that γj∞ is attained by the functions Wδ,z,j(x) = µ
−N−2

4
j Uδ,z(x), where Uδ,z(x) =

δ(2−N)/2U((x− z)/δ) for δ > 0 and z ∈ RN .

By Theorem 1.5(b), (1.4′) with β > β0 has exactly one positive solution. Moreover, by the proofs

of Lemmas 6.1 and 6.2, this solution takes the form (k1U, k2U), where (k1, k2) is a positive solution,

which is unique according to Proposition 6.1, of the algebraic system

µ1k
q
1 − k

2−p
1 +

pβ

2∗
kq2 = 0, µ2k

p
2 − k

2−q
2 +

qβ

2∗
kp1 = 0. (8.3) eq8.3

lem8.1 Lemma 8.1. There holds c∞ = 1
N (k2

1 + k2
2)S

N
2 .

Proof. Let ε > 0 be such that |u+|2∗2∗ + |v+|2∗2∗ ≥ 2ε for any (u, v) ∈ N∞. Let (u, v) ∈ N∞ and assume

without loss of generality that |v+|2∗2∗ ≥ ε. Setting t = |u+|22∗/|v+|22∗ ≥ 0 and using the Sobolev

inequality, we have

‖(u, v)‖2 ≥ S
(
|u+|22∗ + |v+|22∗

)
= S(1 + t)|v+|22∗ . (8.4) eq8.4



36 YONGTAO JING, HAIDONG LIU, YANYAN LIU, ZHAOLI LIU, AND JUNCHENG WEI

By the Hölder inequality,

‖(u, v)‖2 ≤ µ1|u+|2
∗

2∗ + β|u+|p2∗ |v+|q2∗ + µ2|v+|2
∗

2∗ = (µ1t
2∗
2 + βt

p
2 + µ2)|v+|2

∗

2∗ ,

which combined with (8.4) implies that

‖(u, v)‖2 ≥ g(t) :=
S
N
2 (1 + t)

N
2(

µ1t
2∗
2 + βt

p
2 + µ2

)N−2
2

.

This implies

c∞ ≥
1

N
inf
t≥0

g(t). (8.5) eq8.5

The derivative of g has the form

g′(t) =
NS

N
2 (1 + t)

N−2
2 h(t)

2
(
µ1t

2∗
2 + βt

p
2 + µ2

)N
2

,

where h(t) = qβ
2∗ t

p
2 − pβ

2∗ t
p−2
2 − µ1t

2
N−2 + µ2. Since p, q ∈ (1, 2] and p + q = 2∗ and thus p

2 > 2
N−2 ,

we see that h(t) < 0 for t > 0 small and h(t) > 0 for t > 0 large. Then there exists t1 > 0 such that

g(t1) = inft≥0 g(t). By (8.5), we have

c∞ ≥
1

N
g(t1). (8.6) eq8.6

Let (u0, v0) = (
√
t1bU1,0, bU1,0) where b = (1+t1)(N−2)/4

(µ1t
2∗/2
1 +βt

p/2
1 +µ2)(N−2)/4

. Then we have (u0, v0) ∈ N∞ and

I∞(u0, v0) = 1
N g(t1). Hence c∞ ≤ 1

N g(t1), which combined with (8.6) implies c∞ = I∞(u0, v0) =
1
N g(t1). As a minimizer of I∞|N∞ , it is easy to see that (u0, v0) is a synchronized positive solution

of (1.4). By Theorem 1.5(b) and the definition of (k1, k2), we have k1 =
√
t1b and k2 = b. Then

t1 = k2
1/k

2
2. Since µ1k

2∗

1 + βkp1k
q
2 + µ2k

2∗

2 = k2
1 + k2

2, we finally obtain

c∞ =
1

N
g(t1) =

1

N
(k2

1 + k2
2)S

N
2 .

The proof is complete. �

As a byproduct of the proof of Lemma 8.1, using (8.2) we have

c∞ <
1

N
min

{
lim

t→+∞
g(t), g(0)

}
= min{γ1∞, γ2∞}.

Using an argument similar to the proof of [24, Lemma 2.6] which is for N = 4, we can prove the

following lemma. We omit the details.

lem8.2 Lemma 8.2. If Vj ∈ L
N
2 (RN ), Vj ≥ 0, and |V1|N/2 + |V2|N/2 > 0, then c = c∞ and c is not achieved.

The following lemma provides decomposition of Palais-Smale sequences of I and will be used to

derive compactness of Palais-Smale sequences at certain levels. Similar results are well known for

scalar field equations ([6, 10, 39]), which have been extended to coupled systems (see [24, 32]). The

proof of the lemma can be conducted in the same spirit as in [24, 32] and is thus dropped.

lem8.3 Lemma 8.3. Assume that {(un, vn)} ⊂ H is a Palais-Smale sequence for the functional I at level d.

Then there exist a nonnegative integer l, a solution (u0, v0) of (8.1), l nonzero solutions (uj , vj) (1 ≤
j ≤ l) of (8.1) with V1 = V2 = 0, l sequences of positive numbers {σjn} (1 ≤ j ≤ l) and l sequences of

points {zjn} ⊂ RN (1 ≤ j ≤ l) such that, up to a subsequence and as n→∞,∥∥∥(un, vn)− (u0, v0)−
l∑

j=1

(
(σjn)−

N−2
2 uj

( · − zjn
σjn

)
, (σjn)−

N−2
2 vj

( · − zjn
σjn

))∥∥∥→ 0

and

I(u0, v0) +

l∑
j=1

I∞(uj , vj) = d.

Using Theorem 1.5(b), Lemmas 8.2 and 8.3, we prove the next lemma.
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lem8.4 Lemma 8.4. Let d ∈ (c∞, min{γ1∞, γ2∞, 2c∞}) and assume {(un, vn)} ⊂ N satisfies

I(un, vn)→ d, (I|N )′(un, vn)→ 0, as n→∞.

Then {(un, vn)} contains a subsequence converging in H.

Proof. It is easy to check that I ′(un, vn) → 0 in H−1. Let (u0, v0), (uj , vj), {σjn} and {zjn}, j =

1, 2, · · · , l, be as in Lemma 8.3. Since d < 2c∞, either l = 0 or l = 1. To conclude, it suffices to prove

that l = 0. Otherwise, d = I(u0, v0) + I∞(u1, v1). If (u0, v0) 6= (0, 0) then by Lemma 8.2 we have

d ≥ 2c∞, which is a contradiction. Thus (u0, v0) = (0, 0) and d = I∞(u1, v1). Since u1 ≥ 0 and v1 ≥ 0,

by Theorem 1.5(b) and the uniqueness of positive solutions of the scalar equation −∆u = µju
2∗−1

in RN , (u1, v1) must be either (k1U, k2U), or (µ
(2−N)/4
1 U, 0), or (0, µ

(2−N)/4
2 U), up to translation and

dilation. Then either d = c∞, or d = γ1∞, or d = γ2∞, yielding a contradiction with the condition

d ∈ (c∞, min{γ1∞, γ2∞, 2c∞}). �

By Lemma 8.4, to obtain a nontrivial solution of (8.1) it suffices to construct a Palais-Smale

sequence of I|N at some level d ∈ (c∞, min{γ1∞, γ2∞, 2c∞}). This will be fulfilled by constructing a

linking structure as follows.

For (u, v) ∈ H with (u+, v+) 6= (0, 0), we define

ξ(u, v) =

∫
RN

x
1+|x|

(
µ1(u+)2∗ + β(u+)p(v+)q + µ2(v+)2∗

)∫
RN
(
µ1(u+)2∗ + β(u+)p(v+)q + µ2(v+)2∗

)
and

η(u, v) =

∫
RN
∣∣ x

1+|x| − ξ(u, v)
∣∣(µ1(u+)2∗ + β(u+)p(v+)q + µ2(v+)2∗

)∫
RN
(
µ1(u+)2∗ + β(u+)p(v+)q + µ2(v+)2∗

) .

Fix a number κ with 0 < κ < 1 and set

N̂ = {(u, v) ∈ N | ξ(u, v) = 0, η(u, v) = κ}.

We define

ĉ = inf
(u,v)∈N̂

I(u, v).

From Theorem 1.5(b), Lemmas 8.1, 8.2 and 8.3, a similar argument as in [24, Lemma 4.1] leads to

the following result.

lem8.5 Lemma 8.5. If Vj ∈ L
N
2 (RN ), Vj ≥ 0, and |V1|N/2 + |V2|N/2 > 0, then ĉ > c∞.

Now we construct a family of subsets of N which link with N̂ . By Lemmas 8.1 and 8.5 we have
1
N (k1 + k2)SN/2 < ĉ. By condition (1.6), we also have

1

N
(k2

1 + k2
2)S

N
2

(
1 +

k2
1|V1|N/2 + k2

2|V2|N/2
(k2

1 + k2
2)S

)N
2

< min{γ1∞, γ2∞, 2c∞}.

Then as in [7] and [48, P. 35], we can construct a nonnegative function w ∈ C∞0 (B1(0)) such that∫
RN w

2∗ = ‖w‖2 > S
N
2 ,

1

N
(k2

1 + k2
2)‖w‖2 < ĉ, (8.7) eq8.7

and

1

N
(k2

1 + k2
2)‖w‖2

(
1 +

k2
1|V1|N/2 + k2

2|V2|N/2
(k2

1 + k2
2)S

)N
2

< min{γ1∞, γ2∞, 2c∞}. (8.8) eq8.8

For δ > 0 and z ∈ RN , let wδ,z = δ(2−N)/2w((· − z)/δ). We define g0 : R+ × RN → N by g0(δ, z) =

(k1tδ,zwδ,z, k2tδ,zwδ,z), where

tδ,z =

(
‖(k1wδ,z, k2wδ,z)‖2 +

∫
RN
(
V1(x)(k1wδ,z)

2 + V2(x)(k2wδ,z)
2
)∫

RN
(
µ1(k1wδ,z)2∗ + β(k1wδ,z)p(k2wδ,z)q + µ2(k2wδ,z)2∗

) )N−2
4

.



38 YONGTAO JING, HAIDONG LIU, YANYAN LIU, ZHAOLI LIU, AND JUNCHENG WEI

Since (k1, k2) is a solution of (8.3) and
∫
RN w

2∗ = ‖w‖2, we have, for δ > 0 and z ∈ RN ,

I(g0(δ, z)) =

(
(k2

1 + k2
2)‖w‖2 + k2

1

∫
RN V1(x)w2

δ,z + k2
2

∫
RN V2(x)w2

δ,z

)N
2

N(k2
1 + k2

2)
N−2

2 ‖w‖N−2
. (8.9) eq8.9

We need the next lemma to show the linking structure.

lem8.6 Lemma 8.6. There exists R0 > 0 and δ1, δ2 with 0 < δ1 < κ < δ2 < +∞ such that

(a) I(g0(δ, z)) < ĉ if either δ = δ1 or δ = δ2 or |z| = R0;

(b) 〈ξ(g0(δ, z)), z〉RN > 0 if |z| = R0, η(g0(δ1, z)) < κ, and η(g0(δ2, z)) > κ.

Proof. Since the proof is similar to that in [24], it is only sketchy.

(a) As in [24, Lemma 4.2],
∫
RN Vj(x)w2

δ,z → 0 uniformly in z ∈ RN if either δ → 0 or δ → +∞ and

uniformly in δ > 0 if |z| → +∞. Then the expression of I(g0(δ, z)) together with (8.7) implies that

any δ1 sufficiently small and R0, δ2 sufficiently large are eligible candidates.

(b) This is proved in the same way as in [24, Lemma 4.3], decreasing δ1 and enlarging δ2 from (a)

if necessary. �

Set D = {(δ, z) | δ1 < δ < δ2, z ∈ RN , |z| < R0} and define Γ = {g ∈ C(D,N ) | g|∂D = g0|∂D}.
From Lemma 8.6(b), using the argument of [24, Lemma 4.5], it is easy to prove the following result.

lem8.7 Lemma 8.7. deg((η ◦ g, ξ ◦ g), D, (κ, 0)) = 1 for any g ∈ Γ.

For g ∈ Γ, by Lemma 8.6(a) we have N̂ ∩ g(∂D) = ∅, while by Lemma 8.7 we obtain N̂ ∩ g(D) 6= ∅.
In other words, the family {g(D) | g ∈ Γ} and N̂ link. Define

d := inf
g∈Γ

max
(δ,z)∈D

I(g(δ, z)).

Since N̂ ∩ g(D) 6= ∅, we have d ≥ ĉ. Then using Lemma 8.5, we arrive at d ≥ ĉ > c∞.

On the other hand, we have d ≤ max(δ,z)∈D I(g0(δ, z)). From (8.9), using the Hölder and the

Sobolev inequalities, we obtain

d ≤
(
(k2

1 + k2
2)‖w‖2 + k2

1|V1|N/2S−1‖w‖2 + k2
2|V2|N/2S−1‖w‖2

)N
2

N(k2
1 + k2

2)
N−2

2 ‖w‖N−2
.

The last inequality together with (8.8) implies that d < min{γ1∞, γ2∞, 2c∞}.

Proof of Theorem 1.6. For any g ∈ Γ and (δ, z) ∈ ∂D, by Lemma 8.6(a) we have I(g(δ, z)) =

I(g0(δ, z)) < ĉ. Since ĉ ≤ d, a standard deformation argument implies the existence of a Palais-

Smale sequence {(un, vn)} ⊂ N of I|N at the level d. Then by Lemma 8.4, since c∞ < ĉ ≤ d <

min{γ1∞, γ2∞, 2c∞}, {(un, vn)} has a convergent subsequence in H and therefore I has a critical

point (u, v) with I(u, v) = d, which is a solution of (8.1). This solution must be nontrivial since

d < min{γ1∞, γ2∞}. By the maximum principle, (u, v) is a positive solution of (1.5). �
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