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Abstract

Assuming that the conformal metric g = e2u|dx|2 on Rn is normal, our focus lies in investigating
the following conjecture: if the Q-curvature of such a manifold is bounded from above by (n− 1)!, then
the volume is sharply bounded from below by the volume of the standard n-sphere. In specific instances,
such as when u is radially symmetric or when the Q-curvature is represented by a polynomial, we provide
a positive response to this conjecture, although the general case remains unresolved. Intriguingly, under
the normal and radially symmetric assumptions, we establish that the volume is bounded from above by
the volume of the standard n-sphere when the Q-curvature is bounded from below by (n − 1)!, thereby
addressing certain open problems raised by Hyder-Martinazzi (2021, JDE).
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1 Introduction
The following conformally invariant equation plays an important role conformal geometry:

(−∆)
n
2 u(x) = Q(x)enu(x) on Rn (1.1)

where n ≥ 2 is an even integer and Q(x) is a smooth function. From geomtric point of view, for n = 2, Q
is the Gaussian curvature of the conformal metric e2u|dx|2 on R2. For n ≥ 4, Q is the Q-curvature of the
metric e2u|dx|2 on Rn which introduced by Branson [2]. We refer the interested readers to [5], [23], [6] for
more details.

Supposing thatQenu ∈ L1(Rn) for the equation (1.1), we say that the solution u(x) is a normal solution
to (1.1) if u(x) satisfies the integral equation

u(x) =
2

(n− 1)!|Sn|

�
Rn

log
|y|
|x− y|

Q(y)enu(y)dy + C (1.2)

for some constant C. For brevity, denote the normalized integrated Q-curvature as

α :=
2

(n− 1)!|Sn|

�
Rn

Qenudx.

More details about normal solutions can be found in Section 2 of [15]. Here, we assume that both u(x) and
Q(x) are smooth functions on Rn. Although similar results can also be obtained under weaker regularity
assumptions, for the sake of brevity, we will focus on the smooth cases throughout this paper.

Our aim throughout this paper is to try to prove the following conjecture.

*M. Li, Nanjing University, limx@smail.nju.edu.cn
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Conjecture 1. Consider the normal solution u(x) to (1.2) on Rn with Q(x) ≤ (n− 1)! where n ≥ 4 is an
even integer. Then �

Rn

enudx ≥ |Sn|

with equality holds if and only if Q(x) ≡ (n− 1)!.

In [16], the Alexandrov-Bol’s inequality (See Lemma 5.1) was used to rule out the ”slow bubble” in the
two-dimensional case. For brevity, Alexandrov-Bol’s inequality on R2 shows that if the Guassian curvature
has an upper bound, the volume has a sharp lower bound. More details can be found in [1]. Meanwhile,
there are a lot of works devoted to study it including [21], [7], [9] and the references therein. For higher
order cases, it is natural to ask whether similar Bol’s inequality holds.

In the two-dimensional case, it is unnecessary to assume that the solution u(x) is normal in order to
derive the lower bound of the volume. For higher order cases n ≥ 4, the situation becomes very different.
In fact, even for the case Q = 1, the volume could be arbitraly small (See Theorem 1 in [3]). More details
about the volume for non-normal solutions can be found in [24], [18], [10], [11] and the references therein.
Therefore, we need to focus on the normal solutions to consider the higher order Bol’s inequality.

While we haven’t fully solved Conjecture 1, we establish a lower bound for the volume in Theorem 2.9.
We intend to verify this conjecture in numerous specific scenarios in current paper.

Firstly, we aim to validate Conjecture 1 within the context of radially symmetric cases.

Theorem 1.1. Supposing that u(x) is a radially symmetric normal solution to (1.2) with Q(x) ≤ (n− 1)!
where even integer n ≥ 2. Then there holds

�
Rn

enudx ≥ |Sn|

with equality holds if and only if Q ≡ (n− 1)!.

Secondly, we want to deal with a sepical class of Q which comes from the blow up analysis of the
asymptotic behavior of conformal metrics with null Q-curvature in [14] to validate Conjecture 1.

Theorem 1.2. Consider u(x) is a normal solution to (1.2) on R4 where Q(x) ≤ 6 is a polynomial. Then
there holds �

R4

e4udx ≥ |S4|

with equality holds if and only if Q(x) ≡ 6.

For n ≥ 6, due to our technical constraints, we need introduce additional assumptions on the polynomial
Q.

Theorem 1.3. Consider the normal soultion u(x) to (1.2) on Rn where even integer n ≥ 6 with Q(x) =
(n− 1)! + ϕ(x) where ϕ(x) ≤ 0 is a polynomial. If 4 ≤ degϕ ≤ n− 2, we additionally assume that

x · ∇ϕ(x) ≥ (degϕ)ϕ(x) (1.3)

up to a rotation or a translation of the coordinates. Then there holds
�
Rn

enudx ≥ |Sn| (1.4)

with equality holds if and only if ϕ ≡ 0.

Now, we are going to deal with the converse verison of Conjecture 1. We also leave it as a conjecture.
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Conjecture 2. Consider the normal solution u(x) to (1.2) on Rn with Q(x) ≥ (n− 1)! where n ≥ 2 is an
even integer. Then �

Rn

enudx ≤ |Sn|

with equality holds if and only if Q(x) ≡ (n− 1)!.

We give a positive answer to Conjecture 2 under the radial symmetric assumption.

Theorem 1.4. Supposing that u(x) is a radially symmetric normal solution to (1.2) with Q(x) ≥ (n− 1)!
and Q(x) ≤ C(|x|+ 1)k for some k ≥ 0 where even integer n ≥ 2. Then there holds

�
Rn

enudx ≤ |Sn|

with equality holds if and only if Q ≡ (n− 1)!.

Remark 1.5. In fact, for n = 2, Gui and Li give a proof for this result in Theorem 1.5 in [8]. However,
their method doesn’t work for higher order cases.

For the sake of convenience, we use the notation BR(p) to refer to an Euclidean ball in Rn centered
at p ∈ Rn with a radius of R. For a function ϕ(x), the positive part of ϕ(x) is denoted as ϕ(x)+ and the
negative part of ϕ(x) is denoted as ϕ(x)−. Set

�
E
ϕ(x)dx = 1

|E|
�
E
ϕ(x)dx for any measurable set E. For

a constant C, C+ denotes C if C ≥ 0, otherwise, C+ = 0. Here and thereafter, we denote by C a constant
which may be different from line to line. For s ∈ R, [s] denotes the largest integer not greater than s.

The paper is organized as follows. In Section 2, we study the asymptotic behavior of the normal solu-
tions to (1.1). We give a lower bound of the volume in Theorem 2.9 where Q-curvature is bounded from
above. In Section 3, we give some Pohozaev identities with different restrictions which play an important
role in proofs of our main theorems. In Section 4, we introduce an s-cone condition on Q-curvature and
study the asymptotic behavior of the solutions. In Section 5, we deal with the polynomial Q-curvature to
obtain Bol’s inequality giving the proofs of Theorem 1.2 and Theorem 1.3. In Section 6, we deal with the
radial symmetric solutions giving the proofs of Theorem 1.1 and Theorem 1.4. In the last Section 7, we
give some applications of our higher order Bol’s inequality and answer an open problem rasied by Hyder
and Martinazzi in [12].

2 Asymptotic behavior
For reader’s convenience, we repeat the following lemmas which have been established in [15].

Lemma 2.1. (Lemma 2.3 in [15]) Consider the normal solution u(x) to (1.2) with even integer n ≥ 2. For
|x| � 1, there holds

u(x) = (−α+ o(1)) log |x|+ 2

(n− 1)!|Sn|

�
B1(x)

log
1

|x− y|
Q(y)enu(y)dy (2.1)

where o(1)→ 0 as |x| → ∞.

Lemma 2.2. (Lemma 2.4 in [15]) Consider the normal solution u(x) to (1.2) with even integer n ≥ 2. For
|x| � 1 and any r0 > 0 fixed, there holds

 
Br0

(x)

u(y)dy = (−α+ o(1)) log |x|. (2.2)

3



Lemma 2.3. (Lemma 2.10 in [15]) Consider the normal solution u(x) to (1.2) with even integer n ≥ 2. If
Q+ has compact support, there holds

u(x) ≤ −α log |x|+ C, |x| � 1.

Conversely, if Q− has compact support, there holds

u(x) ≥ −α log |x| − C, |x| � 1.

Lemma 2.4. (Lemma 2.5 in [15]) Consider the normal solution u(x) to (1.2) with even integer n ≥ 2. For
|x| � 1 and any 0 < r1 < 1 fixed, there holds

 
Br1|x|(x)

u(y)dy = (−α+ o(1)) log |x|. (2.3)

Lemma 2.5. (Lemma 2.6 in [15]) Consider the normal solution u(x) to (1.2) with even integer n ≥ 2. For
|x| � 1 and any r2 > 0 fixed, there holds

 
B|x|−r2 (x)

u(y)dy = (−α+ o(1)) log |x|. (2.4)

By slightly modifying Lemma 2.8 in [15], we obtain the following property.

Lemma 2.6. Consider the normal solution u(x) to (1.2). For R� 1 and any m > 0 fixed, there holds
 
BR(0)\BR−1(0)

emudx = R−mα+o(1).

Proof. On one hand, with help of Jensen’s inequality and Lemma 2.2, for any r3 > 0 fixed, one has

 
Br3

(x)

emudy ≥ exp

( 
Br3

(x)

mudy

)
= e(−mα+o(1)) log |x|. (2.5)

Now, we are going to deal with the upper bound. For |y| � 1, there holds

|
�
B1(y)\B1/4(y)

log
1

|y − z|
Q(z)enu(z)dz| ≤ C

�
B1(y)\B1/4(y)

|Q(z)|enudz ≤ C.

Combing with Lemma 2.1, we obtain

u(y) = (−α+ o(1)) log |y|+ 2

(n− 1)!|Sn|

�
B1/4(y)

log
1

|y − z|
Q(z)enu(z)dz.

Then for |x| � 1 and y ∈ B1/4(x), one has

u(y) ≤ (−α+ o(1)) log |x|+ 2

(n− 1)!|Sn|

�
B1/2(x)

log
1

|y − z|
Q+(z)enu(z)dz (2.6)

where we have used the fact |y − z| ≤ 1.
Now, we claim that for |x| � 1 and m > 0, there holds

�
B1/4(x)

emu(y)dy ≤ e(−mα+o(1)) log |x|. (2.7)

4



If Q+(z) = 0 a.e. on B1/2(x), we immediately obatain (2.7) due to (2.6). Otherwise, Jensen’s inequality
yields that

�
B1/4(x)

emudy

≤|x|−mα+o(1)
�
B1/4(x)

exp

(
2m

(n− 1)!|Sn|

�
B1/2(x)

log
1

|y − z|
Q+(z)enu(z)dz

)
dy

≤|x|−mα+o(1)
�
B1/4(x)

�
B1/2(x)

|y − z|−
2m‖Q+enu‖

L1(B1/2(x))

(n−1)!|Sn|
Q+(z)enu(z)

‖Q+enu‖L1(B1/2(x))
dzdy.

Since Qenu ∈ L1(Rn), there exists R2 > 0 such that |x| ≥ R2, we have

‖Q+enu‖L1(B1/2(x)) ≤
(n− 1)!|Sn|

4m
.

By applying Fuibini’s theorem, we prove the claim (2.7).
For r3 > 0 fixed, we could choose finite balls 1 ≤ j ≤ C(r3) such that Br3(x) ⊂ ∪jB1/4(xj) with

xj ∈ Br3(x). Hence, using the estimate (2.7), for |x| � 1, we have
 
Br3

(x)

emudy ≤ C
∑
j

 
B1/4(xj)

emudy ≤ Ce(−mα+o(1)) log |x| = e(−mα+o(1)) log |x|

Combing with (2.5), one has

log

 
Br3

(x)

emudy = (−mα+ o(1)) log |x|. (2.8)

By a direct computation, we obtain the inequality C−1Rn−1 ≤ |BR(0)\BR−1(0)| ≤ CRn−1 for R � 1,
where C is independent of R. We can select an index C−1Rn−1 ≤ iR ≤ CRn−1 such that the balls
B1/4(xj) with |xj | = R − 1

2 and 1 ≤ j ≤ iR are pairwise disjoint, and the sum of the balls B4(xj) cover
the annulus BR(0)\BR−1(0). Applying the estimate (2.8), we obtain the following result

 
BR(0)\BR−1(0)

emudy ≤ 1

C−1Rn−1

iR∑
j=1

�
B4(xj)

emudy

≤CR1−n
iR∑
j=1

|xj |−nα+o(1)

≤CR1−n · CRn−1 · (R− 1

2
)−mα+o(1)

=R−mα+o(1).

Similarly, there holds

 
BR(0)\BR−1(0)

emudy ≥ 1

CRn−1

iR∑
j=1

�
B1/4(xj)

emudy = R−mα+o(1).

Finally, we get the desired result.
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Lemma 2.7. For R� 1 and m > 0 fixed, there holds
�
B 3R

2
(0)\BR

2
(0)

emudx = Rn−mα+o(1).

Proof. On one hand, with help of Lemma 2.6, for any ε > 0, there exists R1 > 0 such that R ≥ R1,

Rn−1−mα−ε ≤
�
BR+1\BR(0)

emudx ≤ Rn−1−mα+ε. (2.9)

Using the above estimate (2.9), for R ≥ 2R1 + 2, there holds

�
B 3R

2
(0)\BR

2
(0)

emudx ≤
[ 3R2 ]∑
i=[R2 ]

�
Bi+1(0)\Bi(0)

emudx

≤
[ 3R2 ]∑
i=[R2 ]

in−1−mα+ε

≤CR ·Rn−1−mα+ε

≤CRn−mα+ε

On the other hand, for R ≥ 2R1 + 2, we have

�
B 3R

2
(0)\BR

2
(0)

emudx ≥
[ 3R2 ]−1∑
i=[R2 ]+1

�
Bi+1(0)\Bi(0)

emudx

≥
[ 3R2 ]−1∑
i=[R2 ]+1

in−1−mα0−ε

≥CR ·Rn−1−mα+ε

=CRn−mα−ε.

Thus we finish our proof.

The following lemma has also been established in [15]. For readers’ convenience, we give a brief proof
here.

Lemma 2.8. (Theorem 2.18 in [15]) Consider the normal solution u(x) to (1.2) with even integer n ≥ 2.
Supposing that the volume is finite i.e. enu ∈ L1(Rn), then there holds

�
Rn

Qenudx ≥ (n− 1)!|Sn|
2

.

Proof. With help of Lemma 2.4 and |x| � 1, Jensen’s inequality implies that
�
B|x|/2(x)

enudy

≥|B|x|/2(x)| exp(
1

|B|x|/2(x)|

�
B|x|/2(x)

nudy)

=C|x|n−nα+o(1).
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Based on the assumption enu ∈ L1(Rn), letting |x| → ∞, there holds α ≥ 1 i.e.
�
Rn

Qenudx ≥ (n− 1)!|Sn|
2

.

Finally, we finish our proof.

With help of above lemma, we are able to give a lower bound of the volume for normal solutions with
Q ≤ (n− 1)!.

Theorem 2.9. Consider the normal solution u(x) to (1.2) on Rn with Q ≤ (n − 1)! where n ≥ 4 is an
even integer. Then there holds �

Rn

enudx >
|Sn|

2
. (2.10)

Proof. If
�
Rn e

nudx = +∞, it is trivial that (2.10) holds.
Now, we suppose that enu ∈ L1(Rn). On one hand, if Q(x) is a constant, with help of Lemma 2.8,

Q(x) must be a positive constant. Based on the classification theorem for normal solutions in [17], [22],
[19] or [25], one has �

Rn

Qenudx = (n− 1)!|Sn|.

Our assumption Q ≤ (n− 1)! yields that
�
Rn

enudx ≥ |Sn| > |S
n|
2
.

On the other hand, if Q(x) is not a constant, using Lemma 2.8 again, there holds
�
Rn

enudx >
1

(n− 1)!

�
Rn

Qenudx ≥ |S
n|
2
.

Finally, we finish our proof.

3 Pohozaev identity
The following Pohozaev-type inequality is based on the work of Xu (See Theorem 2.1 in [25]).

Lemma 3.1. Suppose that u(x) is a normal solution to (1.2) with Q(x) doesn’t change sign near infinity.
Then there exists a sequence Ri →∞ such that

lim
i→∞

sup
4

n!|Sn|

�
BRi

(0)

x · ∇Qenudx ≤ α(α− 2).

Proof. By a direct computation, one has

〈x,∇u〉 = − 2

(n− 1)!|Sn|

�
Rn

〈x, x− y〉
|x− y|2

Q(y)enu(y)dy (3.1)

Multiplying by Qenu(x) and integrating over the ball BR(0) for any R > 0, we have
�
BR(0)

Qenu(x)
[
− 2

(n− 1)!|Sn|

�
Rn

〈x, x− y〉
|x− y|2

Q(y)enu(y)dy

]
dx =

�
BR(0)

Qenu(x)〈x,∇u(x)〉dx.

(3.2)
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With x = 1
2 ((x+ y) + (x− y)), for the left-hand side of (3.2), one has the following identity

LHS =
1

2

�
BR(0)

Qenu(x)
[
− 2

(n− 1)!|Sn|

�
Rn

Qenu(y)dy

]
dx

+
1

2

�
BR(0)

Qenu(x)
[
− 2

(n− 1)!|Sn|

�
Rn

〈x+ y, x− y〉
|x− y|2

Qenu(y)dy

]
dx.

Now, we deal with the last term of above equation by changing variables x and y.
�
BR(0)

Q(x)enu(x)
[�

Rn

〈x+ y, x− y〉
|x− y|2

Q(y)enu(y)dy

]
dx

=

�
BR(0)

Q(x)enu(x)

[�
Rn\BR(0)

〈x+ y, x− y〉
|x− y|2

Q(y)enu(y)dy

]
dx

=

�
BR/2(0)

Q(x)enu(x)

[�
Rn\BR(0)

〈x+ y, x− y〉
|x− y|2

Q(y)enu(y)dy

]
dx

+

�
BR(0)\BR/2(0)

Q(x)enu(x)

[�
Rn\B2R(0)

〈x+ y, x− y〉
|x− y|2

Q(y)enu(y)dy

]
dx

+

�
BR(0)\BR/2(0)

Q(x)enu(x)

[�
B2R(0)\BR(0)

〈x+ y, x− y〉
|x− y|2

Q(y)enu(y)dy

]
dx

=:I1(R) + I2(R) + I3(R).

Notice that
|I1| ≤ 3

�
BR/2(0)

|Q(x)|enu(x)dx
�
Rn\BR(0)

|Q(y)|enu(y)dy

and
|I2| ≤ 3

�
BR(0)\BR/2(0)

|Q(x)|enu(x)dx
�
Rn\B2R(0)

|Q(y)|enu(y)dy.

Then both |I1| and |I2| tend to zero as R → ∞ due to Qenu ∈ L1(Rn). Now, we only need to deal with
the term I3. Since Q doesn’t change sign near infinity, for R� 1,

I3(R) =

�
BR(0)\BR/2(0)

Q(x)enu(x)

[�
B2R(0)\BR(0)

x2 − y2

|x− y|2
Q(y)enu(y)dy

]
dx ≤ 0.

As for the right-hand side of (3.2), by using divergence theorem, we have

RHS =
1

n

�
BR(0)

Q(x)〈x,∇enu(x)〉dx

=−
�
BR(0)

(
Q(x) +

1

n
〈x,∇Q(x)〉

)
enu(x)dx

+
1

n

�
∂BR(0)

Q(x)enu(x)Rdσ.

Since Q(x)enu(x) ∈ L1(Rn), there exist a sequence Ri →∞ such that

lim
i→∞

Ri

�
∂BRi

(0)

Qenudσ = 0.
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Otherwise, there exists ε0 > 0 such that for largeR1 > 1 and any r ≥ R1, there holds |
�
∂Br(0)

Qenudσ| ≥
ε0
r and then

|
� R

0

�
∂Br(0)

Qenudσdr| ≥ −C +

� R

R1

ε0
r

dr ≥ −C + ε0 logR

which contradicts to Qenu ∈ L1(Rn). Thus there holds

1

n

�
BRi

(0)

〈x · ∇Q〉enudx =−
�
BRi

(0)

Qenudx+
1

n
Ri

�
∂BRi

(0)

Qenudσ +
α

2

�
BRi

(0)

Qenu(x)dx

+ I1(Ri) + I2(Ri) + I3(Ri)

≤−
�
BRi

(0)

Qenudx+
1

n
Ri

�
∂BRi

(0)

Qenudσ +
α

2

�
BRi

(0)

Qenu(x)dx

+ I1(Ri) + I2(Ri)

which yields that

lim
i→∞

sup
4

n!|Sn|

�
BRi

(0)

x · ∇Qenudx ≤ α(α− 2).

Corollary 3.2. Consider the smooth conformally invariant equation

−∆u = Ke2u on R2 (3.3)

with Ke2u ∈ L1(R2) and e2u ∈ L1(R2). Suppose that x ·∇K ≥ 0 and K(x) is non-negative near infinity.
Then �

R2

Ke2udx ≥ 4π

with ” = ” holds if and only if K is a positive constant.

Proof. With help of Theorem 2.2 in [15], the solution to (3.3) must be a normal solution. Making use of
Lemma 3.1, one has α ≥ 2 i.e. �

R2

Ke2udx ≥ 4π.

When the equality achieves, one has x ·∇K = 0 a.e. which shows that K(x) is a non-negative constant
since K is non-negative near infinity. If K(x) ≡ 0, since u(x) is normal, we have u ≡ C. However, it
contradicts to e2u ∈ L1(R2). Hence, K(x) must be a positive constant.

On the other hand, if K(x) is a positive constant, with help of the classification theorem in [4], one has�
R2

Ke2udx = 4π.

Finally, we finish our proof.

Remark 3.3. By utilizing this result, we are able to partially answer the question raised by Gui and Morad-
ifam in Remark 5.1 of their paper [9].

With additional assumptions, we are able to obtain the Pohozaev identity.

Lemma 3.4. (See Lemma 2.1 in [13]) Consider a normal solution u(x) to (1.2). Supposing that

|Q(x)|enu ≤ C|x|−n

near infinity, then there exists a sequence Ri →∞ such that

lim
i→∞

4

n!|Sn|

�
BRi

(0)

x · ∇Qenudx = α(α− 2).
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Proof. The proof is essentially the same as Lemma 3.1, except for the treatment of the term I3(R). Firstly,
a direct computation yields that

|I3| ≤
�
BR(0)\BR/2(0)

|Q(x)|enu(x)
�
B2R(0)\BR(0)

|x+ y|
|x− y|

|Q(y)|enu(y)dydx.

For each x ∈ BR(0)\BR/2(0) and R � 1, based on the assumption |Q|enu(x) ≤ C|x|−n near infinity, a
direct computation yields that

�
B2R(0)\BR(0)

|x+ y|
|x− y|

|Q(y)|enu(y)dy

≤CR1−n
�
B2R(0)\BR(0)

1

|x− y|
dy

≤CR1−n
�
B3R(0)

1

|y|
dy ≤ C.

Thus we obtain that
|I3| ≤ C

�
BR(0)\BR/2(0)

|Q|enudx→ 0, as R→∞.

Continuing along the same line of reasoning as presented in Lemma 3.1, we ultimately demonstrate the
existence of a sequence Ri →∞ such that

lim
i→∞

4

n!|Sn|

�
BRi

(0)

x · ∇Qenudx = α(α− 2).

4 Polynomial cone condition
Definition 4.1. We say a function ψ(x) ∈ L∞loc(Rn) satisfying s-cone condition if there exists s ∈ R,
0 < r0 < 1 such that

|ψ(x)| ≤ C(|x|+ 1)s

and a sequence {xi} ⊂ Rn with |xi| ≥ 1 and |xi| → ∞ as i→∞ such that for each i and x ∈ Br0|xi|(xi)
there holds

|ψ(x)|
|x|s

≥ c1 > 0

where c1 is a constant independent of i.

The definition mentioned here is derived from [13] where the first author focused on scenarios where
Q(x) is a polynomial, which is a common case that meets the s-cone condition.

Lemma 4.2. Each non-constant polynomial P (x) on Rn satisfies s-cone condition with s = degP .

Proof. We can decompose the non-constant polynomial P (x) as

P (x) = Hs(x) + Ps−1(x)

where Hs(x) is a homogeneous funtion with degree equal to s ≥ 1 and Ps−1(x) is a polynomial with
degree at most s− 1. Immediately, one has

|P (x)| ≤ C(|x|+ 1)s.

10



We choose the polar coordinate such that x = ξ(r, θ) with r ≥ 0 and θ ∈ Sn−1. Then one has

Hs(x) = rsϕs(θ)

where ϕs(θ) is a non-zero smooth function defined on Sn−1. There exist c1 > 0 and a geodesic ball
B̂s1(θ0) ⊂ Sn−1 such that

|ϕs(θ)| ≥ 2c1 > 0

for any θ ∈ B̂s1(θ0). Then
|P (x)| ≥ 2c1|x|s − c2|x|s−1

where c2 > 0 is a constant depending only on the cofficients of Ps−1(x). We choose R1 = max{1, c2c1 }
and then one has

|P (x)| ≥ c1|x|s

for (r, θ) ∈ [R1,+∞)×B̂s1(θ0). It is not hard to see that there exist x0 ∈ Rn with |x0| = 1 and 0 < s0 < 1
such that

ξ−1(Bs0(x0)) ⊂ [0,+∞)× B̂s1(θ0).

Meanwhile, one may check that for any t > 0

Bs0t(tx0) = tBs0(x0)

where tBs0(x0) := {tx ∈ Rn|x ∈ Bs0(x0)}. For any x ∈ Bs0t(tx0), there holds |x| ≥ (1 − s0)t. Then
there exists t1 > 0 such that t ≥ t1

ξ−1(Bs0t(tx0)) ⊂ [R1,+∞)× B̂s1(θ0).

In particular, for any t ≥ t1 and x ∈ Bts0(tx0) one has

|P (x)| ≥ c1|x|s.

Thus P (x) satisfies s-cone condition with s = degP .

Lemma 4.3. Consider the normal solution u(x) to (1.2) with Q(x) satisfying s-cone condition. Then

α ≥ 1 +
s

n
.

Proof. Due to Q(x) satisfying s-cone conditon, there exits a sequence {xi} and 0 < s0 < 1 such that in
each ball x ∈ Bs0|xi|(xi)

|Q(x)| ≥ C|x|s

With help of Lemma 2.4 and Jensen’s inequality, one has�
Bs0|xi|(xi)

|Q|enudx ≥C
�
Bs0|xi|(xi)

|x|senudx

≥C|xi|s
�
Bs0|xi|(xi)

enudx

≥C|xi|s|Bs0|xi|(xi)| exp

( 
Bs0|xi|(xi)

nudx

)
≥C|xi|s+n−nα+o(1).

Due to Qenu ∈ L1(Rn), letting i→∞, we have

α ≥ 1 +
s

n
.

11



Lemma 4.4. Consider the normal solution u(x) to (1.2) with Q(x) satisfying s-cone condition. Supposing
that there exists s1 < s such that Q+ ≤ C|x|s1 or Q− ≤ C|x|s1 near infinity, then there holds

|Q(x)|enu ≤ C|x|−n

near infinity.

Proof. By a direct computation, we have

(n− 1)!|Sn|
2

(u(x) + α log |x|)

=

�
Rn

log
|x| · (|y|+ 1)

|x− y|
Qenudy +

�
Rn

log
|y|
|y|+ 1

Qenudy + C

=

�
Rn

log
|x| · (|y|+ 1)

|x− y|
Q+enudy −

�
Rn

log
|x| · (|y|+ 1)

|x− y|
Q−enudy + C

= : I1 − II2 + C

For |x| ≥ 1, it is easy to check that
|x| · (|y|+ 1)

|x− y|
≥ 1

which shows that

log
|x| · (|y|+ 1)

|x− y|
≥ 0

and then I1 ≥ 0, II2 ≥ 0.
From now on, we suppose that |x| � 1.
If Q+(x) ≤ C|x|s1 near infinity, we split I1 as follows

I1 =

�
|x−y|≤ |x|2

log
|x| · (|y|+ 1)

|x− y|
Q+enudy +

�
|x−y|≥ |x|2

log
|x| · (|y|+ 1)

|x− y|
Q+enudy =: I1,1 + I1,2

Using the estimate (2.8) and Lemma 2.7, a direct computation and Hölder’s inequality yield that

I1,1 =

�
|x−y|≤ |x|2

log(|x|(|y|+ 1))Q+enudy +

�
|x−y|≤ |x|2

log
1

|x− y|
Q+enudy

≤
�
|x−y|≤ |x|2

log(|x|(|y|+ 1))Q+enudy +

�
|x−y|≤1

log
1

|x− y|
Q+enudy

≤C log(4|x|2)|x|s1
�
|x−y|≤ |x|2

enudy + C|x|s1
�
|x−y|≤1

log
1

|x− y|
enudy

≤C log(4|x|2)|x|s1
�
|x−y|≤ |x|2

enudy + C|x|s1(

�
|x−y|≤1

(log
1

|x− y|
)2dy)

1
2 (

�
|x−y|≤1

e2nudy)
1
2

≤C log(4|x|2)|x|s1
�
|x|
2 ≤|y|≤

3|x|
2

enudy + C|x|s1 |x|−nα+o(1)

≤C log(4|x|2)|x|s1 |x|n−nα+o(1) + C|x|s1 |x|−nα+o(1)

With help of Lemma 4.3 and s > s1, there holds

I1,1 ≤ C log(4|x|2)|x|s1−s+o(1) + C|x|−n+s1−s+o(1)

which shows that
I1,1 ∈ L∞(Rn). (4.1)

12



With help of Lemma 2.6 and Lemma 4.3, choosing ε = s−s1
2 , there exist an integer R1 > 0 such that for

any i ≥ R1 + 1 �
Bi(0)\Bi−1(0)

enudx ≤ in−1−nα+ε ≤ i−1−s+ε.

As for the second term I1,2, for small ε > 0, Then there holds

I1,2 ≤
�
|x−y|≥ |x|2

log 2(|y|+ 1)Q+enudy

≤
�
Rn

log(2|y|+ 2)Q+enudy

≤C + C lim
k→∞

k∑
i=R1+1

log(2i+ 2)is1
�
Bi(0)\Bi−1(0)

enudy

≤C + C lim
k→∞

k∑
i=R1+1

log(2i+ 2)is1i−1−s+ε < +∞.

Combing with (4.1), one has
I1 ∈ L∞(Rn).

Then there holds
u(x) ≤ −α log |x|+ C. (4.2)

Since Q(x) satisfies s-cone condition, Lemma 4.3 and (4.2) imply that

|Q(x)|enu ≤ C|x|s · |x|−nα ≤ C|x|−n.

On the other hand, if Q− ≤ C|x|s1 near infinity, using similar argument, one has II2 ≤ C which yields
that

u(x) ≥ −α log |x| − C.

Due to Q(x) satisfying s-cone condition, there holds
�
Bs0|xi|(xi)

|Q|enudx ≥C
�
Bs0|xi|(xi)

|x|senudx

≥C|xi|s
�
Bs0|xi|(xi)

enudx

≥C|xi|s+n−nα

which yields that
α > 1 +

s

n
.

Since |Q(x)| ≤ C|x|s near infinity and α > 1 + s
n , similar argument yields that I1 ∈ L∞(Rn). Finally, we

obtain that
|u+ α log |x|| ≤ C.

Thus one has
|Q(x)|enu|x|n ≤ C|x|s+n−nα = o(1).

Finally, we finish our proof.

As an application, we generalize Corollary 2.4 in [13].
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Theorem 4.5. Suppose that a smooth function Q(x) satisfying s-cone condition with s ≥ n as well as

x · ∇Q ≤ 0.

There is no normal solution u(x) to (1.2) on Rn with Qenu ∈ L1(Rn) where even integer n ≥ 2.

Proof. We argue by contradiction. Assume that such solution u(x) exists. Since x · ∇Q ≤ 0, we have
Q ≤ C. Based on Q satisfying s-cone condition with s ≥ n, with help of Lemma 4.4 and Lemma 3.4, there
exists a sequence Ri →∞ such that

lim
i→∞

4

n!|Sn|

�
BRi

(0)

x · ∇Qenudx = α(α− 2).

Due to x · ∇Q ≤ 0, we further have

4

n!|Sn|

�
Rn

x · ∇Qenudx = α(α− 2)

which yields that
0 < α < 2 (4.3)

since Q is obviously not a constant. However, Lemma 4.3 yields that

α ≥ 1 +
s

n
≥ 2

which contradicts to (4.3).

In particular, suppose that Q(x) is a non-constant polynomial splitting as

Q(x) = Hm(x) + Pm−1(x)

where Hm is a homogeneous function and Pm−1(x) is a polynomial of degree at most m − 1. If either
Hm(x) ≥ 0 or Hm(x) ≤ 0, then we have either Q− ≤ C|x|m−1 or Q+ ≤ C|x|m−1 near infinity
respectively.

5 Bol’s inequality for polynomial Q-curvature
For readers’ convenience, we establish the modified Ding’s lemma (See Lemma 1.1 in [4]). It has also been
established in Proposition 8.5 of [8] or Lemma 2.6 of [16].

Lemma 5.1. Consider a smooth solution u(x) to the following equation

−∆u = fe2u on R2

with smooth function f ≤ 1, then there holds
�
R2

e2udx ≥ 4π

when the equality achieves, one has f ≡ 1.

Proof of Theorem 1.2:

14



Proof. We only need to deal with the case e4u ∈ L1(R4).
Firstly, if Q(x) is a constant, Theorem 2.9 deduces that Q(x) must be a positive constant. The classifi-

cation theorem in [17] shows that �
R4

Qe4udx = 6|S4|

which yields that �
R4

e4udx ≥ |S4|

with ” = ” holds if and only if Q ≡ 6.
Secondly, if Q(x) is a non-constant polynomial with Q(x) ≤ 6, then the degree of Q(x) must be an

even integer. Lemma 4.2 yields that Q(x) satisfying s-cone condition with s = degQ. If degQ ≥ 4,
Lemma 4.3 concludes that �

R4

Qe4udx ≥ 6|S4|.

Since non-constant Q(x) ≤ 6, we obtain that
�
R4

e4udx > |S4|.

Finally, the remaining case is degQ(x) = 2. Since Q(x) ≤ 6, up to a rotation and a translation of the
coordinates, we may suppose that

Q(x) = a+

4∑
i=1

aix
2
i

where ai ≤ 0,
∑4
i=1 a

2
i 6= 0 and a ≤ 6. Using e4u ∈ L1(R4) and Qe4u ∈ L1(R4), one has

4∑
i=1

aix
2
i e

4u ∈ L1(R4)

which yields that x · ∇Qe4u ∈ L1(R4). Applying Lemma 3.4 and Lemma 4.4, there holds

α(α− 2) =
1

16π2

�
R4

x · ∇Qe4udx =
1

8π2

�
R4

4∑
i=1

aix
2
i e

4udx < 0. (5.1)

Combing (5.1) with Lemma 4.3, one has
3

2
≤ α < 2. (5.2)

Immediately, one has a > 0. Using the identity (5.1) again, one has
�
R4

e4udx =
8π2

a
α(3− α).

Making using of the estimate (5.2) and a ≤ 6, there holds
�
R4

e4udx >
8π2

3
= |S4|.

Finally, we finish our proof.

Proof of Theorem 1.3:
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Proof. If
�
Rn e

nudx = +∞, it is trvial that the estimate (1.4) holds . We just need to consider the case
enu ∈ L1(Rn). Then one has

�
Rn

|ϕ|enudx ≤ (n− 1)!

�
Rn

enudx+

�
Rn

|(n− 1)! + ϕ(x)|enudx < +∞.

If ϕ is a constant, with help of Theorem 2.9 and the the classification theorem in [22], [19] or [25], we must
have ϕ > −(n− 1)! and �

Rn

enudx =
(n− 1)!

(n− 1)! + ϕ
|Sn| ≥ |Sn|

with equality holds if and only if ϕ ≡ 0.
Now, we are going to deal with the non-constant case. Due to ϕ ≤ 0, the degree of ϕ must be an even

integer. If degϕ = 2, following the same argument in the proof of Theorem 1.2, there holds
�
Rn

enud > |Sn|.

When deg(ϕ) ≥ n, with help of Lemma 4.3, one has α ≥ 2. Then there holds
�
Rn

enudx >

�
Rn

(n− 1)! + ϕ

(n− 1)!
enudx ≥ |Sn|.

If 4 ≤ degϕ < n and α ≥ 2, due to the same reason, the estimate (1.4) still holds. Thus the remaining case
is 4 ≤ degϕ ≤ n− 2 and α < 2. With help of Lemma 4.3, there holds

1 +
degϕ

n
≤ α < 2. (5.3)

Making use of Lemma 3.4, there exists a sequence Ri →∞ as i→∞ such that

α(α− 2) =
4

n!|Sn|
lim
i→∞

�
BRi

(0)

x · ∇ϕenudx.

Using the assumption x · ∇ϕ ≥ deg(ϕ)ϕ, one has
�
BRi

(0)

x · ∇ϕenudx ≥ deg(ϕ)

�
BRi

(0)

ϕenudx.

Then a direct computation yields that

α(α− 2) ≥ 4

n!|Sn|
deg(ϕ)

�
Rn

ϕenudx

=
2 deg(ϕ)

n
α− 4 degϕ

n|Sn|

�
Rn

enudx

which shows that �
Rn

enudx ≥ n|Sn|
4 degϕ

α(2 +
2 degϕ

n
− α).

Using (5.3), one has �
Rn

enudx > |Sn|.

Finally, we finish our proof.
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6 Bol’s inequality for radial solutions
Proof of Theorem 1.1:

Proof. We just need to deal with the case enu ∈ L1(Rn). Set

v(x) :=
2

(n− 1)!|Sn|

�
Rn

log
|y|
|x− y|

(n− 1)!enu(y)dy. (6.1)

Firstly, we claim that v(x) is also radial symmetric. For any rotation T , we have u(Ty) = u(y) due to u(x)
is radial symmetric. In fact, by rotating the coordinates, there holds

v(Tx) =
2

(n− 1)!|Sn|

�
Rn

log
|y|

|Tx− y|
(n− 1)!enu(y)dy

=
2

(n− 1)!|Sn|

�
Rn

log
|Ty|

|Tx− Ty|
(n− 1)!enu(Ty)dy

=
2

(n− 1)!|Sn|

�
Rn

log
|y|
|x− y|

(n− 1)!enu(y)dy

=v(x).

Setting h := u− v, for n = 2, there holds

∆h = (1−Q)enu ≥ 0. (6.2)

For n ≥ 4, a direct computation yields that

∆h =
2(n− 2)

(n− 1)!|Sn|

�
Rn

1

|x− y|2
((n− 1)!−Q) enudy ≥ 0 (6.3)

and there holds
(−∆)

n
2 v = (n− 1)!enhenv.

Combing with (6.1), we find that v is a normal solution with Q-curvature equal to (n− 1)!enh. For brevity,
we denote the normalized integrated Q-curvature as

α0 :=
2

(n− 1)!|Sn|

�
Rn

(n− 1)!enhenvdx =
2

|Sn|

�
Rn

enudx.

By using Lemma 3.1, there exists a sequence Ri →∞ such that

lim
i→∞

4

n!|Sn|

�
BRi

(0)

x · ∇((n− 1)!enh)envdx ≤ α0(α0 − 2). (6.4)

Using divergence theorem and the condition that u(x) is radially symmetric, there holds

4

n!|Sn|

�
BRi

(0)

x · ∇((n− 1)!enh)envdx

=
4

|Sn|

�
BRi

(0)

x · ∇henudx

=
4

|Sn|

� Ri

0

�
Sn−1(r)

r
∂h

∂r
enudσdr

=
4

|Sn|

� Ri

0

renu(r)
�
Sn−1(r)

∂h

∂r
dσdr
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=
4

|Sn|

� Ri

0

renu(r)
�
Br(0)

∆hdxdr

≥0

where the last term comes from (6.2) and (6.3). Finally, the estimate (6.4) yields that

α0 ≥ 2

i.e. �
Rn

enudx ≥ |Sn|

when the equality achieves, one has ∆h ≡ 0 which yields that Q ≡ (n− 1)!.
On the other hand, if Q ≡ (n− 1)!, using Lemma 3.4 and Lemma 4.4, we also obtian that α0 = 2.

Proof of Theorem 1.4:

Proof. Due to the assumptions Qenu ∈ L1(Rn) and Q ≥ (n− 1)!, one has enu ∈ L1(Rn). Making use of
Lemma 2.3, for |x| � 1, there holds

�
B |x|

2

(x)

enudy ≥C
�
B |x|

2

(x)

|y|−nαdy

≥C|x|n−nα

which yields that
α > 1. (6.5)

Using the assumption (n− 1)! ≤ Q(x) ≤ C(|x|+ 1)k, we claim that

u(x) = (−α+ o(1)) log |x|. (6.6)

For |x| � 1, using Qenu ∈ L1(Rn), there holds

|
�
|x|−2(k+1)≤|x−y|≤1

log
1

|x− y|
Qenudy| ≤ 2(k+1)

(�
|x|−2(k+1)≤|x−y|≤1

|Q|enudy

)
log |x| = o(1) log |x|

With help of Lemma 2.1, one has

u(x) = (−α+ o(1)) log |x|+ 2

(n− 1)!|Sn|

�
|x−y|≤|x|−2(k+1)

log
1

|x− y|
Qenudy. (6.7)

Using the assumption Q ≤ C(|x|+ 1)k and the estimate (2.7), for |x| � 1, Holder’s inequality yields that
�
|x−y|≤|x|−2(k+1)

log
1

|x− y|
Qenudy

≤C(|x|+ 1)k

(�
|x−y|≤|x|−2(k+1)

(log
1

|x− y|
)2dy

) 1
2
(�
|x−y|≤|x|−2(k+1)

e2nudy

) 1
2

≤C|x|k
(�
|y|≤|x|−2(k+1)

(log
1

|y|
)2dy

) 1
2
(�

B1/4(x)

e2nudy

) 1
2
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≤C|x|k(

� ∞
(2k+2) log |x|

e−ntt2dt)
1
2 |x|−α+o(1)

≤C|x|k|x|−n(2k+2)(log |x|)2|x|−α+o(1).

Using above estimate and the (6.5) as well as Q > 0, for |x| � 1, one has

0 ≤
�
|x−y|≤|x|−2(k+1)

log
1

|x− y|
Qenudy ≤ C.

Due to (6.7), we prove our claim (6.6). Moreover, using (6.6) and (6.5), one has

enu ≤ C|x|−n (6.8)

near infinity. Set

v(x) :=
2

(n− 1)!|Sn|

�
Rn

log
|y|
|x− y|

(n− 1)!enu(y)dy.

Firstly, we know that v(x) is also radial symmetric following the same argument before. Samely, setting
h := u− v, for n = 2, one has

∆h = (1−Q)e2u ≤ 0 (6.9)

For n ≥ 4, one has

∆h =
2(n− 2)

(n− 1)!|Sn|

�
Rn

1

|x− y|2
((n− 1)!−Q) enudy ≤ 0 (6.10)

and there holds
(−∆)

n
2 v = (n− 1)!enhenv.

For brevity, we denote

α0 :=
2

(n− 1)!|Sn|

�
Rn

(n− 1)!enhenvdx =
2

|Sn|

�
Rn

enudx.

By using Lemma 3.4 and the estimate (6.8), there exists a sequence Ri →∞ such that

lim
i→∞

4

n!|Sn|

�
BRi

(0)

x · ∇((n− 1)!enh)envdx = α0(α0 − 2). (6.11)

Using divergence theorem, there holds

4

n!|Sn|

�
BRi

(0)

x · ∇((n− 1)!enh)envdx

=
4

|Sn|

�
BRi

(0)

x · ∇henudx

=
4

|Sn|

� Ri

0

�
Sn−1(r)

r
∂h

∂r
enudσdr

=
4

|Sn|

� Ri

0

renu(r)
�
Sn−1(r)

∂h

∂r
dσdr

=
4

|Sn|

� Ri

0

renu(r)
�
Br(0)

∆hdxdr

≤0.
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Finally, the estimate (6.11) yields that
α0 ≤ 2

i.e. �
Rn

enudx ≤ |Sn|

when the equality achieves, one has ∆h ≡ 0 which yields that Q ≡ (n − 1)!. On the other hand, if
Q ≡ (n− 1)!, due to the same reason as before, one has

�
Rn

enudx = |Sn|.

7 Applications
We are going to show some applications of these higher order Bol’s inequality. In [20], Poliakovsky and
Tarantello consider the equation

−∆u = (1 + |x|2p)e2u (7.1)

where p > 0 and x ∈ R2 with β = 1
2π

�
R2(1 + |x|2p)e2udx < +∞ to study selfgravitating strings. They

make use of very techinial methods to show that the existence of radial solution if and only if

max{2, 2p} < β < 2 + 2p. (7.2)

Here, we will use Theorem 1.4 to show for each radial solution, the estimate (7.2) holds. Firstly, due to
(1 + |x|2p)e2u ∈ L1(R2), Theorem 2.2 in [15] shows that the solution u(x) is normal. Making use of the
following theorem, we can easily show that (7.2) is necessary for the existence of radial solutions.

For higher order cases, we will consider the normal solutions

u(x) =
2

(n− 1)!|Sn|

�
Rn

log
|y|
|x− y|

(1 + |x|np)enudx+ C (7.3)

with (1 + |x|np)enu ∈ L1(Rn). Set the same notation as before

β :=
2

(n− 1)!|Sn|

�
Rn

(1 + |x|np)enudx.

Theorem 7.1. For p > 0, consider the normal solution to (7.3) with even integer n ≥ 2. For each radial
solution to (7.3), there holds

max{2, 2p} < β < 2 + 2p.

Proof. Making use of Lemma 3.4 and Lemma 4.4, the following Pohozaev identity holds

β(β − 2) =
4p

(n− 1)!|Sn|

�
Rn

|x|npenudx (7.4)

which yields that β > 2. It is obvious to see that

4p

(n− 1)!|Sn|

�
Rn

|x|npenudx <
4p

(n− 1)!|Sn|

�
Rn

(1 + |x|np)enudx = 2pβ.

Thus the identity (7.4) yields that
2 < β < 2 + 2p. (7.5)
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On the other hand, the identity (7.4) is equivalent to
�
Rn

enudx =
(n− 1)!|Sn|

4p
β(2 + 2p− β). (7.6)

For each radial solution to (7.3), sicne 1 + |x|np ≥ 1, Theorem 1.4 yields that
�
Rn

enudx < (n− 1)!|Sn|. (7.7)

Combing (7.6) with (7.7), one has
(β − 2)(β − 2p) > 0.

With help of (7.5), we finally have
max{2, 2p} < β < 2 + 2p.

With help of above theorem, we answer an open problem in [12]. Combing with Theorem 1.5 in [12],
we obtain the following result which generalize the reuslt of Poliakovsky and Tarantello in [20] for n = 2
to higher order cases.

Corollary 7.2. For n = 4, the integeral equation (7.3) has radial normal solutions if and only if

max{2, 2p} < β < 2 + 2p.
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