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ABSTRACT. We study the number of positive solutions to the n-coupled elliptic system

—Au; = uiu 271 Z Biju;, ubi T lugij, u € 9V2RY), i=1,2,-- ,n,
Jj=1,j#i

where N >3, n > 2, u; >0, B3 > 0, pjj < 2%, and p;j+¢;; =2* fori # j € {1,2,--- ,n}. We prove
new multiplicity and uniqueness results for positive solutions of the system, whether the system has
a variational structure or not. In some cases we provide a rather complete characterization on the
exact number of positive solutions. The results we obtain reveal that the positive solution set of
this system has very different structures in the three cases p;; < 2, p;; = 2, and 2 < p;; < 2*.
Moreover, when 2 < p;; < 2%, very different structures of the positive solution set can also be
seen in the case where p;; close to 2 and the case where p;; close to 2*. Similar results are given
for elliptic systems with subcritical Sobolev exponents. These results substantially generalize and
improve existing results in the literature. To show the effect of the uniqueness result, we apply it
to prove existence of a positive solution to a 2-coupled nonlinear Schrodinger system with critical
exponent and LN/2(RN) potentials.

Mathematics Subject Classification 2020: 35A25, 35B09, 35B33, 35J47, 35J50, 35Q40.

1. INTRODUCTION AND THE MAIN RESULTS

In this paper, we study the number of positive solutions to the system of n-coupled equations

— Au; + Au; = Zﬂij|uj|q”\ui|p“_2ui inQ, i=12,---n, (1.1)
j=1
where n > 2, Q C RY is a bounded domain or Q = RY with N > 1, \; >0fori=1,2,--- ,n, Bij > 0,
¢ij > 0, and p;j + ¢;; = r for some r € (2,2*] and for i,j =1,2,--- ,n

Recall that 2* = 2N/(N — 2) for N > 3 and 2* = 400 for N = 1,2. Most results of the paper are
for the whole space R and the critical Sobolev exponent r = 2*. Results for a bounded Q and for
r < 2%, however, will be given.

A vector solution (u1,--- ,uy,) is called nontrivial if each component wu; is nonzero. In the study
of (1.1) it is a key issue to distinguish nontrivial solutions from semitrivial solutions which have at
least one component being zero and at least one component being nonzero. Here we are interested in
positive solutions, that is, nontrivial solutions (uy,us, - ,uy,) with u;(z) > 0 for all ¢ = 1,2,--- ,|n
and all z € RY.

This system admits a variational structure if and only if p;; = g;; and ﬁ—; = 5—; for all i # j. In
particular, if p;; = ¢;; = 5 and ;; = 3;; then the associated energy functional is

J(ug, - ug Z/ |V |2 + \u?) —fZB”/WuJP
4,7=1

In this special case, any solution (u1,us, - ,u,) of (1.1) corresponds to a solitary wave, i.e., a solution
of the form ®;(x,t) = eV _1/\itui(x) to the n-coupled Gross-Pitaevskii system

A¢2f252j|<1>|2|<1>|2 29, mQxRT, i=1,2,...,n (1.2)
j=1
System (1.2) arises in mathematical models describing various phenomena in physics. In the theory

of Bose-Einstein condensates of n different hyperfine spin states, ®; is the wave function of the i-th
1
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condensate, and the constants §;; and f;; (i # j) are the intraspecies and interspecies scattering lengths
respectively; see [17, 36]. In nonlinear optics, (1.2) models n optical waves of different frequencies
which co-propagate and interact nonlinearly in a medium, or n polarization components of a wave
interacting nonlinearly at some central frequency, and ®; is the complex amplitude of the i-th electric
field envelope, or the i-th polarization component; see [1, 29, 30]. The constants (3;; are parameters
characteristic of self interaction, and S;; (¢ # j) are for the interaction between different waves or
different polarization components. See [13, 18, 22, 44] for more physical background on (1.2).

When p;; = ¢i; = § and B;; = B, system (1.1) has attracted tremendous attention and has been
studied extensively over the last two decades both by mathematicians and by theoretical physicists.
It turns out that (1.1) is much more complicated comparing to single equations. Moreover, the
more equations that make up (1.1), the more complicated this system becomes. Up to now, many
new properties of solutions, including existence and multiplicity of nontrivial solutions, segregation
and synchronization of the components of solutions, and nodal properties of solutions, which a single
equation does not possess, have been revealed; see, for example, [2, 4, 8,9, 16, 23, 26, 27, 28, 31, 33, 37,
38, 43, 45, 46] and references therein for the subcritical case and [11, 12, 14, 15, 32, 34, 35, 41, 42, 51]
for the critical case. We remark that systems studied in the above mentioned papers all have a
variational structure and results are obtained by variational methods. In addition, most of the results
are only proved for systems with two equations.

In the current paper, we consider system (1.1), which is much more general than those with varia-
tional structure studied extensively in the literature. We first focus on the critical Sobolev exponent
case: p;j + ¢i; = 2%, and we denote p; := f;; and assume A\; =0, Q = RN and N > 3 in (1.1). This
leads us to study the system

_A’U,Z = Miuf*71 + | Z Bz]uf”_l’u;}” - RN7
Jj=1,j#i (1.3)
w; >0, u; € 2V2(RY), i=1,2,---,n.

Uniqueness and multiplicity of solutions to (1.3) will be investigated. We remark that in this paper
results on uniqueness, multiplicity and exact multiplicity of solutions of (1.3) are all up to translation
and dilation. A solution (uy,usg, - ,uy) of (1.3) is called a synchronized solution if there exist positive
numbers ki, ko, - , k, such that u; = k;U for ¢ = 1,2,--- ,n, where U is a positive solution of the
single equation

~Au=u>"1 mRY, we VRV

According to [3, 40], U is unique up to translation and dilation and has the expression

N-—2

[N(N —2)]

Ulz) = Az

1+ |z?) "=

Throughout the paper, we shall always assume that u; > 0 which are arranged without loss of
generality in the following order

1 < pg < < g

For system (1.3), we shall assume in addition that
Bij >0, pij <2%, pij+q;=2" fori#je{l,2,---,n}

Various results will be obtained under this assumption and additional constraints. As a consequence
of this assumption, we have ¢;; > 0. However, we allow p;; < 0 and accordingly ¢;; > 2* in some of
our results. For convenience, denote

B = (Bz])nxn

Our first result deals with the case p;; < 2 and gives existence of 2" — 1 synchronized positive
solutions if B3;; (i # j) are suitably small and existence of one synchronized positive solution if
Bij (i # j) are suitably large and p;; = p for i # j. In either case, since we do not assume any
symmetry condition the system is essentially more general than those having variational structure.
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Theorem 1.1. Assume N >3, pu; >0, pij <2, and ¢;; = 2* —p;; fori,j € {1,2,--- ,n} and i # j.

We have the following conclusions.

(a) If

1. - 1\ T2 1\ (pij—2)7-1
0<fy<po=gun | 3 ()7 () |
J=1,j#i

then (1.3) has at least 2™ — 1 synchronized positive solutions.

(b) Assume in addition that there exists p < 2 such that p;; = p for i # j. If the matriz
B = (Bij)nxn has an inverse A = (a;j)nxn such that

ai; >0 fori# j and Zaij>0fo7"i:1,2,~-~ R
j=1

then (1.3) has at least one synchronized positive solution.

Remark 1.1. We remark that p;; < 0 is allowed in Theorem 1.1, a case which has not been studied
in the literature. In Theorem 1.1(a), 8;; (i # j) are assumed to be suitably small. The proof of
Theorem 1.1 in Section 2 shows that 3, can be replaced with
Where n N-—2 N—-2
Fo=-omn [ 3 (2) (L) T
1<i<n L 4= \p; i
J=1,j#1i
Clearly, B.x > f(1/2) = B.. We shall explain that the condition on the matrix B in Theorem 1.1(b)
is satisfied if B;; (i # j) are close to a single number S with 8 > p, for all i # j (see Proposition
2.1) or if f;; (i # j) are appropriately grouped with entries of each group close to a single number S
properly large (see Proposition 2.2). Roughly speaking, Theorem 1.1(b) means that (1.3) has at least
one synchronized positive solution if p;; = p for i # j and B;; (i # j) are suitably large.

Now we consider a more specific case in which p;; = p and §;; = § for all ¢,j € {1,2,--- ,n} with
i # j and for some p < 2 and § > 0. For this case we have the following more refined theorem
concerning existence, uniqueness and exact multiplicity of synchronized positive solutions, as well as
uniqueness of positive solutions of (1.3).

Theorem 1.2. Assume N >3, p; >0, p;; =p <2, ¢;; =2 —p and B;; =B fori,j € {1,2,--- ,n}
and i # j. We have the following conclusions.
(a) (1.3) has at least one synchronized positive solution for any 8 > 0.
(b) If B > pn, orif B> p, — 0o in the case pi,—1 < Wy, where §y is some positive number, then
(1.3) has exactly one synchronized positive solution.
(¢) There exists By € (0, 1) such that (1.3) has exactly 2™ — 1 synchronized positive solutions for

0<pB<Bp.
(d) ]fn:Zm’ ,ul:"':le::ﬂlgﬂm-‘rl:"':ﬂQm :IIUJ”, and
g (M D’ = (m—p' + Vm +1)207 + (m = 1)2% = 2(m? + 1)/’ 1"

2 b
then (1.3) has ezactly one positive solution.

Remark 1.2. Theorem 1.2(a)-(c) are all conclusions about positive solutions of the synchronized
type. It would be interesting to prove that the number of synchronized positive solutions is decreasing
with respect to 8 > 0, and right now we have a proof of this only for n = 2; see Theorem 1.5(c) below.
It would also be interesting to prove a result concerning uniqueness of positive solutions more general
than that stated in (d); cf. Theorem 1.5(b). In view of the discussions after each of the proofs of
Lemmas 3.5, 3.7 and 3.8, &g in (b) and Sy in (c) can be given explicitly in terms of n, N and p;. If
n = 2, that is, if the system consists of two equations, then the condition in Theorem 1.2(d) reduces
to B> pa + /3 — pipe. Again, we allow p < 0 in Theorem 1.2.
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Remark 1.3. The conditions of Theorem 1.2 are restrictive, but compared with the conclusions
in Theorem 1.1, those in Theorem 1.2 are much more delicate, which establish the existence of a
synchronized positive solution for any S > 0 and give the exact number of synchronized positive
solutions both for 8 > 0 large and § > 0 small. When the matrix B enjoys more structural conditions,
Theorem 1.2 also determines uniqueness of the positive solution of (1.3) for 5 > 0 large.

Remark 1.4. Let us compare our results Theorems 1.1 and 1.2 with those in the literature. First
of all, system (1.3) in Theorems 1.1 and 1.2 is much more general than the same type of systems
studied via variational methods in the papers mentioned above, and variational methods can not be
used to prove Theorems 1.1 and 1.2 since (1.3) may not have a variational structure. Especially, we
allow p;; < 0 and g;; > 2* in Theorems 1.1 and 1.2, a case which, to our knowledge, has not been
considered before. Note again (1.3) has a variational structure if and only if p;; = ¢;; and ﬁ Zj = %
for all 4 # j. Second, we find that the system has at least 2" — 1 synchronized positive solutions for
B;; small in Theorem 1.1(a), exactly 2™ — 1 synchronized positive solutions for S small in Theorem

1.2(c) and exactly one synchronized positive solution for § large in Theorem 1.2(b); these results are

completely new even for systems with variational structure, and they give a hint on the dependence of
the bifurcation diagram of the solution set on n and . Third, we give a uniqueness result in Theorem
1.2(d) on all positive solutions of the system, and this result is also completely new for this type of
critical elliptic systems.

Remark 1.5. In the very special case where n = 2, p1a = pa1 = ¢12 = g21 = 2*/2, and § := (12 = fo1,
(1.3) was studied in dimension N >4 in [11, 12]. For N > 5, it was proved in [12, Theorem 1.6] that
(1.3) has a least energy positive solution for any 8 > 0 and a second positive solution which is of the
synchronized type for 8 > 0 suitably small. Later, it was showed in [51, Theorem 1.6] (see also [49,
Theorem 1.2]) that the above least energy positive solution must also be of the synchronized type. In
[12, Theorem 1.7] and [49, Theorem 1.2], it was established that the least energy positive solution is
unique for g > 0 large. Our Theorems 1.1 and 1.2 considerably improve those existence, uniqueness
and multiplicity results in several aspects: the system considered here is much more general, our
results also cover the dimension N = 3, the multiplicity conclusions in Theorems 1.1 and 1.2 are much
stronger, and the results on exact multiplicity of synchronized positive solutions and on the uniqueness
of all positive solutions are completely new.

In both Theorem 1.1 and Theorem 1.2, we have studied the case p;; < 2. Now we consider the
case p;; = 2. We have the following result about exact number of synchronized positive solutions, and
nonexistence and uniqueness of positive solutions of (1.3).

Theorem 1.3. Assume N >3, p1; >0, p;j =2, q;; =2* =2, and B;; = 5 fori,j € {1,2,--- ,n} and
i # j. We have the following conclusions.

(a) (1.3) has a synchronized positive solution if and only if 8 > p, or0 < < g or = p11 = lin.
Moreover, if 8 > p, or 0 < 8 < uy then (1.3) has exactly one synchronized positive solution
and if B = p1 = pn, then (1.3) has infinitely many synchronized positive solutions.

(b) If p1 < B < pp and py # py, then (1.3) has no positive solution.

(¢) If B > py then (1.3) has exactly one positive solution.

Remark 1.6. Comparing Theorem 1.2 with Theorem 1.3, we can see two distinct structures of the
solution set in the cases p;; = p < 2 and p;; = 2. For p;; = p < 2 and for any 8 > 0, the system has
a synchronized positive solution, while for p;; = 2 and for py < 8 < py, with py # py, the system has
no positive solution. For p;; = p < 2 and for § > 0 small, the system has exactly 2" — 1 synchronized
positive solutions, while for p;; = 2 and for 8 < 1, the system has exactly one synchronized positive
solution. These differences give a hint on bifurcation phenomena of the solution set from the exponent
Pij = 2.

Remark 1.7. The assumptions in Theorem 1.3 make it impossible for the system to possess a vari-
ational structure, and no variational approach is applicable. In addition, Theorem 1.3 not only gives
the exact number of synchronized positive solutions depending on the size of [, but also confirms
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the uniqueness of positive solutions for 5 > p,. In the very special case where n = 2, N = 4,
B12 = Ba1 = B and p12 = p21 = @12 = ¢21 = 2, existence and nonexistence of positive solutions of (1.3)
were investigated in [11] by variational methods.

The last case in which we deal with (1.3) is p;; € (2,2*). The following theorem, as compared with
Theorems 1.1-1.3, exhibits a completely new feature of the structure of the solution set in this case.

Theorem 1.4. Assume N >3, p1; >0, 2 < p;; < 2%, i = 2" —p;j, and f;; > 0 fori,j € {1,2,--- ,n}
and i # j. Then

(a) (1.3) has a synchronized positive solution.

Assume moreover p;; = p € (2,2%), qij =2* —p, Bij =B fori,j € {1,2,--- ,n} and i # j. We have
the following conclusions.

(b) If 0 < B < g, orif 0 < B < g + g in the case py < pg where §y is some positive number,
then (1.3) has exactly one synchronized positive solution.

(c) If B > p; then there exists pr = p1(B8) € (2,2%) such that for p € (2,p1) (1.3) has at least
2J — 1 synchronized positive solutions. In particular, if B > j, then for p larger than and
sufficiently close to 2, (1.3) has at least 2™ — 1 synchronized positive solutions.

(d) If B> 1 and

H1 M1 * *

—2+<17—)2 <p<?2

5 g ’

then (1.3) has exactly one synchronized positive solution. In particular, this result together
with (b) implies that for any B > 0, (1.3) has exactly one synchronized positive solution if p
1s less than and sufficiently close to 2*.

Remark 1.8. Theorem 1.4 reveals that the structure of the solution set of (1.3) in the case 2 <
pij < 2% is incredibly different from what have been described in Theorems 1.1-1.3 in the cases p;; < 2
and p;; = 2. Let us examine more closely these differences only in the special case p;; = p and
Bi; = B. When f is suitably small, (1.3) has exactly 2" — 1 synchronized positive solutions for p < 2
but exactly one synchronized positive solution for 2 < p < 2*. When 8 > pu,, (1.3) has exactly one
synchronized positive solution for p < 2 but at least 2" — 1 synchronized positive solutions for p larger
than and sufficiently close to 2. For any 5 > 0, (1.3) has a synchronized positive solution if p # 2
and p < 2%, but for py < B < py, with gy # py, (1.3) does not have any positive solution if p = 2.
When 2 < p < 2%, a significant difference of the structure of the solution set can also be seen between
p sufficiently close to 2* and p sufficiently close to 2. From these results we see that the structure of
the solution set of (1.3) is very complex and strongly depends on n, §;; and p;;.

Remark 1.9. The case p;; € (2,2*) was rarely investigated in the literature and we are only aware
of the paper [50] where a synchronized positive solution for any 8 > 0 was obtained for (1.3) in the
case where n = 2, N = 3, 12 = P21 = B and p12 = p21 = q12 = @21 = 3. Again, the system considered
here is much more general and the conclusions of Theorem 1.4 are much stronger.

For (1.3) with two equations, that is, for n = 2, we now refine some of the results in Theorems
1.1-1.3 above, and we rewrite (1.3) as

—Au = pu® "'+ fupr v in RV,
—Av = pov? T BpuPz Iy in RN, (1.4)
u>0,v>0, u,v e ZH2(RY).

Again, we may assume without loss of generality that 0 < p1 < po. In the following theorem, stronger
results than those above on multiple synchronized positive solutions, exact multiplicity of synchronized
positive solutions, and uniqueness of positive solutions will be exhibited for (1.4). We first formulate
the following assumption.
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(A) For i,j € {1,2} such that i # j,

either 2u; if p; = 2,
N—2 N-2 N-2
27 Gt oy \1=Toqi fpg\ T . ®
Bi> or W(pri) 4 (?Z) 4 if4-—2 <p1<2,
_N-2_  N-2 .
or M; 4 qluj“ e if p; <4 —2%.

Note that this assumption totally consists of nine cases of combinations of p; and py depending on
either py =2, 0or 4 —2* <p; <2, or p1 < 4—2* and either po =2, or 4 —2* < py < 2, or py < 4 — 2%,
As examples, we only list the following two cases: p; <4 —2* <py=2and 4 — 2* < py,ps < 2.
Theorem 1.5. Assume N >3, u; >0, 5; >0, p; <2, and ¢; = 2* —p; fori=1,2.
(a) If fori,j € {1,2} andi # j, p; <2 and
1 N-2 qi N-—2

N2 1S5 Qi
Bi <27 % T, t it

then (1.4) has at least three synchronized positive solutions.
(b) If (A) is satisfied, then (1.4) has a unique positive solution.
(¢) Assume moreover p :=p; = ps < 2 and B := B1 = 2. We have the following conclusions.
(c1) If p:= p1 = peo, then (1.4) has exactly three synchronized positive solutions for 0 < 8 <
Bo and exactly one synchronized positive solution for B > By, where By = M%.
(co) If py < pa, then there exists By € (0,u1) such that (1.4) has exzactly three synchronized
positive solutions for 0 < B < By, exactly two synchronized positive solutions for 8 = By,
and exactly one synchronized positive solution for > By.

Remark 1.10. Let us say some words about the relationship between Theorem 1.5 and Theorems
1.1-1.3. Theorem 1.5(a) improves Theorem 1.1(a) by allowing 81 and B2 from different ranges whose
intersection is (0, 8,), where B, is the number defined in Theorem 1.1(a) and it has the following
expression for n = 2:
_ . —N=2g, ‘1—N4_2¢I7: 1'\74_2%
P el T Haooo
By allowing 1 # (2 and p; # p2, Theorem 1.5(b) essentially generalizes Theorem 1.2(d) and Theorem
1.3(c) for n = 2. Clearly, Theorem 1.5(c) refines Theorem 1.2(a), (b) and (c) in the case n = 2. From

the discussion after the proof of Theorem 1.5(c) in Section 6, we shall see that if N =8, p = % and

u1 < pz then 5y is the unique positive root of the quartic polynomial
F(B) = =278% + 1811128 — A(1f + p3) B + pini3.

For many problems in nonlinear analysis, existence of solutions of some elliptic equations can be
derived from uniqueness of positive solutions of their limit equations. To show that this general
principle also applies to the current situation and to illustrate the effect of the uniqueness result in
Theorem 1.5(b), we shall apply it to prove existence of a solution of the nonlinear Schrodinger system

—Au+Vi(z)u = pu® 4+ g—fup_lvq in RV,
—Av + Va(z)v = pgv? 71 + g—qu_lup in RV, (1.5)
u>0, v>0, u,vec 2L2(RY)

in the case where N > 5, Vi, V, € LN/2(RNV) N L2 (RN), 0 < puy < pa, pyq € (1,2], p+ ¢ = 2%, and

loc

B>0. As V1| /2@y + [[VallLv/z@yy — 0, the limit system of (1.5) is
—Au = pu® 1+ g—'f)up_lvq in RV,
—Av = ppv? Tt 4 Bya-lyp in RV, (1.47)
u>0, v>0, u,v € PL2(RY),

which is exactly (1.4) when we choose there

B qp

P1=q2=p, P2=q1 =, 51:2**, 52:27-
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Here we use the current symbols for convenience in the discussion concerning Theorem 1.6 below.
We introduce the notation

3 25T oy NN g MR 252 oy NI g MR
S LT ST P i R D TR
(N—=2)p\2-p q (N=2)g\2—¢ p
. 1 1_N=2 N-2 R 1 1_N=2 N-—2
faa = —py " et Y flor=—py T Pt

p q
and define
2*/1’23 lfN:E),p:qu:%a
* 3/2 1/2 .
2" max{u, (vV2y")/(VBm/")}, i N=5,¢=2p=4,
BO _ 2" max{la127 /221}’ it 4-2* <p,q< 27
2*max{p’127 /:1'21}’ if 1 <QS4—2* <p<27
2* max{ﬂle .[)“21}7 if 1< p < 4-2" < q< 27
2* max{fi12, fl21}, if 1<p,g<4—-2%

Since p,q € (1,2] and p + ¢ = 2*, the dimension must be N =5 if p = 2 or ¢ = 2. The dimension
can be any N > 5 if p,qg < 2. For (1.4') with 8 > $°, it can be checked that the condition of
Theorem 1.5(b) is satisfied, and then (1.4") has exactly one positive solution, which is a synchronized
positive solution according to the proof of Theorem 1.5(b) in Section 6. More precisely, by the proofs
of Lemmas 6.1 and 6.2, this unique solution takes the form (kiU, koU), where ki, ks are positive
numbers satisfying 0 < k; < (2u;)~(V=2)/4
system of algebraic equations

and are uniquely determined by w1, u2, 8, p, ¢ through the

pB
2*

qB

k! =P 4 okl =0, kb — k54 S k=0

Use | - |, to represent the standard norm in L"(RY) and S the optimal constant of the Sobolev
embedding 212(RN) < L2 (RY). Recall that
S = inf Vul2/|ulz., |VU? = U3 = sN/2.
ue@ml&N% u¢0| uly/[ul3 IVU[z = U3

Theorem 1.6. Assume N > 5, u; >0, 3> (%, p,q € (1,2] with p+ q = 2*, V1,Va € LN/2(RN) N
L2 (RN) are nonnegative functions, and

loc
N/2 _(N— _(N—
1+ k%|V1|N/2 + k%|V2|N/2 / < min il e Ha T 2 (1.6)
(k3 +k3)S R A - ’ '

Then problem (1.5) admits a positive solution.

Remark 1.11. For 8 > 8% we have 0 < k; < (2;11-)’(1\7*2)/4 as mentioned above, and then since
1 < po it is clear that (1.6) holds if

N N-2
V + |Vx 2 2
(1+ Vilwyz S‘ 2|N/2> <min{£ /;Ll) 2N—2a 2}.

I +MzT

Note that this last inequality can only be satisfied when s /p; is not large enough. However, for any
fixed N,p,q, p1, po and Vi, Vo with [Vi|n/2 + [Va|n/2 small enough, (1.6) always holds if we enlarge
BY adequately, regardless of the size of uo/u1. The reason for this is that k% + k2 can be very small if
B> B° and B° is very large (see Remark 6.1).

Remark 1.12. A result of the same type as in Theorem 1.6 was first given in [6] for scalar field
equations, which has been extended in [24] to system (1.5) with p = ¢ = 2 in dimension N =
4. Theorem 1.6 extends the result of [24] to higher dimensions N > 5. To prove the existence
result Theorem 1.6, we need the uniqueness result Theorem 1.5(b) together with some new ideas
incorporated.
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Let us briefly sketch the ideas of the proofs of the above theorems. Most arguments of our proofs are
new and are different from the methods used in the above mentioned papers. We shall prove Theorem
1.1 via the Brouwer degree theory. A synchronized positive solution (k1U, kU, --- ,k,U) of (1.3)
corresponds to a positive solution of the algebraic system f;(ki, k2, -+ ,kn) =0 (i=1,--- ,n) defined
in (2.1). For B;; (i # j) small enough, we shall find 2" — 1 mutually disjoint cuboids in (0, 4+00)™ so
that the Brouwer degree of (f1,- -, fn) on each cuboid is nonzero, which shows that (1.3) has at least
2™ — 1 synchronized positive solutions. However, for 3;; (i # j) large enough, the algebraic system
fi(k1, ko, -+, k,) = 0 may have no solution in any of those cuboids. The idea is that using the matrix
A we convert the system in (2.1) to another algebraic system g;(kq, k2, - ,k,) =0 (i =1,---,n) so
that a new cuboid can be constructed on which (g1, -, g,) has a nonzero Brouwer degree.

The idea of the proof of Theorem 1.2 is completely different. To prove Theorem 1.2(a), (b) and
(c), we shall introduce a group of algebraic equations Gs(7) = 0 and show that the number of
synchronized positive solutions of (1.3) is either equal to the number of positive solutions of a single
algebraic equation (in the case 8 > p,) or equal to the sum of the number of positive solutions of
a group of at most 2" algebraic equations (in the case S < u,). We shall then study the number of
positive solutions of these algebraic equations to achieve the conclusions. We prove Theorem 1.2(d)
by showing that any positive solution must be of the synchronized type by comparing the components
of the solution pairwise. Such an idea was first used in [47] and later generalized in [25], but still some
essential new observations have to be incorporated into the proof.

The proof of Theorem 1.3 is relatively easy. Theorem 1.3(a) is proved by studying the associated
algebraic system. Theorem 1.3(b) is obtained via an observation as in [5, Theorem 1.2]. Theorem
1.3(c) is verified using an idea from [47].

Again, Theorem 1.4(a) is proved via the Brouwer degree theory. The techniques for proving Theo-
rem 1.4(b), (c) and (d) share some similarities with the proof of Theorem 1.2(a), (b) and (c), although
the proofs are quite different in detail. Giving the functions G5 adjusted meaning, we also introduce a
group of algebraic equations Gs(7) = 0, and show that the number of synchronized positive solutions
of (1.3) is either equal to the number of positive solutions of a single algebraic equation (in the case
B < p1) or equal to the sum of the number of positive solutions of a group of at most 2" algebraic
equations (in the case f > p1). Theorem 1.4(b) and (d) are verified by showing that there is only one
equation G4(7) = 0 which has exactly one solution. Theorem 1.4(c) is established by showing that
there are at least 2/ — 1 equations G5(7) = 0 and any of them has at least one solution.

Once more, Theorem 1.5(a) and the existence part of Theorem 1.5(b) are proved using the Brouwer
degree theory. In particular, under the conditions of Theorem 1.5(b) we shall prove that the algebraic
system

k] — ki BikS =0, pokd — k3T + Bok = 0

has a solution (ki,k2) in Qg = (0, (2u1)~ N =2/4) x (0, (2uz)~ M =2/4). We shall show the following
astonishing result: Existence of a solution of this algebraic system in @4 not only implies uniqueness of
positive solutions of (1.4) but also implies uniqueness of solutions of the algebraic system itself in the
whole R* x RT. In particular, this proves the uniqueness part of Theorem 1.5(b). We prove Theorem
1.5(c) by carefully analysing properties of the four algebraic equations G4(r) = 0, s = 1,2,3,4,
depending on f.

With Theorem 1.5(b) in hand, we apply it to prove Theorem 1.6 using ideas from [6, 24]. Through-
out the paper, only Theorem 1.6 is proved via variational methods and Theorems 1.1-1.5 cannot be
obtained this way due to the lacking of variational structure.

The methods used to prove Theorems 1.1-1.4 are applicable to the following system with subcritical
exponent

{ —Au; +u; = ,Uiuzil + Z?:Lj?fi ﬁijufij_lu?” in RN, (1.7)
w; >0, u;€ H'RY), i=1,2,--- ,n, '
where N > 1, n > 2,2 <r <2 2*=+400if N =1,2and 2* = 2N/(N —2) if N > 3, u; > 0,
Bij >0, pij <r,and p;; +¢qi; =7 for i # j € {1,2,--- ,n}. We shall give results on this system and
shall discuss briefly applications of our methods to other related systems.
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Before closing this section, we give a consequence of Theorems 1.2-1.5 on exact number of solutions
of the problem
* n ii—1 i .
—Au; = ,uiuf Ly _ Z ﬂiju? / ugj in RY,
Jj=1,5#1 (18)
u; >0, u; € WEARN)NCORY), i=1,2,--- ,n.

loc

We first recall a result which is essentially due to [21].

Lemma 1.1. Assume N > 3, p; > 0, 8;; > 0, pij + ¢;; = 2%, and ¢;; > 0 for i,5 € {1,2,--- ,n}
and i # j. Let (uj,us,- -+ ,u,) be a weak solution of (1.8). Then (u1,us, - ,un) is a synchronized
solution of (1.3).

Remark 1.13. Lemma 1.1 under the additional assumptions p;; > 1 and n = 2 is proved in [21];
see [21, Theorems 3.1 and 3.2] and their proofs. The same methods yield the result in its present
generality. By Lemma 1.1, Theorem 1.2(d) is a consequence of Theorem 1.2(b) and Theorem 1.3(c) is
a consequence of Theorem 1.3(a). The reason we still keep Theorem 1.2(d) and Theorem 1.3(c) is that
their proofs given in Sections 3 and 4 work for more general systems, say for subcritical systems like
(1.7) (see the results in Section 7), while the methods in [21] for proving Lemma 1.1 is not applicable
to subcritical systems.

As a direct consequence of Theorems 1.2-1.5 combined with Lemma 1.1, we have the following
result on exact number of solutions of (1.8).

Theorem 1.7. Assume N >3, u; >0, pij =p, qi; =2* —p and B;; = B fori,j € {1,2,--- ,n} and
i # 5. We have the following conclusions.

(a) Let p < 2. If either 8 > py, or B > p, — 0g in the case p,—1 < pn where dg is some positive
number, then (1.8) has ezxactly one solution.

(b) Let p < 2. Then there exists By € (0, 1) such that (1.8) has exactly 2™ — 1 solutions for
0<pB<pp.

(c) Letp=2. If 8> 0 and B & [p1, n] then (1.8) has exactly one solution.

(d) Let 2 < p < 2*. Ifeither 0 < B <y, or 0 < 8 < 1+ 0 in the case py < ps where &y is
some positive number, or B > p1 and %2 + (1 — %)2* < p < 2%, then (1.8) has exactly one
solution.

(e) Letn=2 and p < 2.

(e1) If p:= p1 = po, then (1.8) has exactly three solutions for 0 < 8 < By and exactly one
solution for 8 > By, where g = 2(1\,_1)2%.

(e2) If p1 < pa, then there exists By € (0, 1) such that (1.8) has exactly three solutions for
0 < B < Bo, exactly two solutions for B = By, and exactly one solution for 5 > By.

Remark 1.14. The systems considered in this paper are in the cooperative case, that is 3;; > 0.
Systems with critical exponent in the repulsive case, that is 8;; < 0, have also been studied; see, for
example, [19, 20] for radial and nonradial bifurcation results.

The paper is organized as follows. We prove Theorems 1.1, 1.2, 1.3, 1.4 and 1.5 in Sections 2, 3,
4, 5 and 6, respectively. We shall give in Section 7 results on (1.7) similar as Theorems 1.1-1.4. In
Section 8 we study (1.5) and prove Theorem 1.6.

2. PROOF OF THEOREM 1.1

In this section, we assume N > 3, p; > 0, p;; < 2, and ¢;; = 2* — p;; for i,j € {1,2,---,n}
and ¢ # j. We prove Theorem 1.1 using the Brouwer degree theory. Elliptic system (1.3) has a
synchronized positive solution of the form

(k1U, ksU, - -+, knU)



10 YONGTAO JING, HAIDONG LIU, YANYAN LIU, ZHAOLI LIU, AND JUNCHENG WEI

if and only if (k1, ke, - ,k,) is a positive solution of the algebraic system
filka ko, k) = pak? 24 > Bkl TR —1=0, i=1,2,-- ,n. (2.1)
=1, j#i
For a vector solution k = (k1,ka, -+, ky) of (2.1), we call it a positive solution if k; > 0 for all i. We

denote f = (f1, f2, -+, fn). We shall first prove Theorem 1.1(a), showing that there exists 8, > 0
such that if 0 < f3;; < B« then the above algebraic system has at least 2" — 1 positive solutions. The
idea is to find 2™ — 1 mutually disjoint n-dimensional cuboids in (0, 400)™ so that the Brouwer degree
of f on each cuboid is nonzero and thus the algebraic system (2.1) has a solution in each of these
n-dimensional cuboids.

Proof of Theorem 1.1(a). First note that

1\ 1 o 1\ pi-2)
7 k,"'akif7(7) 7ki a"'ak’n):_f qu”(i)
f(l ! 21 + 2+,Z.5JJ 214
J=1,j#1
and
1\ - 1\ T 2)
fi(kly"' Jkiq, (;) Y ki, ’kn) = Z Bk (/7) * .
' =1, j#i ‘
Define
1 . - 1\ 24 1\ e (pi—2)7-1
so=qun [ 32 ()7 (50 |

From the above observation we see that if 0 < /3;; < B, then

flke () T k) <0< Sl ,(;)Nﬁ... E) (2:9)

2p, i

N—2

T | with j #4 and all i = 1,2,--- ,n. This implies the Brouwer degree

for all k; € (0, (5-)
deg(f,€,0) =1,

where () is an n-dimensional cuboid defined as

=TT (D)),

Thus f(k) = 0 has a solution in . In the following we assume that 0 < §;; < B for i # j.
Let 1 < v < n—1. There are C} = #ly), different ways to decompose the index set I :=

{1,2,--- ,n} into two disjoint nonempty subsets I; and I5 so that the first subset I; has v indices. For
each of these decompositions, we prove that the algebraic system (2.1) has a solution (k1, ko, -+ , ky)

so that k; € (0, (2%1_)1\2172) if i € I while k; € ((2%“)1\14727 (ML)¥) it § € Io. If this is the case, then
the algebraic system (2.1) has

1+Cp+Chd--+Cpt=2" -1

positive solutions. Therefore system (1.3) has at least 2 — 1 synchronized positive solutions.
Without loss of generality, we assume that I; = {1,--- ,v} and I = {v + 1,--- ,n} and we prove
that the system has a solution in the n-dimensional cuboid

o =TT () )< I (G 7 G 7))

=1 1=v+1
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N-—2

T ] fori=1,2,---,vand k; €

for some € > 0 which will be specified next. Let k; € [e, (ﬁ)
[(ﬁ)% Nfz]fori:y—i—lf-qn. If 1 <i<vthen

()

n
fi(k17"' 7k’i—1767ki+17"' 7k7l) :,1”62*72—'- Z Bijk?ijepij72_]‘
=1, js#i
1 N—-2

Qin
> Bu(gm) e m10 @3

for € > 0 sufficiently small, since k,, > (i)¥ and p;, < 2. Using (2.2) and (2.3), we see that
deg(f,21,0) = (—1)".
This implies that f(k) = 0 has a solution in ;. O

Now we turn to prove Theorem 1.1(b). In this case, it is not possible to find a positive solution of
(2.1) in any of the n-dimensional cuboids constructed above. Indeed, it seems to be impossible to find
an n-dimensional cuboid on which f itself has a nonzero degree. The idea to prove Theorem 1.1(b) is
that we use the inverse matrix A of B = (8;j)nxn to convert system (2.1) into a new system g(k) =0
so that an n-dimensional cuboid on which g has a nonzero Brouwer degree can be constructed.

Proof of Theorem 1.1(b). Let ¢ = 2* —p. Then ¢;; = ¢ for ¢ # j. Using the inverse matrix
A = (aij)nxn of B = (Bij)nxn, we write system (2.1) as

(kT kL, kDT = A(kf_p,kg_p,u- )2,

i n

T

where (c1,c¢o, -+ ,¢,)" means the transpose of a vector (¢1,ca,- - ,¢,). Define

gi(kl,kz,-..7kn) ::kg—Zaijk?_P7 i=1,2,~--,n.
j=1

Then we convert (2.1) into

gi(ki, ko, ky) =0, i=1,2--- n. (2.4)

Since ¢ = 2* —p > 2 — p, we can choose T' > 0 sufficiently large such that, for all k; € (0,T] with
J#1,

gi(kla"' 7ki—1;T7ki+17"' akn) Z Tq - (Zaij)Tzip > 0

j=1
Let € € (0,T). Since p < 2, a;; > 0 for i # j, and Z?Zl a;; > 0fori=1,2,--- ,n, we have

gi(ky, - kic1, 8 kigr, o k) <€ — (Zaij>€27p <0,

j=1
for all k; € [e,T] with j # ¢, provided that ¢ is small enough. Set g = (g1, ,gn). Then
deg(g, (¢,7)",0) = 1.
Therefore, (2.4) has a solution in (g, T)™. O
In the following two propositions, we provide some examples to illustrate nature of the condition
on the matrix B in Theorem 1.1(b). The first proposition is for any n but only for 5;; close to a single

number, while the second proposition is for more flexible 3;; which may be close to different numbers
but only for n = 3,4. One may give more examples in this direction.

Proposition 2.1. Let 8 be a number such that 5 > p,. There exists 6o > 0 such that if |5;; — B] < do
for i # j then the matriz B = (Bij)nxn has an inverse A = (a;j)nxn such that

n
a;; >0 fori#j and Zaij>0f0ri=1,2,---,n. (2.5)

j=1
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Proof. Replace f;; (i # j) in B with § and denote the new matrix by B*. Since 8 > p,, we have
n n B
—(1+> )
Then B* has an inverse matrix A* = (a;‘j)nxn and a direct computation shows that

0 I (-5

An(:ula,uQa o Mun) = det(B*) =

i} An(/ﬂaﬂQ,"' 7Mn) s 1fz7é],
a;; =
An—l(,ulv"' s Mi—1, Mi41,° " a,un) ifi—=
Ap (1, p2y e s ) g

Here, the product [];_; 4 (1
ai; >0 for i # j and

r — B) is understood to be 1 if n = 2. By this expression, we have

zn: _ H?:m;ﬁ(ﬂ*#j)

r = >0,
! ‘An(/jflaﬂ%"' »Nn)|

j=1

fori=1,2,--- ,n. The result follows by continuity. O

The proof of Proposition 2.1 also shows that if all 8;;’s (i # j) are a single f and if 0 < 8 < s
then the elements off the main diagonal of the inverse matrix A of B are all negative; this is in sharp
contrast with the case 8 > u,.

The formula for E shows that ZJ = L for 3 sufficiently large and for alli = 1,2,--- ,n

=1 z]
By the proof of Theorem 1.1(b), for any e and T such that
N—2 N—2
4 4
O<e< 1r<r111£1n2a” < lrgiana” <T,
we have
Gi(k1, - kic1 e, ki1, kn) <0 < gi(ky, - ki 17T Kiv1,--+  kn).

For f;; close to 8 with 8 being sufficiently large, since ZJ 1 Gij ﬂ for all ¢, if (k;l, k‘g ,kn) is any
positive solution of the equation g(ki, ka2, - , kn) = 0 then it must be that k; ~ =71 * for all 4. This
justifies the statement before the proof of Theorem 1.1(b) that under the assumptions of Theorem
1.1(b), it is impossible to obtain a solution (k1, ks - - - , ky,) of the equation f(ki, ko, -

cuboids constructed in the proof of Theorem 1.1(a).

,kn) =0 in any

Proposition 2.2. A matrixz which is sufficiently close to any of the three matrices

pr B B
(2 B oo g | {07l A)
B, By s B2 > p2 + p3,
o P B B
| B ope B2 B . B1 > max{pu1, B2},
(b) b= Bi B2 us Bo with { B2 > max{ua, ps, ta},
Br B2 B2 4
A 1 2 ma{ . ),
(C) B = 61 Bl s ﬁB with BQ > K1 + K2,
Br Br B3 pa Fs 2 s + 14

has an inverse A = (a;j)nxn such that

ai;; > 0 fori#j and Za’“ >0 for all 1.
J
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Proof. By elementary but tedious computations, it can be verified that a matrix B in any of the
three forms (a), (b), and (c) has the required property. Then its small perturbation has the same
property as continuity shows. O

From Proposition 2.1 we see that if all §;;’s (i # j) are a single j, then the inverse A of B exists
and satisfies (2.5) for 8 suitably large. But if §;;’s (¢ # j) are not the same, except being suitably
large they generally have to satisfy additional structural conditions to guarantee that the inverse A
of B exists and satisfies (2.5); this is illustrated in Proposition 2.2.

Let the structural conditions for the three matrices B considered in Proposition 2.2 be satisfied. It
can be proved that if 3; is sufficiently large with all the other entries being fixed then Z;'L:1 aij ~ é
for all i. Therefore, for the matrices B considered in Proposition 2.2 with 81 being sufficiently large,
any solution of the equation f(ki, ke, - ,k,) = 0 cannot be obtained in any cuboid constructed as in
the proof of Theorem 1.1(a).

3. PROOF OF THEOREM 1.2

In this section we always assume that N > 3, u; > 0, p;; = p < 2, g;; = 2* —p and B;; = § for
i,j € {1,2,---,n} and i # j. Denote ¢ = ¢;; = 2* — p. Note that (k1U, koU,--- ,k,U) is a positive
solution of (1.3) if and only if k; > 0 and (ki, k2, - , ky) is a solution of the system

:uikiz*il—’_ﬂkfil Z k;lzk’m Z:172a Uz

Jj=1,j#i
Letting ¢; = k!, in order to study the number of synchronized positive solutions of (1.3) we are led to
study the number of solutions (¢1,ta,-- - ,t,) with ¢; > 0 of the nonlinear algebraic system
n 2-p
piti+ B D> ti=t,", i=12-n (3.1)
=1, i

Indeed, the number of synchronized positive solutions of (1.3) is equal to the number of positive
solutions (t1,ta, - ,t,) of (3.1).

To study the number of positive solutions of system (3.1), we convert it into another algebraic
system with extended number of equations. For simplicity of notation, we denote

2-p 2-p q+2-2°
o= = = .

q 2 —p q
Then o € (0,1) and (¢1,t2,--- ,t,) is a positive solution of (3.1) if and only if, for some 7 > 0,
(t1,ta,- -+ ,tpn,T) is a positive solution of the nonlinear expanded algebraic system with n+1 equations
{ t?+ﬂ(5_ﬂi)ti27—7 i:1,2,-~,n, (32)
6 Zi:l ti =T.

In view of the above reasoning, we have proved the following lemma.

Lemma 3.1. The number of synchronized positive solutions of (1.3) is equal to the number of positive
solutions of (3.2).

We now show that the number of positive solutions of (3.2) is equal to either the number of positive
solutions of a single equation (in the case 8 > u,,) or the number of positive solutions of any one of a
group of at most 2™ equations (in the case 5 < p,). To facilitate our further discussion, we introduce
some notations. Denote

fi(t):ta—i-(ﬁ—,ui)t, i=1,2,-~-,n.

If 8 > py then g > p; for all 4 since gy < po < --- < pp. This case is simple. For each i, f; is
strictly increasing from (0, +00) onto (0, +00) and f; has an inverse function h; : (0, +00) — (0, +00).
Then f;(t;) = t¥ + (8 — pi)t; = 7 if and only if h;(7) = ¢; and the number of positive solutions of
system (3.2) is equal to the number of positive solutions of the single equation

ﬁz hi(r) =71, 7€ (0,+00). (3.3)
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TA

i

FIGURE 1. The case p < 2 and 0 < 8 < p;

The case 8 < u, is far more complex. In this case f,, achieves its maximum

—a _ [(2=p)/)

('u”_ﬁ)li (tn — B)

(N=2)(2—p) (N—=2)q
1 —

(2=p)/g) =]

(N=2)(2=p)
4

A=AB) =

at
(N—2)q
4

r=1) = (5)" = (o)

fn is strictly increasing in (0, 7] and strictly decreasing in [T',4+00). For each 7, there exists uniquely

a number 77 such that
0<T/<T, filT)=A4,

and that fi[o,7) is strictly increasing from (0,7}] onto (0, A]. We denote the inverse function of
il by hi = (0,A] — (0,T]]. Note that we have given h; different meanings, which shall incur no
confusion. We shall use other symbols like this. If 8 < u; for some i then there exists uniquely a
second number T such that

T S 711'//7 fz(Tzu) = Aa
and that fi[[77 s,) is strictly decreasing from [T}’,5;) onto (0, A, where

= (Nz2)q
o= <Nz’1—ﬁ) :(Ml—ﬂ)

In this case we denote the inverse function of fi|(7/ s,) by ki : (0, A] — [T}", S;). Clearly, T}, =T}/ =T,
each h; (i =1,2,--- ,n) is well defined, but k; is well defined if and only if 8 < u;. For 0 < 8 < u;,
the graphs of f, and f; are illustrated in Figure 1.

Let 7 > 0 be the smallest integer such that 8 < p;y; and k the smallest integer such that pp4q =
o= pp, with k > j. Let (t1,ta, -+ ,tn, T) be a positive solution of (3.2). Then

0<7=fultn) < Igggfn(t) = A4,
t; = hi(r) € (0,T]] for i = 1,2,---,4, and either ¢t; = h;(r) € (0,T]] or t; = ki(7) € [T}, S;) for
i=j+1,7+2,---,n. Note that for j+1 <i <k and 7 € (0, A4)
hi(T) < hi(A) =T, <T <T] = ki(A) < k;(7),
and for k+1<i<nandr7e(0,A)
hi(t) < hi(A) =T, =T =T, = k;(A) < ki (7).

The index set {j + 1,5 + 2,--- ,k} has 2877 subsets which we mark as Ji,Jo, -, Jor—j. We
understand that this index set is the empty set if £k = j. Let ¢* be the number of J; for which the
equality

B Y h(A)+BY k(A=A (3.4)

i€I\Js i€,
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holds. Recall that I = {1,2,--- ,n}. Then o* is the number of positive solutions (t1,--- ,t,,7) of
system (3.2) with 7 = A. We label with I, I5,-- - , Ion—; the 277 subsets of the index set {j + 1,5 +
2,---,n}. For s =1,2,--- 2777 let o4 be the number of solutions of the equation

B hi(r)+BY ki(r)=7, T€(0,A). (3.5)

i€\, iel,

Set o** = Zi;lj os. The number of positive solutions (¢1,--- ,¢,,7) of system (3.2) with 7 € (0, A)
equals o**
We summarize the above conclusions in the next lemma.

Lemma 3.2. (a) If B > pn then the number of positive solutions of system (3.2) is equal to the
number of solutions of the single equation (3.3).

(b) If B < pn, and j > 0 is the smallest integer such that B < pji1 then the number of positive

solutions of system (3.2) equals o* +0o**, with o* and o** being defined as above via equations

(3.4) and (3.5).

We have seen that to study the number of positive solutions of system (3.2) is equivalent to study
the number of positive solutions of (3.3) (if 8 > u,) or to study the number of positive solutions of
(3.5) plus the number of J; satistfying (3.4) (if 5 < py,). We shall fulfil this task with a series of lemmas
in what follows and prove at appropriate stages Theorem 1.2(a), (b), (¢), and (d), respectively.

Lemma 3.3. If 8 > u,, then (3.2) has a unique positive solution.

Proof. Since 8 > u,, by Lemma 3.2(a), the number of positive solutions of system (3.2) equals the

number of solutions of the single equation (3.3). Since 0 < a < 1 and lim,_,o+ hil(/a) = 1, we have

By hi(r) < 7 for T > 0 sufficiently small. If 8 > 1, then lim, o 227 = 1 and if 8 = p,
then lim, 1o h%m = lim7_>+oo7—cl" = +o00. In either case we have 8> 1 | h; ( ) > 71 forT >0
sufficiently large. Then we see that (3.3) has a solution. Set G1(7) := 8 ;| hi(t) — 7. Since for

€ (0, +00),

:ﬁ;hi( —Lﬂz e +5 o
and h$(7) + (B — pi)hi(T) = 7, we see that
RS 1
>Bzha1 +ﬂ m_1:;zhi(r)—1=;c¢1(r).

i=1

This implies G} (7) > 0 when G1(7) = 0. Therefore (3.3) has a unique solution and (3.2) has a unique
positive solution. O

Lemma 3.4. For any 8 > 0, (3.2) has a positive solution.

Proof. If 8 > u, then the result follows from Lemma 3.3. Now we assume 0 < 8 < p,. Then all
the functions h; : (0,A] — (0,77], i = 1,2,--- ,n, are defined. Set Gy(7) := B> ., hi(r) — 7 for
€ (0, 4]. If G1(A) = 0 then we are done since o* > 1. If G1(A) > 0 then the equation G1(7) =0
has a solution in (0, A) since G1(7) < 0 for 7 > 0 sufficiently small as seen in the proof of Lemma 3.3.
In the remaining case G1(A) < 0, we set Ga(7) := Bzﬂz_l hi(1) 4+ Bk, (1) — 7 for T € (0, A]. Since

n—1
=B hi(A) + Bka(A) — A = BZh —A=Gi(A) <0
i=1
and since
lim Ga(r) =S, >0,
T—0t1

the equation Go(7) = 0 has a solution in (0, A). This shows that if G1(A) # 0 then for at least one s,
(3.5) has a solution. In summary, (3.2) has a positive solution for any 5 > 0. O

Proof of Theorem 1.2(a). The result follows from Lemmas 3.1 and 3.4. O
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The next lemma shows that the region of 5 in which (3.2) has a unique positive solution as concluded
in Lemma 3.3 can be enlarged if pu,_1 < tp.

Lemma 3.5. Assume pn—1 < B < py, and

1 (N=2)g _ ¢
57 4 —p)

Then (3.2) has a unique positive solution.

1
1
. (3.6)
1 Hrn — [

1=

Proof. Let G1(7) and G2(7) be defined as in Lemma 3.4. As in the proof of Lemma 3.3, we have

) > 1Ci(r), Te(0,4). (3.7)
Note that )
TR - B B N
Caln) = 2 Py By B (0-4)

i=1
and that ah$ ™ (1) + 8 — p; > 0 and ak2 = (1) + 8 — pn < 0. For 7 € (0, A), since hi(7) < hn (1) < T
for 1 <i<n-—1and k¢ (7) > p, — B, and since 7> + 3 = p,,, using the assumption we see that

B 8

SR il ey iy REEL (38)

Since fin—1 < < iy, there are only two equations in the form of (3.5): G1(7) = 0 and Ga(7) = 0,
€ (0,A). Clearly G1(A) = G2(A). If G1(A) = G3(A) = 0 then ¢* =1 and by (3.7) and (3.8) the
two equations G1(7) = 0 and G2(7) = 0 have no solution in (0, A). If G1(A) = G2(A) > 0 then o* =0
and by (3.7) and (3.8) again the equation G1(7) = 0 has a unique solution in (0, A) while Go(7) =0
has no solution in (0, A). If G1(A) = G2(A) < 0 then ¢* = 0 and by (3.7) and (3.8) once more the
equation G1(7) = 0 has no solution in (0, A) while G2(7) = 0 has a unique solution in (0, A). This
implies, by Lemma 3.2(b), (3.2) has a unique positive solution. O

Note that assumption (3.6) holds if 5 < u, and f§ is sufficiently close to u,, and in particular if

n—1 -1
un—@ <Z(Hn_/1'i)_l> < B < fin
=1

Proof of Theorem 1.2(b). The result follows from Lemmas 3.1, 3.3 and 3.5. O
The next lemma gives a multiplicity result on positive solutions of (3.2).

Lemma 3.6. If 8 < py and

(N-2)(2-p) o _(-2) R N 2 — py\ S
Bl —B) " Y =) < () (=50 6
i=1 q q
then (3.2) has at least 2™ — 1 positive solutions.
Proof. For the 2™ subsets I, I5,-- - , [on of the index set [ = {1,2,--- ,n}, we assume I} = ) so that

I, #0for s#1. For s=1,2,---,2", define
Go(r)=8 > hi(r)+ B> ki(r)—7, 7€ (0,A]
ISTAVE i€l
Since 8 < p1 < pg < -0 < py, for 7 € (0, A] we have hy(7) < ho(r) < -+ < hy(7) < T and

k1(1) > ka(1) > -+ > kn(7) > T. Then for any s, by (3.9),

Go(A) <BD ki(A)—A<Bd S —A<0.
i=1

i=1

For 2 < s < 2", since I # () we have

lim G.(r) =88 >0.

—0t
T i€l
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Therefore for s = 2,3,---,2", G5(7) = 0 has a solution in (0, A). That is, for s = 2,3,---,2", (3.5)
has a solution and os > 1. This implies that (3.2) has at least 2" — 1 positive solutions, since for
81 # $2, the two equations G, (7) = 0 and G,,(7) = 0 give different solutions of (3.2). O

Assumption (3.9) holds for 8 > 0 small enough. In the following two lemmas, we give two different
types of conditions both of which guarantee that (3.2) has exactly 2™ — 1 positive solutions.

Lemma 3.7. If § < 1 and there exists v € (0,1) such that

Qg e 2 pyB5I-1 g py g
Blpn — Z <v(( - ) ( p ) ) (3.10)
" 1 (N -2)(2-p)
B(y*4/[(N712)(2*P)] -1 4 £ ) < P, (3.11)

then (3.2) has exactly 2™ — 1 positive solutions.

Proof. Let G5 be as in the proof of Lemma 3.6. For T € [vA, A], by assumption (3.10),

ﬁiki(T) <B§n:5i <vA<T
i=1

i=1
This implies that Gs(7) = 0 has no solution in [vA, A] for any s = 1,2,---,2" and that G1(7) =
B> hi(t) — 7 = 0 has no solution in (0, 4] since Gi(7) < 0 for 7 > 0 small, G1(4) < 0, and
G(1) > LGy (7) for 7 € (0, A).
Now assume 7 € (0,vA). For s =2,3,--- ,2" I, # () and

=02 hal()+ o> ki (r +ﬁ .

i€I\I i€l

We have ah$ (1) + B — p; > ahS (1) + B — p, > 0 for i € I\I; and 0 > ak? (1) + B — p; >
—(1 — a)(pn, — B) for i € I,. Inserting these estimates into the formula for G (7) yields

m-vs 8
ahy N () +B—pn (L=a)(pn—=P)
since the first summation in the expression of G%,(7) has at most n—1 terms. Use ah®~(7)+8—pu, > 0

and h&(7) + (8 — pn)hy(7) = 7 to deduce that, for 7 € (0,vA), hy(7) < (Z5)V* < (£24)V/. Then,

l—o

Gi(r) <

using the expression of A, we have ah®~1(7) + 8 — p,, > (1/an1 —1)(pun — B) > 0. By assumption
(3.11), we then see that for 7 € (0,vA) and s =2,3,---,2",

m-18 8
W =D (n—B) (L= a)(pn —B)
Since G4(rA) < 0 and lim,_o+ G5(7) > 0, each equation G4(7) = 0 has exactly one solution in
(0,vA). This implies that (3.2) has exactly 2" — 1 positive solution. O

Gi(T) < —-1<0.

The assumptlons of Lemma 3.7 are satisfied for 8 > 0 sufficiently small, and in particular, for § > 0

such that < Ly, § < 20020ty and
~1
92 9 _ P (N— 2)r1 | (N=2)q n 1 7(N22)r1
’ (55 (- L) |
B‘(N—Q)(Q—p)( q ) N ; i ok
Lemma 3.8. If 8 < uq,
(N ~2) _ W2 2 — p\ -1 2 — py\ X
Bl - 35 S T
n Z p .

and

- —2)qB
Zz:; X1 ﬂ ,un - ﬂ) S 17 <313)
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where

_2-p 4 T [, _ _¥=2)g e Tom '
Xi(B) == T<M> [5 ;(Ng - B) } — (s — B),

then (3.2) has exactly 2™ — 1 positive solutions.

Proof. Let G, be as in Lemma 3.6. If i < j and 7 € (0, A) then ah® (1) + 8 — p; > ah?il(r) +
B—pj>0and —(1 —a)(p, — B) < ak? (1) + B — p; < 0. This implies, for s = 2,3,---,2" and
€ (0,4),

B

<BZ ahf™H(r +ﬁ i (1—a)(un—ﬁ)_1'

For any s, by assumption (3.12),

A) gﬁzn:ki(A)—A:ﬂzn:Ti”fA<6zn:SifA<O.
1=1

=1 i=1

This implies in particular that G1(7) = 0 has no solution in (0, A] and for s = 2,3,--- ,2", G4(1) =0
has a solution in (0, A). For s =2,3,---,2",if 7 € (0, A) is a solution of G4(7) = 0 then

=83 T+ 83 k() < B8 =Y (-
=1 i=1

ieI\IS el

Since ah® (1) — (s — B) > 0 and h¢ (1) — (i — B)hi(T) = 7, we have

hi(T) < (1 - a)l/a <(1—a)” W/ <5i(ﬂj - 5)7ﬁ)1/a~
j=1

j=

This estimate implies ah$ (1) — (u; — 8) > xi(8). By assumption (3.12) again,
xi(8) > a(l — a) a[ﬁz ] * — (n — B) > 0.

Then we have ah® (1) — (; — B) > x:(8) > 0. Now, for s = 2,3,--- ,2" and 7 € (0, A), if G4(7) =0
then using (3.13)

N
ZRDory: Rl oy

-1<0.

This implies, for s = 2,3,---,2", there exists exactly one 7 € (0, A) such that G4(7) = 0 and (3.2)
has exactly 2™ — 1 positive solutions. O

All the conditions of Lemma 3.8 are met in particular for 8 > 0 such that § < %,ul, B < ﬁun,

and
N—2)q n _ (N—2)q -1
3< (N_;)l@_p)(qu)( - (2“”)17(1\,;2)(1 (Z (ui—%m) S ) |

=1

since, according to the last inequality, it can be checked that x;(8) > p, for all i.
Under the assumptions of Lemmas 3.7 and 3.8, we have proved that for s = 2,3,---,2" and
€ (0,A4), G(1) < 0if G4(7) = 0. The uniqueness of solution of the equation G4(7) = 0 is then
a consequence of that fact. We remark that it is generally impossible to have G,(7) < 0 for all
7€ (0,A). In fact, if n € I\I; and pp—1 < pp, then lim,_, 4— G%(7) = +00, since as 7 — A~, the term
Bh!, (1) in the expression of G%(7) tends to +oo and all the other terms tend to finite numbers.

Proof of Theorem 1.2(c). The result follows from Lemmas 3.1, 3.6, 3.7 and 3.8. O
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Proof of Theorem 1.2(d). Now we prove the uniqueness result. We have 8 > u” > u' by the
assumption. Then according to Lemma 3.3, (3.1) has a unique positive solution which we denote
by (ti,t2, - ,tn). Let (u1,u2, - ,u,) be any positive solution of (1.3) and set k; = t;/q and U; =
k:j_luj. Existence of (uy,uz, - ,uy,) is guaranteed by Lemma 3.3. Since p; = -+ = p, = ¢’ and
a1 =+ = loy, = p’, it is easy to see that t; = -+ = ¢, and t,,01 = -+ = tg,. Therefore,
ki = = ky and kyqp1 = -+ = ko In order to see that (up,us, -+ ,u,) is the unique positive
solution of (1.3) it suffices to prove that Uy = Uy =---=U, =U.

We first prove that Uy = -+ = U,, and U,,,41 = - -+ = Usyy, and for this we only prove Uy = U,
since the proof of other equalities is the same. Suppose U; # Us and assume 2 = {z € RN |U;(x) >
Us(z)} # 0. For convenience, we denote p := p’ and t := ¢ = t3. Then U; and U, satisfies

AU, =t~ (uth 14 BUPTUd + BZt UP 1U‘J)
—AU, :t*“(;utU2 4 BtUTUY +BZt uru )

Multiplying the first equation with Us and the second equation with U; and taking integral on 2
yields

—AU)Uy + (AU)U| =t~ | (U ~1U, + ptUP~'ud™ — U2 —tu, — ptudttor—!
1 2 1 2
Q Q
HETOBY /Q UiULUs (Uf’Q - U§”2) SN +D.
j=3
For the left hand side, we have

on on
There are two terms on the right hand side. The second term I» < 0, since p < 2 and U; > U, imply

LHS:AQ(—aUl+6U2>U1>0

the integrand of I is negative on 2. To estimate the integral in I3 we split and recombine the four
terms of its integrand as

ptU? ~1U0y + ptUP~rUdt — u? vy — prudtturTt
= U7 U5 (UF = UF) + (B + 0} U™ + et U~ (U7 = Uf) = (B + v U8,
Then, since Uy > Us on 2 and p < ﬁzﬂ, rearrange the terms on the right hand side and factorize to
see that
ptU% ~1U, + ptUP~ud™ — u? 'y — pudtturT!

Lot ; “t(U{HlUQ + UlUg“) (U{”2 - U§’2) <0.
Thus I; < 0. Then we arrive at a contradiction 0 < I1 + Iy < 0. Therefore Uy = --- = U,, and
U77L+1 == Uzp.
Now we prove Uy = U,,,+1. Since we have proved Uy = --- = U, and Ujp,41 = -+ = Uap, Uy and

U1 satisfy
—AUL =17t + (m = 1)B)UT ' + mpBty “tmr UL ULy,
~AUn g1 =ty 3 (0 + (m = DAL S+ mBtit, 5 UL
If Uy # U1, we may assume Q = {x € RN |Uy(z) > Upy1(x)} # 0. Then taking integral on Q we

have

/ [(~AU)Umi1 + (AUps)UL] = /
Q

(B + (m = DBYUE " Uns + Bt i U UL,
Q

— e (W (m = DAUL T = mBht, S, U RS, ).
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For the left hand side,

oUr  OUpi
= > 0.
LHS /BQ ( on * on )Ul 20

Denote by G the integrand on the right hand side and split the four terms and recombine them as
G =t (' + (m = 1)B) UL U (UF = Uty ) + U7 UREL
i (1 + (m = DAL, (UF = U8 ) - UF O,
since by (3.1) ¢; and ¢, satisfy the equations
(W + (m = 1)B)t; ™ + mBty “tims1 = 1= (1" + (m — 1)B)t, 4 +mpBtit, %, (3.14)

From the facts that p/ < p” < 8 and (8 — p')t1 +1¢ = (8 — ') tms1 +t5, 41, it can be deduced that

t1 <tmy1 and (B — " )ty < (B — 1)t (3.15)

Now using the assumption in Theorem 1.2(d) we see that 5% — ((m+ 1) — (m — 1)p') B+ p/'p” > 0,

that is
prt(m-1)5 _f—u"
e ﬂ 7 (3.16) |eq3.16

Combining the second inequality in (3.15) and (3.16) we have

(1" + (m = 1)B)tmi1 < mpty. (3.17)

This together with the second equality in (3.14) implies (p” + (m — 1)) t}{fl < 1. Since y/ <y and
t1 < tm, by (3.17) we have (u' + (m — 1)5)751 < mBtm+1, which combined with the first equality in
(3.14) leads to (u’ +(m— 1)6)1?}70‘ < % Inserting these inequalities into the expression of G, we have
on ()

G<-> (U'J“Um+1 + UlUfnJ;ll) (U{”Q - Uﬂ;ﬁ) <o0.

But this gives a contradiction 0 < fQ G < 0. Therefore, Uy = Uy = --- = U,. Then Uy = Uy =
U,, = U and uniqueness of positive solutions of (1.3) follows. O

4. PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3 and we always assume N > 3, u; > 0, p;; = 2, ¢;; = 2*—2, and
Bij =B fori,j € {1,2,--- ,n} and i # j. Recall that p1 < po < -+ < py,. Note (k1 U, kU, - -+, kpU)
is a synchronized positive solution of (1.3) if and only if (ki, ks, - ,ky) is a positive solution of the
algebraic system

ki B D K= =12
=1

Proof of Theorem 1.3. (a) We write the above system in the following form

L+ (B— i)k 2 = 14 (B—p2)ky > = - = 14+ (B— o)k 2 = Zk? 2o @)

If (4.1) has a positive solution then it has to be that 8 > pu, or 0 < f < pj or f = p1 = pn.
Conversely, if 5 > p, or 0 < 8 < p1, then (4.1) has a unique positive solution (kq, ko, - , k,) and
—(N-2)

_(w_w(jzzﬂ_ﬂuj-l)) -

and if 8 = p1 = p, then any (k1, ks, ,k,) with positive components satisfying 85"
is a solution of (4.1).

(b) Since 1 < 8 < py, and py # py, we may assume for some i € {1,2,--- ,n— 1}, pu; < 8 < g1
and either u; < B or B < piy1. If (1.3) has a positive solution (u1,us,- - ,u,), subtracting the

|
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(i 4 1)-th equation multiplied with u; from the i-th equation multiplied with ;1 and taking integral,
we have a contradiction

0= [ (05 = 802 i+ (8 piJundi") <.
RN

(c) Let (uy,usa,- -+ ,up) be any positive solution of (1.3) and (k1, k2, - , k,) be the unique positive
solution of (4.1). Set U; = k%ul and t; = k? ~2. Tt suffices to prove that

Uh=Uy=---=U,=U.
If not, we may assume Q = {x € RN |Uy(x) > Us(x)} # 0. From the first two equations of (1.3)

—AU; =ty UF 71 + Btaln U 2 + B0, ;U U 2,
— AUy = ‘UQtQUQQ -1 +,6t1U12 _2U2 =+ 52?:3 t]‘UQUvj2 _2,

we have

/ ((7AU1)U2 =+ (AUQ)Ul) = / (,UlltlUly_lUQ =+ ﬂtQUlUQQ*_l — [LQtQUlUQQ*_l — ﬂtlUf*_1U2>.
Q Q

Since 8 > u1, this leads to a contradiction

aZjl aUQ . .
OgL;(7?%“%EE>MFiéhﬁhfﬂﬂhmaﬁ 2*U§2)<&

The proof is finished. U

5. PROOF OF THEOREM 1.4
In this section we assume N > 3, u; > 0, 2 < p;; < 2%, pij + ¢i; = 2%, and 5;; > 0.

Proof of Theorem 1.4(a). Consider the algebraic system in (2.1):

n
fi(k'l,kg,' . ,kn) = Mzk? —2 + Z Bw‘k’fﬁiQk?ij —1= 0, 1= 1,2,--- ,n.
J=1, 570

Since 2 < p;; < 2* and p;j + ¢qi; = 2%, if € > 0 is small enough then
fi(k1>"' 3 €yttt 7]{/’”) <0< fi(k1>"' au;(N72)/47"' 7kn)
for all k; € [, ,uj_(N_2)/4} with j #4 and all i = 1,2, --- ,n. This implies the Brouwer degree

deg(f,Q,0) =1,

where  is an n-dimensional cuboid defined as Q := [];-_; (5, /Li_(N_z)M). This yields a synchronized

positive solution of (1.3). O

For the rest of this section, we assume in addition that p;; =p € (2,2%), ¢;; =¢=2"—p, i; =08
for i,j € {1,2,--- ,n} and ¢ # j. We shall use the same symbols as in Section 3, but with adjusted
meanings.

Recall that o = 2%1’. Unlike the number a € (0,1) in Section 3, here « ranges from —oco to 0.
As we have seen in Section 3, the number of synchronized positive solutions of (1.3) is equal to the
number of positive solutions (t1,- -+ ,t,,7) of (3.2). As in Section 3, define f;(t) for ¢ € (0, +00) and
i1=1,2,-- ,n.

Recall that p1 < po < -+ < py,. If B < py then, for all 4, f; is strictly decreasing from (0,.5;)
onto (0,+00) and fi](,s,) has an inverse decreasing function h; : (0,+00) — (0,S;), where S; =
(i — ﬁ)7ﬁ = (u;i — ﬁ)’w;z)q if 8 < p; and S; = 400 if B = p;. In this case the number of
synchronized positive solutions of (1.3) is equal to the number of positive solutions of the single

algebraic equation

Gl(T)::BZhi(T)—Tzo, 7 € (0,400). (5.1)
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FIGURE 2. The case p > 2 and 8 > u;

Since G is strictly decreasing and since

lim G(7) =8 ; Si>0, lim Gi(r) = —o0,
(5.1) has a unique solution. Thus we have the following lemma.
Lemma 5.1. If 8 < uy then (1.3) has exactly one synchronized positive solution.

Now we turn to consider the case 5 > p1. In this case, f; achieves its minimum

. _ T4 (ca)TE (0= 2)/g VP 4 (p—2)/q) N2
A= 0<12 o0 hult) = (B— )= N (B — pp)(N=2)(2-p)/4

at
1

— fe=r -2 (N—-2)q/4
h= (577021) N (Q(Iﬂ)fm» -

For each i, there exists uniquely a number 77 such that
0<T;<T, fiT})=A,

and that fi[(o,7v) is strictly decreasing from (0, T!] onto [A, +00), and we denote the inverse decreasing
function of fi[(o,7s) by hi @ [A,+00) — (0,7]]. For some i, if B > p; then there exists uniquely a
second number T such that

T<T', fi(T])=A4,
and that filjr; ;o) is strictly increasing from [T}, +00) onto [A, +00), and we denote the inverse
increasing function of fi|i77 10y by ki : [A,+00) — [T}, +00). Note that T{ = T{" = T, all h;
(i=1,2,---,n) are defined, and k; is well defined if and only if 8 > p;. In addition, for 7 € [A, +00),

hn (1) <o < ho(r) < hg(T) < (A) =T

and, if 8 > p;,
k‘i(T) Z Z k‘g(T) Z kl(T) Z ]{?1(14) =T.
For 8 > pu;, the graphs of f; and f; are illustrated in Figure 2.

We define o* as follows. We denote I = {1,2,--- ,n} as in Section 2. Let j be the largest
subscript such that p; < 3, k the largest subscript such that u; = po = -+ = pp with £ < j, and
J1, J2, -+, Joi—x the subsets of the index set {k+1,k+2,---,j}. Note that the index set is empty if
k = j and we only have J; in this case which is the empty set. Define o* to be the number of index
sets Jg for which the equality

B Y hi(A)+ B ki(A)=A (5.2)

ieI\J, i€Js
holds. Note that o* is the number of positive solutions (¢1,- -+ ,t,,7) of (3.2) with 7 = A. The index
set {1,2,---,j} has 27 subsets which we label with Iy, I5,- - - , I5;. For the sake of later discussion, we
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assume I; = . For s =1,2,---,27, let o, be the number of solutions of the equation
B Y hi(n)+BY k() =7, 7€ (A+o0). (5-3)
ieI\Is i€l
Denote o** = 23]:1 0s. Then o** is the number of positive solutions (t1,--- ,¢,,7) of (3.2) with
7> A

At this point, we have proved the next lemma.
Lemma 5.2. Let > 1. Then the number of synchronized positive solutions of (1.3) equals o*+o**

We now prove Theorem 1.4(b).

Proof of Theorem 1.4(b). The result follows from Lemma 5.1 if § < p;. Now we assume pg <
B < pa. For 7 € [A,+00), define

Gi(r):= B halr) =7, ﬂZh + Bl (1) —

According to Lemma 5.2, the number of synchronized positive solutions of (1.3) equals the number of
solutions of G1(7) = 0 in [A, +00) plus the number of solutions of G3(7) = 0 in (A, +00). Note that
G1(A) = G2(A), G1(7) is strictly decreasing in [A, +00) and lim,_, . G1(7) = —oco. Since for 7 large
enough

b ror=-_tl -
B—m B—p’
we see that lim,_, o Go(T) = 4+00. We claim the existence of a dg € (0, u2 — p1) such that Go
is strictly increasing in [A,+o00) if u1 < S < py + do. If this is the case, then G1(7) = 0 has a
unique solution in [A, +00) and G2(7) = 0 has no solution in (A, +o0) when G1(A4) > 0, and vice
versa, G1(7) = 0 has no solution in [A, +00) and G2(7) = 0 has a unique solution in (A, +0c0) when
G1(A) < 0. Therefore (1.3) has exactly one synchronized positive solution for 1 < 8 < pg + dp. This
together with Lemma 5.1 concludes Theorem 1.4(b).

Indeed, for 7 € (A, +-00) and i > 2, since @ < 0 and h; (1) < hi(A) < T, we have, ah® ™ (1) +B—pu; <
aT* ' + B — p; < 0. We also have 0 < ak{ (1) + 8 — 1 < 8 — p1. Then, for 7 € (A, +00),

T g & RPN
= L T Zu T

From this estimate, it is easy to find a positive number §y such that if u; < 8 < 1 + dp then for
T € (A, +0), G5(7) > 0 and thus Ga(7) is strictly increasing in [A, +00). O

Go(T) =~

Now we prove Theorem 1.4(c). We assume 5 > p; and let j be the largest integer such that 8 > pu,;.
For s =2,---,2/, we define

T):=f Z hi(r)+52ki(r)—7', T € [A, +00),

i€\, i€l

and we consider the equation G4(7) = 0 for 7 € (A, 400). Since § # I, C {1,---,j} and for 7
large enough G4(7) ~ Ziels ﬁﬁf; — 7, we have lim,_, ;. G5(7) = +00. To achieve the conclusion of
Theorem 1.4(c), we prove that G4(A) < 0 if p > 2 and p is sufficiently close to 2. We have

=8 ), TI+8) T/ - A<npT] - A

iEI\Is i€l

We need to estimate A and T;’ and we first have the next lemma.

Lemma 5.3. Assume 2 <p <1+ 27 Then

min{l,/B8—m} <AL (6671 + 1) max{1,+/f — u1}.
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—1

Proof. Since2 <p <1+ %, we have —1 < a = 22*__1; < 0. It is easy to see that 1 < (—04)ﬁ <e®

0< (—a)ﬁ <1, and
min{1, /8 — 1} < (B — ) T <max{l,\/5 -}
Then the result follows from the definition of A. O

The estimate of T is a little more delicate. Since T}’ depends on p implicitly we write 7" = T} (p)
and we have the following lemma.

Lemma 5.4. For any v € (0,1) we have
_ v +
Tj'(p) = O((p = 2)") asp—2".
Proof. Assume 2 <p <1+ % Then (—a)” € (0,1). Since A = (T7")* + (8 — p;)T}" > (B — p;) T},

we have T} < B—luj A. Using Lemma 5.3, we obtain an upper bound for 77":

1 -1
Ty <M := 5 (e +1)max{l,v/B — i}
— My
By the Young inequality, we have
1 1
A= (T7)" + (8 = wy)T} = (r(8 = wy)T7) " (s(T7)")
1

and s = (a7

_ 1
where r = ek

Since o < 0, using the upper bound of T yields
Az rvst (B — )  ME (T
Then we have T} < 11875 (B — p) TIM T A", that s,
T < (8 = ) ™ (=) (1= (—a)) ) T ey
In view of the expression of A, we see that
AT (_a)—(—a)lf”/(l—a)(l — o) (B = Ml)(—a)lf”/(l—a)v
from which a simple computation shows that lim,_,o- A~® " = 1. Moreover,

lm (1 — (—a)?)"® e’ e — o1

a—0—

Since p — 2% is equivalent to a — 0, we have, as p — 27T,
T (p) = O((—a)") = O((p — 2)").
The proof is complete. O
Proof of Theorem 1.4(c). Fix v € (0,1). By Lemmas 5.3 and 5.4, there exist C' = C(5) > 0 and
po = po(B) > 2 such that for p € (2,pp) and s =2, ,27,
Gs(A) <npT] — A< C(p—2)” — min{l, VB =}

Then there exists p; = p1(8) € (2, po) such that for p € (2,p1) and for s = 2,--- 27, G4(A) < 0. This
implies that, for s = 2,---,27, the equation G4(7) = 0 has a solution in (A4, +o0) as G4(7) > 0 for 7
sufficiently large. Then by Lemma 5.2, (1.3) has at least 2/ — 1 synchronized positive solutions. [

Proof of Theorem 1.4(d). For s =2,3,---,27, since I # ) and k;(7) > k1(7), we have
Gu(r) =8 > hi(r)+BY_ ki(r)—7>pki(r) =7, 7€ [A, +00).

iEI\Is i€l
=T and o < 0, we see that k¢ '(7) < T*~! = % Using the assumption

Since k1(7) > k1(A)
1 2* yields ‘“Tfﬁ < p1. Thus we have, for s =2,--- 27 and 7 € [A, +00),

p2%2+( -

B
Gi(r) > Bhy(r) = [k (1) + (B = pa)ka (7)] = ka(7) (1 = k$7 (7)) > 0.
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This implies for s = 2,--+, 29, G4(7) = 0 has no solution in [4, +o0). Since G1(7) = B> 1 hi(t)—7
is strictly decreasing and lim,_, 4+, G1(7) = —oco and since
G1(A4) > phi(A) — A= Pki(A)— A >0,
G1(7) = 0 has exactly one solution in [A4, +00). Therefore, (1.3) has a unique synchronized positive
solution. 0
6. PROOF OF THEOREM 1.5

In this section we assume N > 3, u; >0, 5; > 0, p; < 2, and ¢; = 2* — p; for i = 1,2 and prove
Theorem 1.5. Let k1 > 0 and kg > 0. Then (k1 U, kxU) is a synchronized positive solution of (1.4) if
and only if (k1, k2) is a positive solution of the system

Filka ko) i= k" — k7 4 Brk =0,
1 1
it P A e (6.1)

Proof of Theorem 1.5(a). We assume p; < 2. Set for j = 1,2, a; = (Q,uj)_¥ and 7; = p;

N-—2 N-2
N-2 1-=F"a G ¢

For kg € [0, 73], since p1 +¢1 =2* and B <2777 Ty, Lo , we see that

N-—2

N—2 —
filar, ke) < —p1(2ua)” % T+ Bipy *

In addition, for ky € (0, 73],

<0,

_N=2 N—2 /0
f1(717k2)>'ui 4 (I1_M1 (2 pl):O.

We have showed that fi (a1, k2) < 0 < f1(11, k2) for k2 € (0, 72]. In the same way, we have fa(k1,as) <
0 < fa(ki1,72) for ky € (0,71]. This implies

deg((f17f2)7Qla (070)) =1 for Q:= (a177'1) X (@2,7'2)-
Then (6.1) has a solution in Q;. Since p; < 2 and ¢; > 0, for ko € a2, 72] and € > 0 sufficiently small,
fl(é,kg) = ,U,leql — 6271}1 + ﬂlkgl > O

Fix such an € > 0. Then we have fi(a1,k2) < 0 < fi(e,ka) for kg € [ag, 2] and fo(ki,az) < 0 <
fa(k1,72) for k1 € [e,a1]. Therefore,

deg((f1, f2),; Q2,(0,0)) = =1 for Q2 := (&, 1) X (az, 72),
and (6.1) has a solution in Q2. Similarly,
deg((f1, f2),@3,(0,0)) = =1 for Q3 := (a1, 71) X (€, ),
and (6.1) has a solution in Q3. Then (1.4) has three synchronized positive solutions. O

We now study existence of solutions of (6.1) in Q4 := (0, 1) x (0,a3). As an astonishing fact we
shall see that existence of a solution of (6.1) in 4 not only implies that (6.1) has a unique solution
in (0,400) x (0,4+00) but also implies that (1.4) has exactly one positive solution.

Set I, = [0, ;] and g;(t) = p;t% — t2~Pi. It is easy to see that

infgi(t)=—-1 ifp =2 (6.2)
N-—2

4 _N-—2 b 1-=7=q
: R [ - 1 4 (2 . o )
gﬁ gi(t) ol (2 — pi) if4—2" <p; <2, (6.3) |eq6.3

N2
inf gi(t) = —pi(2u) " 10 if p; < 4 — 2%, . .
tlgI{ gi(t) pi(2p) 7 ifp; <4-2 (6.4)

Lemma 6.1. Under assumption (A), (6.1) has a solution in Q4.

and
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Proof. Let ky € [0, a1]. We have
. _N=2
filky,a2) = inf gi(t) + Ba(2u2) 5
1

Using assumption (A), we see that f1(k1,as) > 0by (6.2) if p; = 2, by (6.3) if 4 —2* < p; < 2, and by
(6.4) if py < 4—2*. Now we show that f1(k1,€) < 0for k1 € [¢, a1] and for € > 0 small. We first consider
the case p; < 2. Then g;(t) < 0 for t € (0,1], g1(0) = 0, and g} (t) = p1qut 1 — (2 — p1)t17P1 <0
for t > 0 small as p; + ¢; = 2* > 2. Then for € > 0 small and for k; € [e, 1],

Ji(ki,€) < tg[lax]gl(t) + Bre® = gi(€) + Pre” = (1 + Pr)e” — €71 <0.

s X1

If py = 2 then ¢ = ﬁ. For € > 0 small and for k1 € [e, aq],

1
filk1,€) < max g1(t) + f1e® = g1(aq) + Pre®t = ~3 + B1e?t < 0.

tele,an]

The above discussion shows that there exists € € (0, min{ay, as}) such that fi(k1,€) <0 < f1(k1, a2)
for k1 € [e,a1]. In exactly the same way, we have fa(e, ko) < 0 < fo(ay, ko) for ko € [¢, as]. Denote
Q5 := (e,a1) X (¢, a2). Then

deg((fh f?)a Qia (07 0)) =-1L
Therefore, (6.1) has a solution in Q5 C Q4. O

Lemma 6.2. If (6.1) has a solution in Q4 then (1.4) has a unique positive solution.

Proof. Let us fix a solution (k1,k2) € Q4 of (6.1). Then (k1U, k2U) is a positive solution of (1.4).
Now let (u,v) be any positive solution of (1.4). Set u = k1 and v = kotp. Then (¢, ) is a positive
solution of

—Ap = ki T2 T 4 Bk TR P g in RY,

— AP = o3 Y2 1 4 Bok{kER Ppngpp L in RN,

e, € Z2VARY).

We prove that ¢ = 9. If not we may assume that Q = {x € RY | o(z) > ¢(x)} # 0. Then
/[(—Aw)w — (~Ay)y] :/ [k 207 L 4 B Rt
Q Q

. M2k§*72¢,¢2*—1 _ B2k§2k1§2*2¢%+1¢?2—1].

The left hand side is nonnegative. Denote the integrand of the right hand side by G. Since (k1, k2) is
a solution of (6.1) and since p; + ¢; = 2*, we have

G = o1 [Hlk%*_ZSOPI*Q(QOlH —I) 4 P20 4 ﬂzk%*_2¢pzf2(@qz — ) — <Pq21/1p272]-
Since (k1,k2) € Qu implies p1 k7 % < 1 and pok3 ~* < 4 and since ¢; > 0, p; < 2, we have on Q)
1
G < 5801/J [ (pP2=2 — pP2=2) 4t (P12 wpl—Z)] <o0.

We arrive at a contradiction. Then ¢ = 1) € 212(RY) is a positive solution of the equation —Au =
u? ~1. Therefore, ¢ =1 = U. O

Proof of Theorem 1.5(b). Combining Lemma 6.1 and Lemma 6.2 we obtain the conclusion of
Theorem 1.5(b). O

As a byproduct of the above discussions, we have the following astonishing result asserting that if
(6.1) has a solution in @4 then not only (6.1) has exactly one solution in @4 but it also has exactly
one solution in the whole (0, 400) x (0, 4+00).

Proposition 6.1. If (6.1) has a solution in Q4 then (6.1) has a unique solution in (0, 4+00) x (0, +00).

Proof. If (6.1) has two solutions in (0, 4+00) x (0, 400), then (1.4) has at least two positive solutions.
But this is a contradiction with Lemma 6.2. O
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N-—-2

Remark 6.1. For m > 2, let ai;(m) = (mu;)~ 7, I;(m) = (0, a;(m)), and Q4(m) = I1(m) X Iz(m).
Then

-1 if pPi = 2,
. _N—2.. N2 . o
tellril(fm) 9ilt) = _N4*2qi o (Qﬁlpl) ! if 227? <pi <2
—(m = Dpry(mp) =5 if p; < 2=
Now we assume, for ,j € {1,2} such that i # j,
either my; if p; = 2,
4 i 1= a gy Nt as if 2m=—2" <9
Bi > or m(fm) ( i ) == <pi<s
1-8=2q, N22g, . 2m—2*
or (m—1)p; * "yt if p; < ==

Then the proof of Lemma 6.1 shows that (6.1) has a solution in Q4(m). By Proposition 6.1, for all
m > 2, this solution obtained in Q4(m) must be the unique solution (k1, k) obtained in Q4. This
means that, under the above assumption, 0 < k; < «;(m). Therefore, k; (i = 1,2) are sufficiently
small if 8; (i = 1,2) are sufficiently large, since lim,,_, o a;(m) = 0.

Now we prove Theorem 1.5(c) and in this particular case we rewrite (1.4) as
—Au = pu* "' 4 pBuP~w?  in RV,
—Av = pgv? 71 4 BudvP~t  in RV, (6.5)
u>0,v>0, u,v € ZL2(RY).
Recall that we assume N >3, ug > 1 >0, >0, p <2, and ¢ = 2* — p in Theorem 1.5(c).
We first consider the case p := p; = po and prove the first part of Theorem 1.5(c). By Theorem
1.2(b), (6.5) has exactly one synchronized positive solution if 5 > p. Now we assume 0 < 8 < p.
Since p1 = us, we have

h(7) := hi(7) = ha(7) and k(1) :=ki(7) = ko(7) for 0 <7 < A.

Recall that By = M%7 a= QTTP = 722*:1;7 and

A=(a™5 —aT5)(u—p) 5, T =h(A)=k(4) =aT (u—p) T

By the discussions in Section 3, to study the number of synchronized positive solutions of (6.5) we
need to consider for 7 € (0, A] the number of zeros of the three functions

Gi(1) =2Bh(r) — 1, Gaf(7)=L(h(r) + k(7)) — 7, Gs3(7)=28k(T)—T.

We have G1(A4) = G3(A) = G3(A) = 28T — A. Using the formulas for By, T, and A, it is easy to see
that 0 < By < p and
<0, if0<pB< By,
G1(A) = G2(A) = G3(A)§ =0, if B =P,
>0, if fp < B < p.
We first show that G is strictly decreasing in (0, A]. This is not obvious since the term Sh(7) in
G2(T) is strictly increasing in (0, A] and especially lim,_, 4— h'(7) = +o0.

Lemma 6.3. G4(7) <0 for 7 € (0, A).

Proof. For 7 € (0,4), G4(1) = HfT) + K%) — 1, where H(7) = ah® " Y(7) + 8 — p and K(7) =
ak®=(1) 4+ B — p. We have
diHQ(T) =2H(7)H'(1) = 2H (1) — 1)h* 2(7)h/ (1) = 2a(v — 1)R*"2(7).

-
For 7 € (0, A), since h(r) < h(A) = T and « € (0,1), we have - H?*(1) < 2a(a — 1)T*~2. Taking
integral from 7 to A and in view of the fact that H(A) = ah® 1(A) + 8 — u = 0, we see that
—H?(1) < 2a(a — 1)T*"2(A — 7). Then

H(T) > \/2a(1 —a)Te"2(A—1) for 0 <71 < A.
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In the same way, using the facts k(1) > k(A) =T and K(7) < K(A) =0, we have

K(1) > —/2a(1 —a)Te=2(A— 1) for 0 <7 < A.
Therefore, H(7) + K(7) > 0 and

GhL(1) = —1<0 for 0 <7< A.

The proof is complete. O

Proof of Theorem 1.5(c) in the case u; = pus. By Lemma 6.3, G is strictly decreasing in (0, A].
From the discussion in Section 3, we know that G1(0) = 0, G1(7) < 0 for 7 > 0 small, G}(7) > 0
when 7 € (0, A) is a solution of G1(7) = 0, and

lim Gi(r) = lim 28 1 = +co.

T—A~ T—A~ H(T)

Moreover, G3(0) > 0, G3(0) > 0, and G is also strictly decreasing in (0, A].

If Bp < B < p then G1(A) = G2(A) = G3(A) > 0. In this case neither Go(7) = 0 nor G3(7) =0
has any solution in (0, A), and G1(7) = 0 has in (0, A) exactly one solution denoted by 71. Then (6.5)
has exactly one synchronized positive solution (h'/9(r)U, h*/49(m)U).

If 8 = fp then G1(A) = G2(A) = G3(A) = 0. In this case no equation G;(7) = 0 (i = 1,2, 3) has
any solution in (0, A). Then (T/9U, T'/2U) is the unique synchronized positive solution of (6.5).

If 0 < B < fp then G1(A) = G2(A) = G3(A) < 0. In this case G1(7) = 0 has no solution in (0, A)
and both Ga(7) = 0 and G3(7) = 0 have a unique solution in (0, A), denoted by 72 and 73 respectively.
We then conclude that (6.5) has exactly three synchronized positive solutions (h'/9(m2)U, kY/9(19)U),
(KM (1)U, Y 9(1)U), and (kY 9(73)U, kM 49(m3)U). O

Now we turn to consider the case p; < p2. By Theorem 1.2(b), (6.5) has exactly one synchronized
positive solution if 8 > ps. In what follows, we assume 0 < 8 < o and we write

1

A=APB) = (a™F —a™)(uy = f)" ™% and T =T(8) = a™= (uy — ) ™=
to stress the dependence on 3. Set, for 7 € [0, A(3)],
Gi(7) = G1(B,7) = B(ha(B,7) + ha(B,7)) =7, Ga(7) = G2(B,7) = B(ha(B, 7) + k2(B, 7)) — 7.
If B < jun, we also set, for 7 € [0, A(8)),
G3(7) = G3(B,7) = B(k1(B,7) + k2(8,7)) =7, Ga(7) = Gu(B,7) = B(k1(B,7) + ha(B, 7)) — 7.

Again we add S as an independent variable and write h;(7) = h;(8,7) and k;(7) = k;(5,7) in the
above expressions in order to emphasize dependence on § of the functions h;, k; and G;. Define for
0<fB < p

m(B) = G1(B,A(B)) = G2(B, A(B)) = B(h1(B, A(B)) + ha(B, A(B))) — A(B),
and for 0 < B <

n2(B) = Gs(B, A(B)) = Ga(B, A(B)) = B(k1(8, A(B)) + h2(B, A(B))) — A(B).

We show that both 7, and 7, are strictly increasing functions.
Lemma 6.4. n{(8) > 0 for 8 € (0, u2) and n4(B) > 0 for 3 € (0, u1).
Proof. For 0 < 8 < ji, since ha(B, A(8)) = T(8) we have n(8) = Bhi(8, A(8)) + BT(8) — A(B).
Then, since A’(8) = T(53), we see that
/ _ ahl (9}11 dA ,
m(B) = hi(B, A(B)) + B %(ﬁ,A(ﬂ)) + g(ﬂ,A(ﬂ))% + BT (B).

For later discussions, we denote, for 7 € (0, A(8)),

Hi(ﬁa’r) = ah?_l(ﬁaT) +6 — M, Kl(ﬂv’r) = akia_l(ﬂa’r) +B — M-
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A A
Gy (B,7)
Go(B,T)
mB)|--------1
A(B) T A@) T
GI(B7T) |
mB)p-=-=-=><z---
G1(B,T)
Case: B <8< pa, m(B) >0 Case: 0< B < B, m(B) <0

F1GURE 3. The graphs of G; and G»

From the equation h$ (8, A(8)) + (8 — u1)h1(8, A(B)) = A(B), we have
Oy oy dA _ T(B) — (B, A(B))

since T'(8) > h1(B, A(B)) and H1(B, A(B)) > 0. This implies 1 (8) > 0 for 0 < 3 < ug since we also
have T'(8) > 0. Similarly, we have

H(3) = ka6, 4(8) + [ 515,48 + G0, 48) 5] + 5T'(8)
and
oy Oty 44 _ T(8) ~ ki (5, AB)
5B AB) + G5 4(8) 55 = TS

Since T(8) < k1(8, A(B)) and K1(5,A(B)) < 0, n5(8) > 0 for € (0,u1) and we arrive at the
conclusion. O

In the next lemma, we give properties of the two functions G1(3,7) and Go(5, 1) as well as 1 (8) =
G1(B8,A(B)) = Ga(B, A(B)), which will be used to study the number of zeros 7 € (0, A(3)] of the two
equations G1(8,7) = 0 and Ga(8,7)=0 for 0 < 8 < ua. We illustrate the graphs of G; and G2 in
Figure 3. It can be seen that these graphs and part of the vertical axis form a loop.

Lemma 6.5. Let 0 < § < puo. We have the following properties for G1, Go and n;:
(a) G1(B,0) =0, G1(B8,7) <0 for 7 >0 small, ZG1(8,7) > 0if G1(8,7) =0, and LG1(B,7) —
+oo as T — A(B)~;
(b) G2(B,0) > 0, G2(B,7) is strictly decreasing in T € [0, A(B)], and %G2(677—) — —00 as
T— AB)~;
(c) there exists B € (0, pg) such that i (8) < 0 if 0 < B < B, n(B) =0 if 8=, and 9 (B8) > 0
if B <8<y

Proof. (a) In account of the discussions in Section 3, we see that G1(3,0) =0, G1(8,7) <0for 7 >0
small, and %Gl(ﬁ,r) > 0if G1(8,7) = 0. For 7 € (0, A(8)), we have

_ BB
Hl(ﬁaT) HQ(ﬁaT)
By the fact that H;(8,7) > 0 and lim,_, 4(5)- H2(8,7) = oT* 1 (8) + 8 — p2 = 0, we arrive at
hm‘r—)A(B)* %Gl(ﬁv,r) = +00.
(b) We have G2(8,0) = Bk2(8,0) = B(uz — 8)” == > 0. As in the proof of Lemma 6.3, we have

HE (B, A(B)) — HY(B,7) < 2a(a = NT*7*(B)(A(B) — ) < K3 (B, A(B)) — K3(8,7).

0]
EGl(ﬂaT)

Since

KQ(BaT) < KQ(ﬁaA(ﬁ)) =0< H1(57A(B)) < H1(577—)7 (66)
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it can be deduced that for 0 < 7 < A(f)
Hy(B,7) > v/2a(1 — )To"2(B)(A(B) — 1) > —K2(8,7) > 0.

Therefore,
0 ﬁ(Hl(ﬁ77)+K2(ﬁ7T))
ZGy(B,7) =
o 07 = T, (5, K (5, 7)
which implies G2(8,7) is strictly decreasing in 7 € [0, A(8)]. In account of (6.6) again, we have
hm’r—)A(ﬁ)* %GQ(BaT) = —0O0.
(c) We estimate n1(3) as

m(B) < 2BT(B) — A(B) = 2BaT= (uz — f) "= — (aT% —aT=)(ug — B) =

—1<0 for 0<7<A(B),

and

@

m(8) = BT(B) — A(B) = BaT= (uz — B) & — (aT% —aTa)(up — B) T,
from which we see that limg_,o+ 71 (8) = —(aﬁ —aﬁ),u;ﬁ <Oandlimg_, —m () = 400. Then
using Lemma 6.4 we claim that there exists 5 € (0, ug) such that 7;(8) < 0if 0 < 8 < 3, 1 (8) = 0 if
B=0,and n1(B) >0if 8 < B < ps. O

Let us now assume 0 < § < pp and study properties of G4(8,7) which is the most complex function
among all the G; (i =1,2,3,4). We set

Y(B) = Ogglgigw) Ga(B, 7).

Lemma 6.6. There exists T = 7(8) € (0,A(B)) such that 8%6‘4(5,7) < 0 for T € (0,7(8)) and
LGy(B,7) >0 for T € (1(B), A(B)). As a consequence,

B = i | Gal,m) = Ga(B, ()

0<7T<A(B

Proof. For 7 € (0, A(B)),

9 __"~ B _
A IR A R
Since lim, o+ K1(8,7) = —(1 — a)(u1 — 8) and lim,_,o+ Ho(5,7) = +00, we see that
.0 _ B
Am oG = g "<

Since K1(8,7) < ak® (B, A(B)) + B — 1 < 0, Hy(B,7) > 0, and lim,_, 4(5)- Ha2(3,7) = 0, we have

0
li —G = .
7'—>114r(1}3’)* or 4(/8’7—) oo
Then the minimum ~(8) can only be attained at some 7 in the open interval (0, A(5)), where
8%(}'4(6, 7) = 0. We show that there is only one such 7. Let 7 € (0, A(8)) be such that %G4(5, 7)=0.

Then
1 1 1 3

H3(B,7)  B°  K3}B.m) BEL(B,7)Ha(B,7)

Using this equation, we compute the second partial derivative of G4 with respect to 7:
0 k2 (8,7) — hs *(B,7) 1 3
—G = 1-— ! L 2 4 hg—2 — — .
305 = ol - 0) (LB =60 (5 - sy

Since a € (0, 1), k1(B,7) > ha(B,7) > 0 and K;1(8,7) < 0 < H2(B,7), we have SB—:QG4(6,7') > 0. This
implies that there is exactly one 7 = 7(8) € (0, A(8)) such that %G4(ﬂ,7’(ﬁ)) = 0 and the result
follows. O

The next lemma shows that «(f) is strictly increasing in 3 € (0, u1).

Lemma 6.7. +'(8) >0 for 8 € (0, u1).



THE NUMBER OF POSITIVE SOLUTIONS FOR n-COUPLED ELLIPTIC SYSTEMS 31

A A

72(8)
v(8)

Sy

Case: By < B < p1, v(8) >0 Case: 0 < < fo, v(B) <0
FI1GURE 4. The graphs of G5 and Gy

Proof. Indeed, for 8 € (0, u1),

d”df) %04(577(/3))+§G4(6,T(6)>d$) %GM» 7(8)).

Taking partial derivative in the equation kS (B, 7)+ (B — u1)k1 (B, 7) = 7 with respect to 8, we obtain
2k (B,7) = f;l((% 7) .. Similarly, Zho(8,7) = — ,’;‘A;((%; >) Then
dv(B) ki(B,7(8)  ha(B,7(B))
— o =ki(B,7(B)) + ha2(B,7(B)) + B — - ,
g =BT a6 0) 8~ B GG ~ )
Using again the fact that K;'+ Hy ' = =1 at 7 = 7(f3), we arrive at

dy(B) _ . B ~(3)) — .
—ag ~ BB+ gy (2 (B 7(8)) — k(B 7(8))-

Since k1(8,7(8)) > ho(8,7(8)) > 0 and K1(8,7(8)) < 0, we obtain /() > 0, as required. O

Lemma 6.8. We have

lim 72(B) = lim ~(8) = 400
B—ruy B—ruy
and
_a 1\ 125
lim 7y(8) = lim v(8) = —(a™ —a™a )u, < 0.

B—0+ B—0+

1

Proof. For 8 € (0, 1), since k1 (8,7) > (Mo‘_ﬂ) m’ we see that

na(B) >7(8) 2 BaTw (= B)"Tw — (aT°F —aT ) (uz — B) T
This implies limg_, - 72(8) = lim,_, - 7(8) = +00. Since 0 < k1(B, A(B)) + ha(8, A(B)) < 2(u1 —
ﬁ)7ﬁ7 we have, for 8 € (0, u1),

—A(B) <~(B) <m2(B) <2B(m — B)" = — A(B),

and thus )
li = i — — lim AB) = —(a™5 —aqT= )y, 7 < 0.
Jim, n2(8) = lim, (8) = — lim A() = —( aTw )1y
The proof is complete. 0

In the next lemma, we list properties of G3, G4, 12 and « which will be used to study the number
of zeros T € (0, A(B)] of the two equations G3(53,7) = 0 and G4(3,7)=0 for 8 € (0, u1). We illustrate
the graphs of G3 and G4 in Figure 4. These graphs and part of the vertical axis make up a loop.

Lemma 6.9. G3, G4, 12 and v have the following properties:
(a) Gs(8,7) > Ga(B,7) for 0 < 7 < A(B);
(b) G3(B,7) is strictly decreasing in T € [0, A(8)];
(¢) G4(B, ) is strictly decreasing in T € [0,7(8)] and strictly increasing in T € [7(5), A(B)];
(d) n2(B) and v(B) are strictly increasing in 5 € (0, u1);
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(e) there exist 3 € (0, 1) and By € (B,,ul) such that n2(8) <0 if 0 < B < B, n2(B) =04if 8= B,
and 15(8) > 0 if B < B < 1, and that 7(8) < 0 if 0 < B < fo, ¥(8) = 0 if 8 = By, and
¥(B) >0 if Bo < B < pa.

Proof. (a) This is directly from the definitions of G5 and Gj.
(b) This is true since both k1(8,7) and ko(8, 7) are strictly decreasing in 7 € [0, A(3)].
(c) This is deduced from Lemma 6.6.
(d) This follows from Lemmas 6.4 and 6.7.
(e) This is a consequence of (d) combined with Lemma 6.8. O

Proof of Theorem 1.5(c) in the case p; < p2. As we have seen before, to find the exact number
of synchronized positive solutions of (6.5) it is sufficient to study the exact number of solutions of the
four equations G;(7) = G;(8,7) =01in 7 € (0, A(B)] for i = 1,2, 3,4.

Let us first consider the two equations G1(5,7) = 0 and Go(8,7) = 0 for 8 € (0, pu2). By Lemma
6.5, if 0 < B < [ then the equation G1(8,7) = 0 has no solution and the equation Ga(8,7) = 0
has exactly one solution 7; which lies in (0, A(B)); if 8 = B then the two equations have the same
solution 7 = A(p); and if B <8< 12 then the first equation has exactly one solution 75 which
lies in (0, A(B)) and the second equation has no solution. In each of these three cases, exactly one
synchronized positive solution, which is (h1/%(m)U, ka/%(7)U) if 0 < B < 3, (h/*(A)U, hY/(A)U) if
B =4, or (hi/q(TQ)IL h;/q(Tz)U) if 5 < f < pa, of equation (6.5) with 0 < 8 < o can be deduced
from the two equations G1(5,7) = 0 and Ga(3,7) = 0.

Second, we consider the two equations G3(8,7) = 0 and G4(8,7) = 0 for 8 € (0,41). By Lemma
6.9,if0 < B < J then each of the two equations G5 (8,7) = 0and G4(8, 7) = 0 has exactly one solution,
denoted 73 and 74 respectively, which lies in (0, A(8)); if 8 = £ then the equation G3(8,7) =0 has no
solution in (0, A(B)), the equation G4(8,7) = 0 has exactly one solution 75 which is in (0, A(3)), and
both the equations have the same solution 7 = A(p); if B < B < By then the equation G (8,7) =0
has no solution and the equation G4(3,7) = 0 has exactly two solutions 7g and 7; which lie in
(0, A(B)); if B = Bp then the equation G3(5,7) = 0 has no solution and the equation G4(8,7) = 0
has exactly one solution 75 in (0, A(8)); if Bo < B < w1 then both Gs(8,7) = 0 and G4(5,7) =0
have no solution. This implies that the two equations G3(3,7) = 0 and G4(53,7) = 0 produce exactly
two synchronized positive solutions for (6.5) with 0 < 8 < [y, which are (k}/q(rg)U, k’;/q<7'3)U)
and (ki/9(r)U, hy/“(r))U) for 0 < B < B, (k% (r5)U, hi/%(r5)U) and (k/?(A)U,TYU) for B =
3, and (ki/q(TG)U, hé/q(TG)U) and (/Ci/q(’]?)U, hé/q(T7)U) for 3 < B < Bo; they yield exactly one
synchronized positive solution for (6.5) with 8 = B, which is (ki/?(rs)U, hs/?(75)U); and they result
in no synchronized positive solution for (6.5) with 8 > fq.

We remark that the synchronized positive solution obtained via G1(8,7) = 0 and G2(8,7) = 0 is
different from those obtained via G3(8,7) = 0 and G4(8,7) = 0. Combining the results obtained via
the equations G;(8,7) = 0, i = 1,2,3,4, we see that (6.5) has exactly three synchronized positive
solutions if 0 < B < By, exactly two synchronized positive solutions if 8 = 3y, and exactly one
synchronized positive solution if 8 > fBy. O

4
3
1.5(c) and give a more specific expression for 8y. In the present case, in account of the discussions at
the beginning of Section 3, the number of synchronized positive solutions of (6.5) is equal to the the

In the special case where N = 8 and p = q = we present an elementary proof of Theorem
number of positive solutions of the system

1 1
pits + Bta =t7, Bt + pata =t3.
Set x = /t; and y = /t3. Then we rewrite the above system as

mr® + By* =z, B+ ey’ =y (6.7)

We solve the first equation for y and obtain

v= | o9
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Inserting this expression into the second equation, after simplifying it we have an equation for x:

(B2 = pap2)?2® + 2p2(B% — papo)2® + (Bpa + pi)r — B = 0. (6.9)

Here we use the fact that we are searching for positive solutions and thus = # 0. If 8 = \/uius
1/ 1/2

then (6.9) is a linear equation and (6.7) has a unique positive solution ( A L 3/2). In
By TR Byt tRe

what follows we assume 8 # /pipz. Then (6.9) is a cubic equation. Recall that the general cubic
ax® 4+ bx? 4+ cx + d has three distinct real roots if and only if its discriminant

A = 18abed — 4b3d + b2 — 4ac® — 27a2d% > 0

and has only one real root if A < 0. The cubic may have only one real root or two distinct real roots
if A =0. For (6.9) the discriminant is

A= BB = pap2)?(— 278" + 188% i s — 4B(13 + p3) + pip3).
Set
F(B) = —27B" + 188 pu2 — 4B(1f + 13) + pins- (6.10)
The elementary inequality Buqpe < 38° + $uf + § 13 implies that f/(8) = —1083% + 36811 12 — 4(pf +
u3) <0 and f'(B) = 0 if and only if u1 = s = 3. Thus /() < 0 except for the case p; = s = 34.
If g = po = 3B then f(B8) = f(B) = f”(B8) =0 and f"'(8) = —6483 < 0. In any case, the quartic
polynomial f(3) in (6.10) has a unique positive zero, denoted Sy, so that f(5y) = 0, f(8) > 0 for

3

3 3 3
0 < B < Bo, and f(B) <0 for B> By. Since u?us < 4\6”% and pyp3 < %2“2, we have

Flun) = pa (=313 — 4p3 + 18uTpg + pap3) < —%((92 —36V2)pi + p3) < 0.

This shows that 8y € (0, p1). The above discussion shows that (6.9) has exactly one real solution for
B > Bo and exactly three real solutions for 0 < 8 < fy. Writing (6.9) in the form

2[(8% = mp2)z + o] + Bz — 1) =0,

we see that its real solutions must lie in the range (0, "). Thus any real solution of (6.9) uniquely
determines a positive y through (6.8). Therefore, (6.7) has exactly one positive solution for 5 > Sy and
exactly three positive solutions for 0 < 8 < By, which implies that (1.3) has exactly one synchronized
positive solution for 8 > By and exactly three synchronized positive solutions for 0 < 8 < .

Now we determine the number of positive solutions of (6.7) for § = 8y. We first consider the case
u1 = po and we observe that 5y = %,ul through the above discussion. Let 5 = fy in this case. Then
equation (6.9) is reduced to

645%2% — 486322 +126%¢ — 5 = 0.

From this equation and (6.8) we see that (6.7) has exactly one positive solution z = y = 7

m.
assume 7 # po and show that (6.9) has exactly two real solutions. If not, then it has only one real
solution xg which must satisfy

Now we

242 2o Bmtus B s
Bupe —B2)" 70 B(uape — 822 70 (pap — B2)?
But these expressions imply 1 = us = 35, a contradiction.

7. RESULTS ON SYSTEMS WITH SUBCRITICAL EXPONENTS

Let N > 1 and n > 2. The arguments used above are applicable to system (1.7) with subcritical
exponents:
n
—Au; +up = i Y ijuf”flu?” in RV,
J=1, j#i

w; >0, u; € HYRY), i=1,2,--- ,n,
where 0 < pi1 < -+ < pp, Bij > 0,2 <1 < 2% pi; <r,and p;j +qi; =7 fori # j € {1,2,--- ,n}.
For this system synchronized positive solutions are of the form (kU,--- , k,U) with k; positive and
U being the unique positive radial solution of

~Au+u=u" inRY, ueH' RY).
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We have the following four theorems, which are stated without proofs since their proofs are easy
adaptations of those of Theorems 1.1-1.4. We remark that in this section results on uniqueness,
multiplicity and exact multiplicity of solutions are all up to translation.

thm7.1| Theorem 7.1. Assume N > 1, u; > 0,2 <71 < 2% p;; <2, and p;j+¢q;; =7 fori #j€{1,2,--- ,n}.
We have the following conclusions.
(a) There exists B« > 0 such that if 0 < B;; < By then (1.7) has at least 2™ — 1 synchronized
positive solutions.
(b) Assume in addition that there exists p < 2 such that p;; = p for i # j. If the matriz B has an
inverse A = (@i;)nxn Such that

n
aij; >0 fori#j and Zaij>0f0ri:1,2,--- ST
j=1

then (1.7) has at least one synchronized positive solution.

Remark 7.1. As for the critical case an explicit §, can be given in terms of y;, r, and p;;.

Theorem 7.2. Assume N > 1, u; > 0,2 <r < 2%, pjj =p <2, ¢ =7—p and By = B for
1,7 €{1,2,---,n} and i # j. We have the following conclusions.

(a) (1.7) has at least one synchronized positive solution for any B > 0.

(b) If B> pin, or if pfin—1 < ppn, and § > p, — 0g where oy is some positive number, then (1.7) has
exactly one synchronized positive solution.

(¢) There exists By € (0, p1) such that (1.7) has exactly 2™ — 1 synchronized positive solutions for
0 <8< pBo.

(d) Assume moreover n=2m, p1 = -+ = fy, =: 4 < fypa1 =+ = pom = 4”’, and

(m + D" — (m = D' + /Tm + D207 + (m — 1?7 — 2(m? + D'l
N |

8>
Then (1.7) has exactly one positive solution.

Theorem 7.3. Assume N > 1, p; > 0, 2 < r < 2%, pj; = 2, ¢5j = r —2, and Bi; = B for
1,7 €4{1,2,--- ,n} and i # j. We have the following conclusions.

(a) (1.7) has a synchronized positive solution if and only if 8 > p, or0 < < g or = p1 = lin.
Moreover, if B> p, or 0 < < py then (1.7) has exactly one synchronized positive solution
and if B = p1 = pn, then (1.7) has infinitely many synchronized positive solutions.

(b) If p1 < B < pp and py # py, then (1.7) has no positive solution.

(c) If B > pn then (1.7) has exactly one positive solution.

thm7.4| Theorem 7.4. Assume N > 1, u; >0, 2 <71 <2%, 2<p;; <7, pij +qij =7, and B;; > 0. Then
(a) (1.7) has a synchronized positive solution.
Assume moreover p;; =p € (2,1), ¢;j =7 —p, Bij = B fori,j € {1,2,--- ,n} and i # j. Then we
have the following conclusions.
(b) If 0 < B < py, orif py < po and B < py + 69 where &y is some positive number, then (1.7)
has exactly one synchronized positive solution.
(c) If B > p; then there exists p1 = p1(B) € (2,7) such that for p € (2,p1) (1.7) has at least 27 — 1
synchronized positive solutions. In particular, if 5 > p, then for p larger than and sufficiently
close to 2, (1.7) has at least 2™ — 1 synchronized positive solutions.

(d) If B> 1 and

M1 1251
—2—|—(1——)r§p<r,
B g

then (1.7) has exactly one synchronized positive solution. In particular, for any 8 > 0, (1.7)
has ezxactly one synchronized positive solution if p < r and p is sufficiently close to r.
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The methods used in this paper are also applicable to other systems of elliptic equations, for
example, to the m-Laplacian system

Pij=2, i _
Wy, in Q) i=1,2,--- n,

n
— A 4 il P =Y Bl |9 g
j=1

where Apu = div(|Vu|™ 2Vu), 1 <m < N, \; >0, B;; > 0, p;jj +qij = r for some r < m* = %,
and  is either a bounded domain in RY or the whole RY.

8. PROOF OF THEOREM 1.6

In this section we always assume that N > 5 u; > 0, p,q € (1,2], p+q = 2*, 8 > (%, and
Vi,V € LT (RYN) N L2 (RY) are nonnegative functions. By the maximum principle, nontrivial
solutions of the system

—Au+ Vi(z)u = py(ut)? 1 B (ut)P-l(vt)e in RV,
—Av + Va(z)v = pa(vh)> 1 + g—f(u+)p(v+)q_1 in RV, (8.1)
u,v € PV2RY)

are positive solutions of (1.5), where u* = max{u,0} and v* = max{v,0}. Note that (8.1) has a

variational structure. We shall prove as in [24] the existence of a nontrivial solution of (8.1) by a
variational approach.

We first introduce some notation and recall some known facts. Let || - || and | - |s be the usual
norms in 212(RY) and L*(RY) respectively. Set H = 212(RY) x 212(RY) equipped with the norm
(1, v)|] = (JJu]|? + [|v]|?)=. Clearly, critical points of the energy functional

Iu) = 5l + 5 [ (Vi) + Va(o)o?)

defined on H are solutions of system (8.1). In order to avoid semitrivial critical points, we need to
also consider for j = 1,2 the scalar field equation —Au + Vj(z)u = p;(ut)? =, u € 2V2(RY), and
its associated functional ¢;. Define the infimum

= (@ B ) o))

2% Jan

c= inf I(u,v)>0
(u,0)EN

on the Nehari manifold
N ={(u,v) € H | (u,v) # (0,0), (I'(u,v), (u,v)) = 0}.

For j = 1,2, let y; be the infimum of the functional ¢; on its Nehari manifold. If V; = V5 = 0, we
denote I, N, ¢ and 7, by I, N, ¢ and vjeo, respectively. Since V; > 0 and V; € L%(RN), the
argument in [6, Proposition 2.2] implies that

1

Nugf"*N)/QSN/Q. (8.2)

Vi = Vjoo =
It is also well known that ;. is attained by the functions W; . ;(z) = ,uj_¥U57z(x), where Us . (z) =
§C=N2U((x — 2)/8) for § > 0 and z € RN
By Theorem 1.5(b), (1.4’) with 3 > 8° has exactly one positive solution. Moreover, by the proofs
of Lemmas 6.1 and 6.2, this solution takes the form (k U, k2U), where (k1, k2) is a positive solution,
which is unique according to Proposition 6.1, of the algebraic system

P8
2*
Lemma 8.1. There holds cs = (k7 + k3)S

pnkd — k7P Tk =0, pokh — k9 + ‘;@kf =0. (8.3)

N
2
Proof. Let € > 0 be such that |u™

without loss of generality that |vT
inequality, we have

ng lvt|3. > 2€ for any (u,v) € Nu. Let (u,v) € N and assume
3. > e Setting t = [u™[3./[vT|3. > 0 and using the Sobolev

(u, )1 > S(Ju™ - + [vF[3.) = SO + )™ 5. (8.4)
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By the Holder inequality,
* * 2" P *
5o+ Blut B vt |3 + polot 13 = (it T + Bt + po)o]5e,

which combined with (8.4) implies that

(s 0)1* < gt

)2 > g(t) = —— 22 AFDT

(Nlt% + Bts + uz) 2

This implies

1
> —i . .
Coo 2 7 gggg(t) (85)
The derivative of g has the form

N-—2

NS=(141t)"2 h(t)
2(#115% + BtE + pg)

g'(t) =

7

vz

where h(t) = g—étg — g—ftpT_Q — ultﬁ + pp. Since p,q € (1,2] and p + ¢ = 2* and thus § > ﬁ,
we see that h(t) < 0 for £ > 0 small and h(t) > 0 for ¢ > 0 large. Then there exists ¢; > 0 such that

g(t1) = inf;>0 g(t). By (8.5), we have
1
o > —g(t1). .
Coo = Ng( 1) (8 6)
L = (VDU 0, b here b = (Lrty) hen we h N and
et (ug,vo) = (v/t10U1,0,bU1 o) where b = T ) BT Then we have (ug,vg) € N an
Io(ug,v0) = +g(t1). Hence coo < 2g(t1), which combined with (8.6) implies coo = Ioo(uo,v0) =
%g(tl). As a minimizer of I|n, it is easy to see that (ug,vg) is a synchronized positive solution
of (1.4). By Theorem 1.5(b) and the definition of (ki,ks), we have k1 = /f1b and k3 = b. Then
t1 = k3 /k3. Since pi ki + BEVEL + pokd = k3 + k3, we finally obtain
1 1 N
Coo = 9(1) = 1 (kF + K5)S %

The proof is complete. O

As a byproduct of the proof of Lemma 8.1, using (8.2) we have
1. . .
Coo < N min {tlzgloo g(t)7 g(o)} - mln{’yloo7 ’7200}
Using an argument similar to the proof of [24, Lemma 2.6] which is for N = 4, we can prove the
following lemma. We omit the details.

Lemma 8.2. IfV; € L%(RN), V; >0, and |Vi|nj2 +|Va|n/2 > 0, then ¢ = coo and c is not achieved.

The following lemma provides decomposition of Palais-Smale sequences of I and will be used to
derive compactness of Palais-Smale sequences at certain levels. Similar results are well known for
scalar field equations ([6, 10, 39]), which have been extended to coupled systems (see [24, 32]). The
proof of the lemma can be conducted in the same spirit as in [24, 32] and is thus dropped.

Lemma 8.3. Assume that {(un,v,)} C H is a Palais-Smale sequence for the functional I at level d.
Then there exist a nonnegative integer I, a solution (u®,v°) of (8.1), I nonzero solutions (u’,v?) (1 <
J <) of (8.1) with Vi =V, =0, I sequences of positive numbers {cl} (1 <j <1) and | sequences of
points {z}} C RN (1 < j <1) such that, up to a subsequence and as n — oo,

H(umvn) — (0, 0) — Z ((03‘1)—]\’2—2“]'(' —jz%>7 (g%)_¥1}j(' —j%)) H -0

=1 Tn On

and
l

I(uo,vo) +Zfoo(uj,vj) =d.

J=1

Using Theorem 1.5(b), Lemmas 8.2 and 8.3, we prove the next lemma.
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Lemma 8.4. Let d € (Coo, Min{ V100, Y200s 20 }) and assume {(un,vy,)} C N satisfies
I(up,v,) = d,  (I|n) (Un,vn) =0, asn— occ.
Then {(un,vn)} contains a subsequence converging in H.

Proof. It is easy to check that I'(u,,v,) — 0 in H~L. Let (u® %), (v/,v7), {¢l} and {21}, j =
1,2,---,1, be as in Lemma 8.3. Since d < 2c¢«o, either [ = 0 or [ = 1. To conclude, it suffices to prove
that [ = 0. Otherwise, d = I(u®,v%) + Io(u',v!). If (u®,v°) # (0,0) then by Lemma 8.2 we have
d > 24, which is a contradiction. Thus (u°,v") = (0,0) and d = I (u!,v!). Since ut > 0 and v* > 0,
by Theorem 1.5(b) and the uniqueness of positive solutions of the scalar equation —Au = MjuT*l
in RV, (u!,v') must be either (k,U, koU), or (M§27N)/4U, 0), or (0, uéQiN)MU), up to translation and
dilation. Then either d = ¢y, Or d = Y150, Or d = Y2, yielding a contradiction with the condition
d € (Coo, MIN{Y100, V2005 2Co0 })- O

By Lemma 8.4, to obtain a nontrivial solution of (8.1) it suffices to construct a Palais-Smale
sequence of I|x at some level d € (¢oo, MIN{YV100, V200, 2€s0 }). This will be fulfilled by constructing a
linking structure as follows.

For (u,v) € H with (u™,vT) # (0,0), we define

) - e T (O B 4 ()
) fRN (Ml(u+)2* + But)P(vt)e +M2(v+)2*)

and
Jen [ty = €Cu,0) [ (pa (wh)? + Bu)P ()T + pa(vF)*")
Jaw (pa(uh)? + But)P(v)e + po(v+)?)

Fix a number x with 0 < x < 1 and set

N = {(u,v) € N | £(u,v) =0, n(u,v) =K}

77(% U) =

We define

¢= inf I(u,v).
(u,v)EN

From Theorem 1.5(b), Lemmas 8.1, 8.2 and 8.3, a similar argument as in [24, Lemma 4.1] leads to
the following result.

Lemma 8.5. If V; € L (RN), V; >0, and |Vi|n/2 + [Va|nya > 0, then é > coo.

Now we construct a family of subsets of AV which link with N. By Lemmas 8.1 and 8.5 we have
~ (k1 + k)SN/? < ¢. By condition (1.6), we also have
k2 Vilnge + k3| Val N2

(k3 +k3)S

1 N
N(k%+k%)8% (1+ )2 <min{71ooa Y2005 ZCDO}

Then as in [7] and [48, P. 35], we can construct a nonnegative function w € C§°(B1(0)) such that
fRN wQ* = ||wH2 > 5%7

1

024 )l < & (8.7

and

k2 Vilngs + k3 Valwyo\ ¥
2 1 N/2 21V2 N/2 .

For § > 0 and 2z € RV, let ws, = 6~/ 2w((- — 2)/5). We define go : RT x RN — N by go(6,2) =
(K1tszws,z, kats zws, ), where

1
S0+ )]

N-—-2

té:<Www%wmw+&NM@Mﬂ@ﬁ+%@%wmﬂ>4

Jan (1 (krws 2)?" + B(kiws 2 )P (kaws,2)1 + po(kows,2)?")
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Since (ki, k2) is a solution of (8.3) and [,y w? = |lw||?, we have, for § > 0 and z € RV,

Han(s. o)) LRI + 8 fon VaGo)ud + K3 Jo Vatouk ) 59)
0\Y, = N—2 . .
N(k$+k3) 7= [lw]| N2

We need the next lemma to show the linking structure.

Lemma 8.6. There exists Ry > 0 and §1, 0 with 0 < 61 < k < §2 < 400 such that
(a) I(go(d,2)) < ¢ if either 6 =01 or 0 = 3 or |z| = Ry;
(b) (€(90(8, 2)), 2)rn > 0 if |2| = Ro, n(go(1,2)) < K, and 1(go(d2,2)) > K.

Proof. Since the proof is similar to that in [24], it is only sketchy.

(a) As in [24, Lemma 4.2], [on Vj(2)w} , — 0 uniformly in z € RV if either § — 0 or § — +00 and
uniformly in § > 0 if |z| = +oo. Then the expression of I(go(d, z)) together with (8.7) implies that
any 01 sufficiently small and Ry, d2 sufficiently large are eligible candidates.

(b) This is proved in the same way as in [24, Lemma 4.3], decreasing ¢; and enlarging ds from (a)
if necessary. O

Set D = {(d,2) | 61 < < &2, 2 € RN, |2| < Ro} and define I' = {g € C(D,N) | glap = golap}-
From Lemma 8.6(b), using the argument of [24, Lemma 4.5], it is easy to prove the following result.

Lemma 8.7. deg((nog,£og), D, (k,0)) =1 for any g € T.
For g € T', by Lemma 8.6(a) we have ./\A/'ﬂg(aD) = (), while by Lemma 8.7 we obtain ./\A/'ﬂg(D) # .
In other words, the family {g(D) | g € I'} and A link. Define

d:= inf max I(g(9,2)).
g€l (5,2)eD
Since N' N g(D) # 0, we have d > ¢. Then using Lemma 8.5, we arrive at d > ¢ > Cxo.
On the other hand, we have d < max; )5 1(90(0,2)). From (8.9), using the Holder and the
Sobolev inequalities, we obtain
((BF + B)[|wll® + k3 [Vilny2 S~ lw]* + B3| Valny2 S~ wl?)
N

N(k3 +k3) "% [|w|[ V-2
The last inequality together with (8.8) implies that d < min{vicc, Y200, 2¢o0 }-

N
2

d<

Proof of Theorem 1.6. For any g € I and (d,%2) € 0D, by Lemma 8.6(a) we have I(g(d,2)) =
I(go(d,2)) < é Since é < d, a standard deformation argument implies the existence of a Palais-
Smale sequence {(un,vs)} C N of I|y at the level d. Then by Lemma 8.4, since co, < ¢ < d <
min{vic0, Y200, 2¢o0 t, {(Un,vn)} has a convergent subsequence in H and therefore I has a critical
point (u,v) with I(u,v) = d, which is a solution of (8.1). This solution must be nontrivial since
d < min{7y100, Y200 }- By the maximum principle, (u, v) is a positive solution of (1.5). O
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