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Abstract. In this paper, we consider the following variational problem:

inf
u∈D

1,2
a (RN )\Z

∥u∥2
D

1,2
a (RN )

− C−1
a,b,N∥u∥2

Lp+1(|x|−b(p+1),RN )

dist2
D

1,2
a

(u,Z)
:= cBE ,

where N ≥ 2, bFS(a) < b < a + 1 for a < 0 and a ≤ b < a + 1 for 0 ≤ a <

ac := N−2
2

and a + b > 0 with bFS(a) being the Felli-Schneider curve, p =
N+2(1+a−b)
N−2(1+a−b)

, Z = {cτac−aW (τx) | c ∈ R\{0}, τ > 0} and up to dilations and

scalar multiplications, W (x), which is positive and radially symmetric, is the
unique extremal function of the following classical Caffarelli-Kohn-Nirenberg

(CKN for short) inequality(∫
RN

|x|−b(p+1)|u|p+1dx

) 2
p+1

≤ Ca,b,N

∫
RN

|x|−2a|∇u|2dx

with Ca,b,N being the optimal constant. It is known in [32] that cBE > 0. In

this paper, we prove that the above variational problem has a minimizer for

N ≥ 2 under the following two assumptions:
(i) a∗c ≤ a < ac and a ≤ b < a+ 1,

(ii) a < a∗c and b∗FS(a) ≤ b < a+ 1,

where a∗c =

(
1−

√
N−1
2N

)
ac and

b∗FS(a) =
(ac − a)N

ac − a+
√

(ac − a)2 +N − 1
+ a− ac.

Our results extend that of Konig in [24] for the Sobolev inequality to the CKN

inequality. Moreover, we believe that our assumptions (i) and (ii) are optimal
for the existence of minimizers of the above variational problem.
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1. Introduction

Let D1,2
a (RN ) be the Hilbert space given by

D1,2
a (RN ) = {u ∈ D1,2(RN ) |

∫
RN

|x|−2a|∇u|2dx < +∞} (1.1) eqn886

with the inner product

⟨u, v⟩D1,2
a (RN ) =

∫
RN

|x|−2a∇u∇vdx

1
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and D1,2(RN ) = Ẇ 1,2(RN ) being the usual homogeneous Sobolev space (cf. [16,
Definition 2.1]). Then the classical Caffarelli-Kohn-Nirenberg (CKN for short) in-
equality, established by Caffarelli, Kohn and Nirenberg in the celebrated paper [4]
in a more general version, states that(∫

RN

|x|−b(p+1)|u|p+1dx

) 2
p+1

≤ Ca,b,N

∫
RN

|x|−2a|∇u|2dx, (1.2) eq0001

for all u ∈ D1,2
a (RN ), where −∞ < a < ac :=

N−2
2 , p = N+2(1+a−b)

N−2(1+a−b) and
a+

1

2
< b < a+ 1, N = 1,

a < b < a+ 1, N = 2,

a ≤ b < a+ 1, N ≥ 3.

Here, for the sake of simplicity, we denote ac =
N−2
2 , as that in [10–12].

As that of many famous functional inequalities such as the Sobolev inequal-
ity, the Hardy-Littlewood-Sobolev inequality, the Gagliardo-Nirenberg-Sobolev in-
equality, the Euclidean logarithmic Sobolev inequality and so on, as a generalization
of the Sobolev and Hardy-Sobolev inequalities, the CKN inequality (1.2) is also very
helpful in understanding various problems in lots of mathematical fields, such as
nonlinear partial differential equations, calculus of variations, geometric analysis,
the theory of probability to mathematical physics and so on. For this purpose, a
fundamental task in understanding the CKN inequality (1.2) is to study the opti-
mal constant, the classification of extremal functions, as well as their qualitative
properties for parameters in the full region. Under the above conditions, it is well
known (cf. [1, 5, 7, 27, 31]) that the CKN inequality (1.2) has extremal functions if
and only if under the following assumptions:

(1) a < b < a+ 1 and a < 0 for N ≥ 2,
(2) a+ 1

2 < b < a+ 1 and a < 0 for N = 1,
(3) a ≤ b < a+ 1 and 0 ≤ a < ac for N ≥ 3.

Moreover, let

bFS(a) =
N(ac − a)

2
√
(ac − a)2 + (N − 1)

+ a− ac > a (1.3) eqn991

be the Felli-Schneider curve found in [17], then it is also well known (cf. [1,7,10–13,
17, 27, 31]) that up to dilations τac−au(τx) and scalar multiplications Cu(x) (also
up to translations u(x+ y) in the special case a = b = 0), the CKN inequality (1.2)
has a unique extremal function

W (x) = (2(p+ 1)(ac − a)2)
1

(p−1)

(
1 + |x|(ac−a)(p−1)

)− 2
p−1

(1.4) eqq0097

either for bFS(a) ≤ b < a + 1 with a < 0 or for a ≤ b < a + 1 with 0 ≤ a < ac
in the cases of N ≥ 2 while, extremal functions of (1.2) must be non-radial either
for the full region of a and b in the case of N = 1 or for a < b < bFS(a) with
a < 0 in the cases of N ≥ 2. Moreover, it has been proved in [5, 28] that there
are exactly two extremal functions of (1.2) in the case of N = 1 up to dilations
and scalar multiplications while in the cases of N ≥ 2, extremal functions of (1.2)
must have O(N − 1) symmetry for a < b < bFS(a) with a < 0, that is, extremal
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functions of (1.2) for N ≥ 2 must depend on the radius r and the angle θN between

the positive xN -axis and
−→
Ox for a < b < bFS(a) with a < 0 up to rotations. To

our best knowledge, whether the extremal function of (1.2) is unique or not for
a < b < bFS(a) with a < 0 in the cases of N ≥ 2 remains open.

Besides the existence and classification of extremal functions and the computa-
tion of the optimal constant, a more interesting and challenging problem in under-
standing functional inequalities is its quantitative stability, whose basic question
one wants to address in this aspect is the following (cf. [15]):

(Q) Suppose we are given a functional inequality for which minimizers are
known. Can we prove, in some quantitative way, that if a function “almost
attains the equality” then it is close (in some suitable sense) to one of the
minimizers?

The studies on the quantitative stability of functional inequalities were initialed by
Brezis and Lieb in [3] by raising an open question for the classical Sobolev inequality
(a = b = 0 in the CKN inequality (1.2)),

SN

(∫
RN

|u|
2N

N−2 dx

)N−2
N

≤
∫
RN

|∇u|2dx (1.5) eqq0093

for N ≥ 3, which was settled by Bianchi and Egnell in [2] by proving that

dist2D1,2(u,U) ≲ ∥u∥2D1,2(RN ) − SN∥u∥2
L

2N
N−2 (RN )

, (1.6) eqq0090

where SN is the optimal constant of (1.5) and

U = {cUy,λ | c ∈ R\{0}, λ > 0 and y ∈ RN}

with U(x) being the Aubin-Talanti bubble (cf. [1,31]) and Uy,λ(x) = λ
N−2

2 U(λ(x−
y)). Since then, the stability of functional inequalities, which is similar to (1.6), is
called the Bianchi-Egnell type stability. In the very recent paper [32], we prove the
following Bianchi-Egnell type stability of the CKN inequality (1.2):

⟨thm0001⟩Theorem 1.1. Let N ≥ 3, a < ac and bFS(a) be the Felli-Schneider curve given
by (1.3) and assume that either

(1) bFS(a) < b < a+ 1 with a < 0 or
(2) a ≤ b < a+ 1 with a ≥ 0 and a+ b > 0.

Then

dist2
D1,2

a
(u,Z) ≲ ∥u∥2

D1,2
a (RN )

− C−1
a,b,N∥u∥2Lp+1(|x|−b(p+1),RN ) (1.7) eqq0091

for all u ∈ D1,2
a (RN ), where

Z = {cWτ (x) | c ∈ R\{0} and τ > 0}

with Wτ (x) = τac−aW (τx), Lp+1(|x|−b(p+1),RN ) is the usual weighted Lebesgue
space with its usual norm given by

∥u∥Lp+1(|x|−b(p+1),RN ) =

(∫
RN

|x|−b(p+1)|u|p+1dx

) 1
p+1

.

Moreover, by the same argument as that used in [32] for proving Theorem 1.1,
it is not difficult to obtain the following one.
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⟨thm0002⟩Theorem 1.2. Let N = 2 and assume that bFS(a) < b < a + 1 with a < 0 and
bFS(a) being the Felli-Schneider curve given by (1.3). Then

dist2
D1,2

a
(u,Z) ≲ ∥u∥2

D1,2
a (R2)

− C−1
a,b,2∥u∥

2
Lp+1(|x|−b(p+1),R2)

for all u ∈ D1,2
a (R2).

Remark 1.1. In [32, Theorem 1.1], we have claimed that Theorem 1.1 holds true
for bFS(a) ≤ b < a + 1 with a < 0. However, it is incorrect for b = bFS(a) since
it has been proved in [17] that W is degenerate for b = bFS(a). It follows that the
spectral gap inequality,

∥ρ∥2
D1,2

a (RN )
≥ (p+ ε)

∫
RN

|x|−b(p+1)W p−1ρ2dx

for all ρ ∈ N⊥ which plays the key role in proving the Bianchi-Egnell type stability
of the CKN inequality in [32, Theorem 1.1], does not hold true any more for b =
bFS(a), where ε > 0 is a fixed small constant and

N⊥ = {ρ ∈ D1,2
a (RN ) | ⟨ρ,W ⟩D1,2

a (RN ) = ⟨ρ,W ′⟩D1,2
a (RN ) = 0}.

This has already been observed in [8,19]. We now correct [32, Theorem 1.1] here to
Theorem 1.1. Moreover, it is worth pointing out that in this degenerate situation,
the Bianchi-Egnell stability of the CKN inequality still holds true for higher order
of the distance functional, as proved in [19] whose ideas can be traced back to [20].

The power two of the distance in the left side of the Bianchi-Engell inequal-
ity (1.6) is well known to be optimal, which is also the case of the Bianchi-Egnell
type stability of the CKN inequality (1.2) given by (1.7). Thus, we can define the
following two variational problems:

inf
u∈D1,2(RN )\U

∥u∥2D1,2(RN ) − SN∥u∥2
L

2N
N−2 (RN )

dist2D1,2(u,U)
:= sBE (1.8) eqq0092

and

inf
u∈D1,2

a (RN )\Z

∥u∥2
D1,2

a (RN )
− C−1

a,b,N∥u∥2
Lp+1(|x|−b(p+1),RN )

dist2
D1,2

a
(u,Z)

:= cBE , (1.9) eqq1001

By (1.6), we know that sBE > 0, and by Theorems 1.1 and 1.2, we know that
cBE > 0 either for

(1) bFS(a) < b < a+ 1 with a < 0 or for
(2) a ≤ b < a+ 1 with a ≥ 0 and a+ b > 0.

in the cases of N ≥ 2. Moreover, as pointed out by Konig in [24], it is a long-
standing open question that is to determine the best constant sBE in (1.8). It
has been proved by Konig in [24] that the variational problem (1.8) has a mini-
mizer which makes the key step in determining the best constant sBE and gives
a positive answer to the open question proposed in [9]. Konig’s proof in [24] is a
concentration-compactness type argument on the distance functional dist2D1,2(u,U).
By establishing two crucial energy estimates of sBE (cf. [23, 24]), Konig excluded
the dichotomy case and the vanishing case of dist2D1,2(u,U) and proved that the
variational problem (1.8) has a minimizer. In this argument, a key integrant is the
well understanding of the spectrum of the Laplacian operator −∆ in the weighted
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Lebesgue space L2(U
4

N−2 ,RN ), which is crucial in establishing one of the two im-
portant energy estimates of sBE . Furthermore, as pointed out by Konig in [24],
this strategy also works for the fractional Sobolev inequality of N ≥ 2.

In this paper, by making a well understanding of the spectrum of the operator
−div(|x|−a∇·) in the weighted Lebesgue space L2(|x|−b(p+1)W p−1,RN ), we adapt
Konig’s strategy in [24] to prove the following theorem.

⟨thmq0001⟩Theorem 1.3. Let N ≥ 2 and assume that either

(1) bFS(a) < b < a+ 1 with a < 0 or
(2) a ≤ b < a+ 1 with 0 ≤ a < ac and a+ b > 0.

Then the variational problem (1.9) has a minimizer, provided

(i) a∗c < a < ac and a ≤ b < a+ 1,
(ii) a ≤ a∗c and b∗FS(a) ≤ b < a+ 1,

where

a∗c =

(
1−

√
N − 1

2N

)
ac and b∗FS(a) =

(ac − a)N

ac − a+
√
(ac − a)2 +N − 1

+ a− ac.

Theorem 1.3 is the generalization of Konig’s reuslt in [24] for the Sobolev in-
equality (1.5) to the CKN inequality (1.2). However, Konig has proved in [24] that
sBE is attained for all N ≥ 3 (even in the fractional setting for all N ≥ 2), while
in Theorem 1.3, we only prove that cBE is attained for N ≥ 2 under the assump-
tions (i) and (ii) which do not cover the full region of the parameters a, b under the
conditions (1) and (2). The main reason is that under the assumptions (i) and (ii)
forN ≥ 2, the spectral gap inequality of the operator −div(|x|−a∇·) in the weighted
Lebesgue space L2(|x|−b(p+1)W p−1,RN ) is attained by a unique (up to scalar mul-
tiplications) function which is related to spherical harmonics on SN−1 of degree 0,
while in the remaining case, that is, N ≥ 2 with a < a∗c and bFS(a) < b < b∗FS(a),
the spectral gap inequality of the operator −div(|x|−a∇·) in the weighted Lebesgue
space L2(|x|−b(p+1)W p−1,RN ) is attained by the functions which are related to
spherical harmonics on SN−1 of degree 1. Thus, Konig’s strategy in [24], that is,
expansing the related functional at the possible best choice of test functions up to
the third order term to derive a crucial energy estimate, works for cBE under the
assumptions (i) and (ii) since the expansion has a negative third order term (see the
proof of Proposition 4.1) and is invalid in the remaining case since the expansion
has a varnishing third order term (see the appendix). To go further, we expand
the functional of (1.9) at the possible best choice of test functions up to the fourth
order term. After tedious computations, we find that the possible best choice of
test functions can not derive the desired energy estimate of cBE in this situation
any more, since this expansion has a varnishing third order term and a positive
fourth order term (see the appendix for more details). Taking into account the fact
that the test functions are possible to be optimal, we believe that cBE will be not
attained in this remaining case. We remark that a similar situation is also faced in
proving the existence of minimizers of sBE in the fractional setting for N = 1, see,
for example, the very recent paper [25].

In the final of the introduction, we would like to point out that the studies
on the stability of functional inequalities are growingly interested in recent years
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in the community of nonlinear analysis by its deep connections to many nonlin-
ear partial differential equations, such as the fast diffusion equation, the Keller-
Segel equation and so on. We refer the readers to the survey [14] and the Lecture
notes [21] for their detailed introductions and references about the studies on lots of
famous functional inequalities and their stability, such as the Sobolev inequality, the
Hardy-Littlewood-Sobolev inequality, the Gagliardo-Nirenberg-Sobolev inequality,
the Caffarelli-Kohn-Nirenberg inequality, the Euclidean logarithmic Sobolev in-
equality and so on. We also would like to refer the readers to the note [15] for
the related studies on the stability of many geometric inequalities.

Notations. Throughout this paper, a ∼ b means that C ′b ≤ a ≤ Cb and a ≲ b
means that a ≤ Cb. Moreover, N0 = {0} ∪ N.

2. Preliminaries

Let D1,2
a (RN ) be the Hilbert space given by (1.1) with the norm ∥ · ∥D1,2

a (RN ),

then by [5, Proposition 2.2], D1,2
a (RN ) is isomorphic to the Hilbert space H1(C)

through the Emden-Fowler transformation

u(x) = |x|−(ac−a)v(− ln |x|, x

|x|
), (2.1) eq0007

where C = R× SN−1 is the standard cylinder, the inner product in H1(C) is given
by

⟨w, v⟩H1(C) =

∫
C
∂tw∂tv +∇SN−1w∇SN−1v + (ac − a)2wvdµ

:=

∫
C
∇w∇v + (ac − a)2wvdµ

with dµ being the volume element on C and w, v ∈ H1(C).

The Euler-Lagrange equation of the CKN inequality (1.2) is given by

−div(|x|−a∇u) = |x|−b(p+1)|u|p−1u, in RN . (2.2) eq0018

It has been proved in [7, 12] that W (x), given by (1.4), is the unique nonnegative
solution of (2.2) in D1,2

a (RN ) either for bFS(a) ≤ b < a + 1 with a < 0 or for
a ≤ b < a + 1 with a ≥ 0 and a + b > 0 up to dilations Wτ = τac−aW (τx) in the
cases of N ≥ 2. By the transformation (2.1), W (x) and (2.2) are transformed into

Ψ(t) =

(
(p+ 1)(ac − a)2

2

) 1
p−1

(
cosh(

(ac − a)(p− 1)

2
t)

)− 2
p−1

(2.3) eq0026

and

−∆SN−1v − ∂2
t v + (ac − a)2v = |v|p−1v, in C, (2.4) eq0006

respectively, where t = − ln |x| and θ = x
|x| for x ∈ RN\{0} and ∆SN−1 is the

Laplace-Beltrami operator on SN−1. Moreover, the CKN inequality (1.2) and the
variational problem (1.9) is transformed into

C−1
a,b,N = inf

v∈H1(C)\{0}

∥v∥2H1(C)

∥v∥2Lp+1(C)
, (2.5) eq0009
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and

inf
v∈H1(C)\Y

∥v∥2H1(C) − C−1
a,b,N∥v∥2Lp+1(C)

dist2H1(C)(v,Y)
:= cBE , (2.6) eqq0001

respectively, where Lp+1(C) is the usual Lebesgue space with its usual norm given

by ∥u∥Lp+1(C) =

(∫
C |u|

p+1dµ

) 1
p+1

and

Y = {cΨs(t) | c ∈ R\{0} and s ∈ R} (2.7) eqq1030

with Ψs(t) = Ψ(t− s).

On the other hand, it has been proved in [17] that W (x) is nondegenerate in
D1,2

a (RN ) either for bFS(a) < b < a+ 1 with a < 0 or for a ≤ b < a+ 1 with a ≥ 0
and a+ b > 0 in the cases of N ≥ 2. That is, up to scalar multiplications,

V (x) := ∇W (x) · x+ (ac − a)W (x) =
∂

∂λ
(λ(ac−a)W (λx))|λ=1 (2.8) eq0010

is the only nonzero solution of the linearization of (2.2) around W in D1,2
a (RN )

which is given by

−div(|x|−a∇u) = p|x|−b(p+1)W p−1u, in RN . (2.9) eq0017

By the transformation (2.1), the linear equation (2.9) can be rewritten as follows:

−∆SN−1v − ∂2
t v + (ac − a)2v = pΨp−1v, in C. (2.10) eq0016

By applying the transformation (2.1) on (2.8), we know that

Ψ′
s(t) = Ψ′(t− s) =

∂

∂t
Ψ(t− s) = − ∂

∂s
Ψ(t− s)

is the only nonzero solution of (2.10) in H1(C).

3. Spectral gap inequality

We denote by M = RΨ
⊕

RΨ′. Since Ψ is Morse index 1, by the nondegeneracy
of Ψ under the conditions (1) and (2) in the cases of N ≥ 2, we have the following
spectral gap inequality:

∥ρ∥2H1(C) ≥ (p+ ε)

∫
C
Ψp−1ρ2dµ (3.1) eqq10018

for all ρ ∈ M⊥ where ε > 0 is a fixed small constant and

M⊥ = {ρ ∈ H1(C) | ⟨ρ,Ψ⟩H1(C) = ⟨ρ,Ψ′⟩H1(C) = 0}.

In this section, we shall improve the spectral gap inequality (3.1) by proving the
following result.

⟨propq0001⟩Proposition 3.1. Let N ≥ 2 and assume that either

(1) bFS(a) < b < a+ 1 with a < 0 or
(2) a ≤ b < a+ 1 with 0 ≤ a < ac and a+ b > 0.

Then for every ρ ∈ M⊥, we have

∥ρ∥2H1(C) − β

∫
C
cosh−2(γt)ρ2dµ ≥ λ∗∥ρ∥2H1(C), (3.2) eqq0021
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where

λ∗ =



2(p− 1)

3p− 1
, a∗c < a < ac and a ≤ b < a+ 1,

2(p− 1)

3p− 1
, a ≤ a∗c and b∗FS(a) ≤ b < a+ 1,

2q(a)− (p− 2)(p+ 1) + (p− 1)(1 + q(a))
1
2

2 + 2q(a) + (p− 1)(1 + q(a))
1
2

, a ≤ a∗c and bFS(a) < b < b∗FS(a)

with

β =
p(p+ 1)(ac − a)2

2
, γ =

(p− 1)(ac − a)

2
, a∗c =

(
1−

√
N − 1

2N

)
ac,

and

b∗FS(a) =
(ac − a)N

ac − a+
√
(ac − a)2 +N − 1

+ a− ac, q(a) =
N − 1

(ac − a)2
.

Moreover, the equality of (3.2) holds if and only if for

ρ0,2(t) = P(tanh(γt))(cosh(γt))−
2

p−1 (3.3) eqq1022

with

P(z) =
1

8
(1− z2)−

2
p−1

d2

dz2
((1− z2)2+

2
p−1 )

being a Jacobi polynomial under the assumptions

(i) a∗c ≤ a < ac and a ≤ b < a+ 1,
(ii) a < a∗c and b∗FS(a) < b < a+ 1,

the equality of (3.2) holds if and only if for

ρ1,0,l(t, θ) = (cosh(γt))−
√

(ac−a)2+N−1
γ Θ1,l, l = 1, 2, · · · , N, (3.4) eqq3022

under the assumption a < a∗c and bFS(a) < b < b∗FS(a), and the equality of (3.2)
holds if and only if either for ρ0,2(t) or for ρ1,0,l(t, θ), l = 1, 2, · · · , N , under the
assumption a < a∗c and b = b∗FS(a), where Θ1,l are spherical harmonics of degree
one.

Proof. Since by (2.3), Ψ(t) → 0 as |t| → +∞, it is well known that the operator
−∆SN−1 − ∂2

t + (ac − a)2 is compact in L2(pΨp−1, C). Thus, it is also well known
that σ(−∆SN−1 − ∂2

t + (ac − a)2) = {λl}l∈N with 0 < λ1 ≤ λ2 ≤ · · · ≤ λl → +∞
as l → ∞, where σ(−∆SN−1 − ∂2

t + (ac − a)2) is the spectrum of the operator
−∆SN−1 − ∂2

t + (ac − a)2 in L2(pΨp−1, C).

Let us now consider the following eigenvalue problem

−∆SN−1v − ∂2
t v + (ac − a)2v = λpΨp−1v, in C. (3.5) eqq0016

where λ > 0. As usual, since the spherical harmonics {Θi,l}i∈N0,1≤l≤li,N , which
satisfies the following equation

−∆SN−1Θi,l = i(N − 2 + i)Θi,l in SN−1, (3.6) eqq10016
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form a orthogonal basic of L2(SN−1), we shall use {Θi,l}i∈N0,1≤l≤li,N as the Fourier
modes to expand the eigenvalue problem (2.10), where li,N ∈ N. Since we have

v =

∞∑
i=0

li,N∑
l=1

ϕi,lΘi,l

for every v ∈ L2(C) with ϕi,l =
∫
C vΘi,ldθ, by (3.5) and (3.6), v is a solution of the

eigenvalue problem (3.5) if and only if ϕi,l satisfies the following ordinary differential
equation

−∂2
t ϕi,l − λβ cosh−2(γt)ϕi,l = −τa,iϕi,l, in R (3.7) eqq0017

for all l = 1, 2, · · · , li,N and i ∈ N0, where

τa,i = (ac − a)2 + i(N − 2 + i). (3.8) eqq5699

By [26, p. 74] (see also [18, 4.2.2. Example: Poschl-Teller potentials] or [17, p.
130]), the negative eigenvalues of the opreator −∂2

t − λβ cosh−2(γt) in L2(R) is
given by

σj = −γ2

4

(
− (2j + 1) +

√
1 + 4λβγ−2

)2

where j = 0, 1, 2, · · · , j0 with j0 ∈ N0 and j0 ≤ 1
2

(√
1 + 4λβγ−2 − 1

)
. It follows

that the ordinary differential equation (3.7) is solvable if and only if

γ2

4

(
− (2j + 1) +

√
1 + 4λβγ−2

)2

= τa,i. (3.9) eqq0018

For every i and j, we denote the unique number of λ > 0 which satisfies (3.9) by
λi,j . Thus, all eigenvalues of (3.5) are {λi,j}i,j∈N0

. Since (3.5) with λ = 1 is just
(2.10), it has been proved in [17] that λ0,1 = 1. Note that by (3.9), λj,i < λj,i+1

and λj,i < λj+1,i for all i and j, thus, by λ0,1 = 1, we have λ0,0 < 1 and 1 < λi,j

for all other i and j except λ1,0. Moreover, since Ψ has Morse index 1 under
the conditions (1) and (2) in the cases of N ≥ 2, we must have 1 < λ1,0. Thus,
min{λ0,2, λ1,1, λ1,0} is the smallest eigenvalue of (3.5) which is larger than 1.

Let us first compare λ0,2 and λ1,1. We define

f(λ) =
√
1 + 4λβγ−2.

Then by (3.9),

f(λ0,2)− f(λ1,1) = 2(1− gN (a)h−1
N,a(b)),

where gN (a) =
√

1
4 + N−1

4(ac−a)2 − 1
2 and hN,a(b) =

1+a−b
N−2(1+a−b) . By direct calcula-

tions, we find that hN,a(b) is decreasing for b with

min
a≤b≤a+1

hN,a(b) = hN,a(a+ 1) = 0, max
a≤b≤a+1

hN,a(b) = hN,a(a) =

(
1

N − 2

)
+

and gN (a) is increasing for a with

min
−∞<a≤N−2

2

gN (a) = gN (−∞) = 0, max
−∞<a≤N−2

2

gN (a) = gN (
N − 2

2
) = +∞.
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Here,

(
1

N−2

)
+

= 1
N−2 for N ≥ 3 and

(
1

N−2

)
+

= +∞ for N = 2. Note that

gN (0) =

(
1

N−2

)
+

, thus, for 0 ≤ a < N−2
2 which implies N ≥ 3, we always have

gN (a)h−1
N,a(b) > 1 for all 0 ≤ a < N−2

2 and a ≤ b < a + 1 with a + b > 0, which

implies that f(λ0,2) < f(λ1,1) for all 0 ≤ a < N−2
2 and a ≤ b < a + 1 with

a + b > 0. Moreover, for every a < 0, there exists a unique a < bN,a < a + 1

such that gN (a)h−1
N,a(bN,a) = 1, which implies that bN,a = bFS(a) given by (1.3).

Thus, by the monotone property of hN,a(b), we see that gN (a)h−1
N,a(b) > 1 for all

a < 0 and bFS(a) < b < a + 1, which implies that f(λ0,2) < f(λ1,1) for all a < 0
and bFS(a) < b < a + 1. It follows that we always have λ0,2 < λ1,1 under the
conditions (1) and (2) in the cases of N ≥ 2.

It is sufficiently to compare λ0,2 and λ1,0 to determine the smallest eigenvalue of
(3.5) which is larger than 1 under the conditions (1) and (2) in the cases of N ≥ 2.
As above, we have

f(λ0,2)− f(λ1,0) = 2(2− gN (a)h−1
N,a(b)).

Now, using the monotone properties of gN (a) and hN,a(b), we can compute as

above to find that gN (a)h−1
N,a(b) > 2 for a∗c < a < ac with all a ≤ b < a + 1 in

the cases of N ≥ 2, while for a ≤ a∗c in the cases of N ≥ 2, gN (a)h−1
N,a(b) > 2

for b∗FS(a) < b < a + 1, gN (a)h−1
N,a(b) = 2 for b = b∗FS(a) and gN (a)h−1

N,a(b) < 2

for bFS(a) < b < b∗FS(a). If follows that λ0,2 < λ1,0 either for a ≤ a∗c with
b∗FS(a) < b < a+1 or for a∗c < a < ac with all a ≤ b < a+1, λ0,2 = λ1,0 for a ≤ a∗c
with b = b∗FS(a) and λ1,0 < λ0,2 for a < a∗c with bFS(a) < b < b∗FS(a), which,
together with the fact that λ0,2 < λ1,1 under the conditions (1) and (2) in the cases
N ≥ 2, implies that λ0,2 is the smallest eigenvalue of (3.5) which is larger than 1
either for a ≤ a∗c with b∗FS(a) < b < a+1 or for a∗c < a < ac with all a ≤ b < a+1,
λ0,2 and λ1,0 are both the smallest eigenvalue of (3.5) which is larger than 1 for
a ≤ a∗c with b = b∗FS(a), and λ1,0 is the smallest eigenvalue of (3.5) which is larger
than 1 for a < a∗c with bFS(a) < b < b∗FS(a).

Since λ0,1 = 1, λ0,0 < 1 and 1 < λi,j for all other i and j, we have

∥ρ∥2H1(C) − β

∫
C
cosh−2(γt)ρ2dµ ≥ λ∗∥ρ∥2H1(C) (3.10) eqq1021

for every ρ ∈ M⊥, where

λ∗ =



λ0,2 − 1

λ0,2
, a∗c < a < ac with a ≤ b < a+ 1,

λ0,2 − 1

λ0,2
, a ≤ a∗c with b∗FS(a) < b < a+ 1,

λ0,2 − 1

λ0,2
=

λ1,0 − 1

λ1,0
, a ≤ a∗c with b = b∗FS(a),

λ1,0 − 1

λ1,0
, a ≤ a∗c with bFS(a) < b < b∗FS(a).
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By (3.9), we can compute

λ0,2 − 1

λ0,2
=

(2(ac − a) + 4γ)γ

(ac − a+ 3γ)(ac − a+ 2γ)
=

2(p− 1)

3p− 1
(3.11) eqq1029

and

λ1,0 − 1

λ1,0
=

√
(ac − a)2 +N − 1(

√
(ac − a)2 +N − 1 + γ)− β√

(ac − a)2 +N − 1(
√
(ac − a)2 +N − 1 + γ)

(3.12) eqq3029

which, together with (3.10), implies that (3.2) holds true for every ρ ∈ M⊥ under
the conditions (1) and (2) in the cases of N ≥ 2.

It remains to prove that the equality of (3.2) holds if and only if for the functions
given by (3.3) and (3.4). By [22, p. 129, Case 1], we have

ϕi,j(t) = χk(sinh(γt))(cosh(γt))
−

jγ+
√

τa,i

γ , (3.13) eqq0020

where χk(z) is a polynomial of degree at most k which depends on i, j. Moreover,
by [22, Theorem 7], χk(z) satisfies the following equation

−γ2(z2 + 1)D2
zχk(z)− ((1− 2j)γ2 − 2γ

√
τa,i)Dzχk(z) +Rχk(z) = 0 (3.14) eqq1090

where R ∈ R can be taken arbitrary values. As that in [26, p. 74] (see also [30, p.
529]), we introduce the function

φj,k(z) = (1 + z2)−
j
2χk(z) and φ̃j,k(y) = φj,k

(
y√

1− y2

)
with z = y√

1−y2
. Then by direct calculations, 1 + z2 = 1

1−y2 . Moreover,

Dyφ̃j,k(y) =
Dzφj,k(z)

(1− y2)
3
2

and

D2
yφ̃j,k(y) =

D2
zφj,k(z)

(1− y2)3
+

3yDzφj,k(z)

(1− y2)
5
2

with

Dzφj,k(z) = −j(1 + z2)−
j+2
2 zχk(z) + (1 + z2)−

j
2Dzχk(z)

and

D2
zφj,k(z) = (1 + z2)−

j
2D2

zχk(z)− 2j(1 + z2)−
j+2
2 zχk(z)

+j

(
(j + 2)z2

1 + z2
− 1

)
(1 + z2)−

j+2
2 χk(z).

It follows that for every τ̃ , µ̃ and q,

(1− y2)D2
yφ̃j,k(y) + (τ̃ − µ̃− (τ̃ + µ̃+ 2))Dyφ̃j,k(y) + q(τ̃ + µ̃+ q + 1)φ̃j,k(y)

= (1 + z2)
−j+4

2 D2
zχk(z) + ((τ̃ − µ̃)(1 + z2)

−j+3
2 + (1− 2j − τ̃ − µ̃)(1 + z2)

−j+2
2 z)Dzχk(z)

+(−j(τ̃ − µ̃)(1 + z2)
1
2 + (j2 + j(τ̃ + µ̃))z2 + q(τ̃ + µ̃+ q + 1)− j)(1 + z2)

−j
2 χk(z).

By (3.14), we find that φ̃j,k(y) satisfies the following Jacobi equation

(1− y2)D2
yφ̃j,k(y)− 2

(√
τa,i

γ
+ 1

)
yDyφ̃j,k(y) + j

(
2
√
τa,i

γ
+ j + 1

)
φ̃j,k(y) = 0.
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It follows from [29, p. 22] that φ̃j,k(y) is the Jacobi polynomial given by

φ̃j,k(y) =
(−1)j

2jj!
(1− y2)−

√
τa,i

γ
dj

dyj

(
(1− y2)j+

√
τa,i

γ

)
. (3.15) eqq0027

Thus, by (3.2), we know that the equality of (3.2) holds if and only if for the
functions given by (3.3) and (3.4). □

⟨rmkq0001⟩Remark 3.1. Since tanh(γt) is bounded in R, by (3.13) and (3.15),

|ϕi,j | ≲ Ψ for all i and l.

In particular, by (3.3) and (3.4), we have |ρ0,2| ≲ Ψ and |ρ1,0,l| ≲ Ψ for all l =
1, 2, · · · , N .

Remark 3.2. By (3.4) and (3.12), we find that ρ1,0,l(t, θ) = (cosh(γt))
p+1
p−1 θ1,l and

λ1,0 = 1 for b = bFS(a), which coincides with the computations in [19, Lemma 7]
(see also [17, (2.10)]).

4. Energy estimates of cBE

To prove cBE is achieved, we shall follow the ideas of Konig in [24] to derive two
crucial energy estimates of cBE . For this purpose, we need first to establish the
following expression of dist2H1(C)(v,Y), where Y is given by (2.7).

⟨lemq0001⟩Lemma 4.1. Let N ≥ 2 and assume that either

(1) bFS(a) < b < a+ 1 with a < 0 or
(2) a ≤ b < a+ 1 with 0 ≤ a < ac and a+ b > 0.

Then for every v ∈ H1(C),
dist2H1(C)(v,Y) = ∥v∥2H1(C) − C−1

a,b,N sup
h∈Y1

(⟨v, hp⟩L2(C))
2 (4.1) eqq0031

where

Y1 = {v ∈ Y | ∥v∥Lp+1(C) = 1}.

Moreover, suph∈Y1
(⟨v, hp⟩L2(C))

2 is attained for every v ∈ H1(C).

Proof. The proof is a “completion of the square” argument which is the same as
that of [9, Lemma 3] (see also the proof of [24, Lemma 2.2]), so we omit it here. □

For the convenience of the readers, we provide here a standard computation of
the integral

∫
R(cosh(s))

−α(cosh2(s)− 1)βds which is also used in the appendix:∫
R
(cosh(s))−α(cosh2(s)− 1)βds = 2

∫ +∞

0

(cosh(s))−α(cosh2(s)− 1)βds

= 2

∫ +∞

0

(1− cosh−2(s))β(cosh(s))2β−αds

= −
∫ +∞

0

(1− cosh−2(s))β−
1
2 (cosh(s))2β−α+2d(cosh−2(s))

=

∫ 1

0

(1− x)β−
1
2x

α
2 −β−1dx

= B(
α

2
− β, β +

1

2
), (4.2) eqq1041
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for α
2 > β and β > − 1

2 . Now, we have the following crucial energy estimates of
cBE .

⟨propq0002⟩Proposition 4.1. Let N ≥ 2 and assume that either

(1) bFS(a) < b < a+ 1 with a < 0 or
(2) a ≤ b < a+ 1 with 0 ≤ a < ac and a+ b > 0.

Then cBE < 2− 2
1

p+1 . Moreover, if either

(i) a∗c ≤ a < ac and a ≤ b < a+ 1 or
(ii) a < a∗c and b∗FS(a) ≤ b < a+ 1.

Then cBE < 2(p−1)
3p−1 , where a∗c and b∗FS(a) are given in Proposition 3.1.

Proof. Let us first prove that

cBE <
2(p− 1)

3p− 1
. (4.3) eqq1034

under the assumptions (i) and (ii). Testing cBE by the function u = Ψ+ερ0,2 with
ε → 0, then by the definition of cBE , we have

cBE ≤
∥Ψ+ ερ0,2∥2H1(C) − C−1

a,b,N∥Ψ+ ερ0,2∥2Lp+1(C)

dist2H1(C)(Ψ + ερ0,2,Y)
. (4.4) eqq0023

where ρ0,2 is given by (3.3). By ρ0,2 ∈ M⊥ and Lemma 4.1,

dist2H1(C)(Ψ + ερ0,2,Y) = ε2∥ρ0,2∥2H1(C),

which, together with (4.4), implies that

cBE ≤
∥Ψ+ ερ0,2∥2H1(C) − C−1

a,b,N∥Ψ+ ερ0,2∥2Lp+1(C)

ε2∥ρ0,2∥2H1(C)
. (4.5) eqq1023

By Remark 3.1, we can expand ∥Ψ + ερ0,2∥p+1
Lp+1(C) by the Taylor expansion to

arbitrary order terms. Thus,

∥Ψ+ ερ0,2∥p+1
Lp+1(C) = ∥Ψ∥p+1

Lp+1(C) + ε(p+ 1)⟨Ψp, ρ0,2⟩L2(C) + ε2
(p+ 1)p

2
⟨Ψp−1, ρ20,2⟩L2(C)

+ε3
p(p2 − 1)

6
⟨Ψp−2, ρ30,2⟩L2(C) + o(ε3).

It follows from (2.4), ρ0,2 ∈ M⊥ and the Taylor expansion once more, that

C−1
a,b,N∥Ψ+ ερ0,2∥2Lp+1(C) = C−1

a,b,N∥Ψ∥2Lp+1(C) + pε2⟨Ψp−1, ρ20,2⟩L2(C)

+
p(p− 1)ε3

3
⟨Ψp−2, ρ30,2⟩L2(C) + o(ε3). (4.6) eqq1033

By Proposition 3.1,

ρ0,2 =
p(cosh(γs))−

2
p−1

4(p− 1)2
(4(p+ 1)− (6p+ 2)(cosh(γs))−2)
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under the assumptions (i) and (ii). It follows from (2.3) and (4.2) that

⟨Ψp−2, ρ30,2⟩L2(C) =

(
(p+ 1)(ac − a)2

2

) p−2
p−1

|SN−1|
∫
R
(cosh(γs))−

2(p−2)
p−1 ρ30,2ds

=
p3

8γ(p− 1)6

(
(p+ 1)(ac − a)2

2

) p−2
p−1

|SN−1|
(
8(p+ 1)3B(

p+ 2

p− 1
,
1

2
)

−12(p+ 1)2(3p+ 1)B(
p+ 2

p− 1
+ 1,

1

2
) + 6(p+ 1)(3p+ 1)2B(

p+ 2

p− 1
+ 2,

1

2
)

−(3p+ 1)3B(
p+ 2

p− 1
+ 3,

1

2
)

)
,

which, together with the well known fact that B(m,n) = m−1
m−1+nB(m−1, n), implies

that

⟨Ψp−2, ρ30,2⟩L2(C) =
2(p+ 1)p3

γ(7p− 3)(5p− 1)(p− 1)6

(
(p+ 1)(ac − a)2

2

) p−2
p−1

|SN−1|

×B(
p+ 2

p− 1
,
1

2
)(p4 − 6p2 + 8p− 3)

> 0

since p > 1. Thus, by (2.4), (2.5), (4.5), (4.6) and Propostion 3.1,

cBE ≤
∥ρ0,2∥2H1(C) − p⟨Ψp−1, ρ20,2⟩L2(C)

∥ρ0,2∥2H1(C)
− ε

p(p− 1)⟨Ψp−2, ρ30,2⟩L2(C)

3∥ρ0,2∥2H1(C)
+ o(ε)

<
∥ρ0,2∥2H1(C) − p⟨Ψp−1, ρ20,2⟩L2(C)

∥ρ0,2∥2H1(C)

=
2(p− 1)

3p− 1

for ε > 0 sufficiently small, which implies that (4.3) holds true under the assump-
tions (i) and (ii).

It remains to prove that cBE < 2 − 2
2

p+1 for N ≥ 2 under the conditions (1)
and (2). For this purpose, we use vs = Ψ + Ψs as a test function of cBE , where
s → +∞. Then we have

cBE ≤
∥vs∥2H1(C) − C−1

a,b,N∥vs∥2Lp+1(C)

dist2H1(C)(vs,Y)
. (4.7) eqq1035

By (2.3), (2.4) and direct calculations, we have

∥vs∥2H1(C) = 2∥Ψ∥2H1(C) + 2

∫
C
ΨpΨsdµ

= 2∥Ψ∥2H1(C) + 2

∫
{t< s

2}×SN−1

(ΨpΨs +Ψp
sΨ)dµ

= 2∥Ψ∥2H1(C) + 2A0e
− 2

p−1γs +O(e−
p+1
p−1γs), (4.8) eqq0040

where

A0 =

(
(p+ 1)(ac − a)2

2

) p+1
p−1

∫
C
(cosh(γt))−

2p
p−1 e

2
p−1γtdt.
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Since Ψs ≤ Ψ in (−∞, s
2 ) by (2.3), by (2.3) once more and the Taylor expansion,

∥vs∥p+1
Lp+1(C) = 2

∫
{t< s

2}×SN−1

(Ψs +Ψ)p+1dµ

= 2

∫
{t< s

2}×SN−1

Ψp+1dµ+ 2(p+ 1)

∫
{t< s

2}×SN−1

ΨpΨsdµ+

∫
{t< s

2}×SN−1

O(Ψp−1Ψ2
s)dµ

= 2∥Ψ∥p+1
Lp+1(C) + 2(p+ 1)A0e

− 2
p−1γs + o(e−

2
p−1γs).

Thus, by (2.4), (2.5) and the Taylor expasion, we have

∥vs∥2H1(C) − C−1
a,b,N∥vs∥2Lp+1(C) = (2− 2

2
p+1 )∥Ψ∥2H1(C) − 2A0e

− 2
p−1γs + o(e−

2
p−1γs).(4.9) eqq1036

On the other hand, by (2.4) and Lemma 4.1,

dist2H1(C)(vs,Y) = ∥vs∥2H1(C) − C−1
a,b,N sup

h∈Y1

(⟨vs, hp⟩L2(C))
2

= ∥vs∥2H1(C) − C
−1+ 2p

p−1

a,b,N sup
τ∈R

(⟨Ψ+Ψs,Ψ
p
τ ⟩L2(C))

2 (4.10) eqq0035

We denote Hs(τ) = F (τ) +Gs(τ) with

F (τ) = ⟨Ψ,Ψp
τ ⟩L2(C) and Gs(τ) = ⟨Ψs,Ψ

p
τ ⟩L2(C).

Clearly, by (2.3) and the symmetry of Ψ,

sup
τ∈R

Hs(τ)
2 = max

0≤τ≤ s
2

Hs(τ)
2 = ( max

0≤τ≤ s
2

Hs(τ))
2.

Moreover, Hs(τ) is strictly increasing in (−∞, 0) and strictly decreasing in (s,+∞).
We denote

Hs(τ(s)) = max
0≤τ≤ s

2

Hs(τ).

Note that by (2.3) and the symmetry of Ψ, F (τ) is also strictly increasing in
(−∞, 0) and strictly decreasing in (0,+∞). Thus, F (0) is the unique strictly global
maximum of F (τ). Since we also have

F (τ) = ⟨Ψ−τ ,Ψ
p⟩L2(C) and Gs(τ) = ⟨Ψs−τ ,Ψ

p⟩L2(C),

by similar estimates of (4.8),

F (0) + o(1) = Hs(0) ≤ Hs(τ(s)) = F (τ(s)) + o(1) ≤ F (0) + o(1)

as s → +∞. It follows from the continuity and monotone property of F (τ) that
τ(s) = o(1) as s → +∞. Again, by similar estimates of (4.8) and the Taylor
expansion,

Hs(τ(s)) = F (τ(s)) +Gs(τ(s))

= F (0) +
F ′′(0)

2
τ(s)2 + o(τ(s)2) + 2A0e

− 2
p−1γ(s−τ(s)) +O(e−

p+1
p−1γs),

which, together with Hs(τ(s)) ≥ H(0) = F (0)+Gs(0) and F ′′(0) < 0, implies that

τ(s)2 ≲ e−
2

p−1γ(s−τ(s)) − e−
2

p−1γs +O(e−
p+1
p−1γs)

≲ τ(s)e−
2

p−1γs + o(τ(s)2) +O(e−
p+1
p−1γs).
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It follows from p > 1 that τ(s) = o(e−
1

p−1γs). Thus, by the Taylor expansion and
similar estimates of (4.8) once more, we have

Hs(τ(s)) = F (0) +Gs(0) +O(τ(s)2) +Gs(τ(s))−G(0)

= F (0) +Gs(0) + +O(τ(s)2) +O(τ(s)e−
2

p−1γs + e−
p+1
p−1γs)

= F (0) +Gs(0) + o(e−
2

p−1γs).

By (2.4), (2.5), (4.8) and (4.10),

dist2H1(C)(vs,Y) = 2∥Ψ∥2H1(C) + 2

∫
C
ΨpΨsdµ− C

−1+ 2p
p−1

a,b,N

(
∥Ψ∥p+1

Lp+1(C) +

∫
C
ΨpΨsdµ

)2

+o(e−
2

p−1γs)

= ∥Ψ∥2H1(C) − C
−1+ 2p

p−1

a,b,N (

∫
C
ΨpΨsdµ)

2 + o(e−
2

p−1γs)

= ∥Ψ∥2H1(C) + o(e−
2

p−1γs). (4.11) eqq1037

By (4.7), (4.9) and (4.11), we have

cBE ≤
∥vs∥2H1(C) − C−1

a,b,N∥vs∥2Lp+1(C)

dist2H1(C)(vs,Y)

= 2− 2
2

p+1 − 2A0C
2

p−1

a,b,Ne−
2

p−1γs + o(e−
2

p−1γs)

< 2− 2
2

p+1

for s > 0 sufficiently large, which completes the proof. □

5. Proof of main results

We mainly follow the strategy of Konig in [24] to prove Theorem 1.3.

Proof of Theorem 1.3: Let vn be a minimizing suquence of (2.6). Then we have
{vn} ⊂ H1(C)\Y and

∥vn∥2H1(C) − C−1
a,b,N∥vn∥2Lp+1(C)

dist2H1(C)(vn,Y)
= cBE + on(1). (5.1) eqq0030

As that in [24], we normlize vn by assuming ∥vn∥2Lp+1(C) = 1. It follows from (5.1)

that

(cBE + on(1))dist
2
H1(C)(vn,Y) + C−1

a,b,N = ∥vn∥2H1(C). (5.2) eq0002

Since by Proposition 4.1, (3.11) and (3.12), 0 < cBE < 1 under the conditions (1)
and (2), by Lemma 4.1,

(1− cBE + on(1))∥vn∥2H1(C) = C−1
a,b,N − (cBE + on(1))C

−1
a,b,N sup

h∈Y1

(⟨v, hp⟩L2(C))
2.

Thus, it is easy to see that {vn} is bounded inH1(C), which together with Lemma 4.1,
also implies that {dist2H1(C)(vn,Y)} is bounded. As that in [24], by the Lions lemma

(cf. [5, Lemma 4.1]), up to translating the sequence {vn}, we may assume that
vn ⇀ f weakly in H1(C) for some non-zero f . We decompose

vn = f + gn in H1(C) where gn ⇀ 0 weakly in H1(C).
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For the sake of clarity, we divide the following proof into three steps.
Step. 1 We prove that gn → 0 strongly in H1(C) as n → ∞.
Suppose the contrary that gn ̸→ 0 strongly in H1(C), then by the Lions lemma

(cf. [5, Lemma 4.1]) once more and the fact that gn ⇀ 0 weakly in H1(C), there
exist sn ∈ R such that |sn| → +∞ and gn(· − sn) ⇀ g0 ̸= 0 weakly in H1(C). We
denote M(v) = suph∈Y1

(⟨v, hp⟩L2(C))
2. Then by Lemma 4.1,

M(gn) = (⟨gn, hp
n,∗⟩L2(C))

2 and M(f) = (⟨f, hp
f ⟩L2(C))

2.

Since gn(· − sn) ⇀ g0 ̸= 0 weakly in H1(C) with |sn| → +∞, we must have

hn,∗ = C
1

p−1

a,b,NΨ(t− s′n,∗) with |s′n,∗| → +∞. It follows that

M(vn) ≥ (⟨vn, hp
n,∗⟩L2(C))

2 = M(gn) + on(1)

and

M(vn) ≥ (⟨vn, hp
f ⟩L2(C))

2 = M(f) + on(1).

Thus,

M(vn) ≥ max

{
M(gn),M(f)

}
+ on(1). (5.3) eqq2036

We denote S(v) =
∥v∥2

H1(C)

∥v∥2
Lp+1(C)

. Moreover, without loss of generality, we assume

that ∥gn∥2Lp+1(C) ≤ ∥f∥2Lp+1(C). Then by (2.6), (4.1), (5.2), (5.3) and the fact that
cBE < 1,

on(1) = on(1)dist
2
H1(C)(vn,Y)

= ∥vn∥2H1(C) − C−1
a,b,N − cBEdist

2
H1(C)(vn,Y)

= (1− cBE)∥vn∥2H1(C) − C−1
a,b,N + cBEC

−1
a,b,N sup

h∈Y1

(⟨vn, hp⟩L2(C))
2

≥ ∥f∥2H1(C) − C−1
a,b,N∥f∥2Lp+1(C) − cBEdist

2
H1(C)(f,Y) + (1− cBE)∥gn∥2H1(C)

−C−1
a,b,N

(
(∥f∥p+1

Lp+1(C) + ∥gn∥p+1
Lp+1(C))

2
p+1 − ∥f∥2Lp+1(C)

)
+ on(1)

≥
(
1− cBE −

C−1
a,b,N

S(gn)

(
(qp+1

n + 1)
2

p+1 − 1

q2n

))
∥gn∥2H1(C) + o(1), (5.4) eqq1040

where qn =
∥gn∥Lp+1(C)

∥f∥Lp+1(C)
≤ 1. By [24, Lemma 2.3], we have

(qp+1
n + 1)

2
p+1 − 1

q2n
≤ 2

2
p+1 − 1,

which, together with (2.5) and (5.4), implies that

cBE ≥ 2− 2
2

p+1 .

It contradicts Proposition 4.1. Thus, we must have gn → 0 strongly in H1(C).
Step. 2 We prove that dist2H1(C)(f,Y) > 0 under the assumptions (i) and (ii).

Again, we suppose the contrary that distH1(C)(f,Y) = 0, then by Step. 1, we have

gn → 0 strongly in H1(C). It follows that dist(vn,Y) → 0. Now, we are in the same
situation as that in the proof of [24, Proposition 4.1]. Thanks to Proposition 3.1,
we can use the same argument as that used for [6, Proposition 2] (see also the proof
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of [32, Proposotion 4.1]) to show that cBE ≥ λ0,2−1
λ0,2

under the assumptions (i) and

(ii), which contradicts Proposition 4.1 under the assumptions (i) and (ii). Thus,
we must have dist2H1(C)(f,Y) > 0 under the assumptions (i) and (ii).

Step. 3 We prove that the variational problem (2.6) has a minimizer f under
the assumptions (i) and (ii).

Since by Step. 1, gn → 0 strongly in H1(C) and by Step. 2, dist2H1(C)(f,Y) > 0

under the assumptions (i) and (ii), the variational problem (2.6) has a minimizer
f under the assumptions (i) and (ii). 2
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7. Appendix: The remaining case

The remaining case, that is, N ≥ 2 with a < a∗c and bFS(a) < b < b∗FS(a), is
very special for the variational problem (2.6). On one hand, by Proposition 4.1,

the energy estimate cBE < 2 − 2
2

p+1 still holds for this case. On the other hand,

if we can establish the energy estimate cBE < λ∗ =
λ1,0−1
λ1,0

for this case as that

for the cases (i) and (ii) in Proposition 4.1, then by the same arguments as that
used for Theorem 1.3, we can still prove that cBE is attained in this case, where λ∗
is given by Proposition 3.1. In what follows, we shall show that the test function
u = Ψ+ ερ1,0,l with ε → 0, which seems to be the possiblely optimal test functions
according to Proposition 3.1, is invalid in deriving the energy estimate cBE < λ∗
in this case.

By Proposition 3.1, it is easy to see that ⟨Ψp−2, ρ31,0,l⟩L2(C) = 0 for all l =
1, 2, · · · , N . Now, as that in the proof of Proposition 4.1, we will have cBE ≤
λ∗ + o(ε) in the remaining case. Thus, to go further, we need to expand ∥Ψ +
ερ0,2,l∥2Lp+1(C) to higher oder terms. Since by Remark 3.1, we can expand ∥Ψ +

ερ0,2,l∥2Lp+1(C) to arbitrary order terms, by the Taylor expansion,

∥Ψ+ ερ1,0,l∥p+1
Lp+1(C) = ∥Ψ∥p+1

Lp+1(C) + ε(p+ 1)⟨Ψp, ρ1,0,l⟩L2(C) + ε2
(p+ 1)p

2
⟨Ψp−1, ρ21,0,l⟩L2(C)

+ε3
p(p2 − 1)

6
⟨Ψp−2, ρ31,0,l⟩L2(C) + ε4

p(p2 − 1)(p− 2)

12
⟨Ψp−3, ρ41,0,l⟩L2(C)

+o(ε4). (7.1) eqq0050

It follows from (2.4), ρ1,0,l ∈ M⊥ and the Taylor expansion once more, that

C−1
a,b,N∥Ψ+ ερ1,0,l∥2Lp+1(C) = C−1

a,b,N∥Ψ∥2Lp+1(C) + pε2⟨Ψp−1, ρ21,0,l⟩L2(C)

+
p(p− 1)ε3

3
⟨Ψp−2, ρ31,0,l⟩L2(C) +

p(p− 1)(p− 2)ε4

12
⟨Ψp−3, ρ41,0,l⟩L2(C)

−C
p+1
p−1

a,b,N

(p− 1)p2ε4

4
(⟨Ψp−1, ρ21,0,l⟩L2(C))

2 + o(ε4). (7.2) eqq2033
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Then by Proposition 3.1, (7.1) and (7.2), we will have the following energy estimate:

cBE ≤ λ∗ −
Ẑa,b,N,l

∥ρ1,0,l∥2H1(C)
ε2 + o(ε2), (7.3) eqq3051

where we denote

Ẑa,b,N,l =
p(p− 1)(p− 2)

12
⟨Ψp−3, ρ41,0,l⟩L2(C) − C

p+1
p−1

a,b,N

(p− 1)p2

4
(⟨Ψp−1, ρ21,0,l⟩L2(C))

2.

Clearly, if we want to derive the desired energy estimate cBE < λ∗, we need to

show that Za,b,N,l > 0 where p > 2 is necessary. Recall that p = N+2(1+a−b)
N−2(1+a−b) with

a ≤ b < a+1, Thus, we must have 2 ≤ N ≤ 5 for p > 2. It follows that Ẑa,b,N,l < 0
for N ≥ 6, which implies that we can not derive the desired estimate cBE < λ∗ for
N ≥ 6 and a < a∗c with bFS(a) < b < b∗FS(a) any more by the possiblely optimal
test functions u = Ψ+ ερ1,0,l as ε → 0.

For 2 ≤ N ≤ 5, we know that p > 2 is equivalent to

b < b∗∗FS(a) := a− ac +
N

3
.

It follows from a < a∗c with bFS(a) < b < b∗FS(a) that a
∗∗
c < a < a∗c where

a∗∗c = ac −
2√
5

√
N − 1.

Moreover, b∗∗FS(a) < b∗FS(a) for a < a∗∗∗c and b∗∗FS(a) > b∗FS(a) for a > a∗∗∗c where

a∗∗∗c = ac −
√
3

3

√
N − 1.

We remark that since 2 ≤ N ≤ 5, we have a∗∗∗c < a∗c . Since p is decreasing for b,
we have

q∗(a) ≤ p ≤ 2q∗(a)− 1 for a∗∗∗c ≤ a < a∗c (7.4) eqq9099

and

2 ≤ p ≤ 2q∗(a)− 1 for a∗∗c ≤ a < a∗∗∗c , (7.5) eqq9098

where

q∗(a) =

√
1 +

N − 1

(ac − a)2
. (7.6) eqq9097

We also remark that for a ∈ [a∗∗c , a∗c),

2 ≤ q∗(a) ≤
(
N + 2

N − 2

)
+

for a∗∗∗c ≤ a < a∗c (7.7) eqq9095

and

3

2
≤ q∗(a) ≤ 2 for a∗∗c ≤ a < a∗∗∗c . (7.8) eqq9094

By Proposition 3.1 and (2.3), we have

⟨Ψp−3, ρ41,0,l⟩L2(C) =

(
p+ 1

2
(ac − a)2

) p−3
p−1

∫
SN−1

θ41,ldθ

∫
R
(cosh(γt))−2( p−3

p−1+
2
√

τa,1

γ )dt
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and

⟨Ψp−1, ρ21,0,l⟩L2(C) =
p+ 1

2
(ac − a)2

∫
SN−1

θ21,ldθ

∫
R
(cosh(γt))−2(1+

√
τa,1

γ )dt

where τa,1 is given by (3.8). Since by symmetry, we have∫
SN−1

θ21,ldθ =
1

N
|SN−1| and

∫
SN−1

θ41,ldθ =
3

N(N + 2)
|SN−1|,

by (4.2) and the explicit formula of C−1
a,b,N given by [12, Corollary 1,3], that is,

C−1
a,b,N =

p+ 1

2
(ac − a)

p+3
p+1

( 2
√
πΓ

(
p+1
p−1

)
(p− 1)Γ

(
3p+1
2(p−1)

)) p−1
p+1

,

we have

Ẑa,b,N,l = (ac − a)
p−5
p−1

p(p− 2)|SN−1|
2N(N + 2)

(
p+ 1

2

) p−3
p−1

×
(
B(

p− 3

p− 1
+ 2

√
τa,1

γ
,
1

2
)−

pDNB2(1 +
√
τa,1

γ , 1
2 )

(p− 2)B( p+1
p−1 ,

1
2 )

)
, (7.9) eqq9093

where

DN =
(N + 2)|SN−1|

N
.

Since it is well known that

|SN−1| =


2πm

(m− 1)!
, N = 2m,

2(2π)m

(2m− 1)!!
, N = 2m+ 1,

we have

DN =



4π, N = 2,

20π

3
, N = 3,

3π2, N = 4,

56π2

15
, N = 5.

(7.10) eqq9096

Recall that by the definitions of γ and τa,1 given by Proposition 3.1 and (3.8),
respectively, we have

√
τa,1

γ
− 2

p− 1
=

2

p− 1
(q∗(a)− 1).

Thus, by (7.4) and (7.5),

1 ≤
√
τa,1

γ
− 2

p− 1
≤ 2,

where we have also used the monotone property of q∗(a). As that in the compu-
tations for the cases (i) and (ii) in the proof of Proposition 4.1, by the monotone
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property of the beta function B(m,n) in terms of m and the equality B(m,n) =
m−1

m−1+nB(m− 1, n),

B(
p− 3

p− 1
+ 2

√
τa,1

γ
,
1

2
)−

pDNB2(1 + 2
√
τa,1

γ , 1
2 )

(p− 2)B( p+1
p−1 ,

1
2 )

=
2
√
τa,1

γ − 2
p−1

2
√
τa,1

γ − 2
p−1 + 1

2

B(2
√
τa,1

γ
− 2

p− 1
,
1

2
)−

pDNB(1 + 2
√
τa,1

γ , 1
2 )

(p− 2)
p+1
p−1

p+1
p−1+

1
2

×
p+1
p−1+1
p+1
p−1+

3
2

B( p+1
p−1 + 2, 1

2 )
B(1 + 2

√
τa,1

γ
,
1

2
)

≤ 4

(
2q∗(a)− 1

8q∗(a) + p− 5
− 2DNp2(p+ 1)

(p− 2)(2p+ 1)(5p− 1)

)
B(1 + 2

√
τa,1

γ
,
1

2
)

=
4B(1 + 2

√
τa,1

γ , 1
2 )fa,N (p)

(8q∗(a) + p− 5)(p− 2)(2p+ 1)(5p− 1)
, (7.11) eqq9092

where

fa,N (p) = −2DNp4 − 2(4DN − 5)(2q∗(a)− 1)p3 − (17(2q∗(a)− 1) + 2DN (8q∗(a)− 5))p2

−7(2q∗(a)− 1)p+ 2(2q∗(a)− 1)

with q∗(a) given by (7.6). Since q∗(a) ≥ 3
2 and DN ≥ π by (7.7)-(7.8) and (7.10),

respectively, we have

fa,N (p) ≤ −2DNp4 − 2(4DN − 5)(2q∗(a)− 1)p3 − (17(2q∗(a)− 1) + 2DN (8q∗(a)− 5))p2

≤ −p2(2DNp2 + 2(4DN − 5)(2q∗(a)− 1)p)

< 0

for p > 1. It follows from (7.9) and (7.11) that Ẑa,b,N,l < 0 for 2 ≤ N ≤ 5 and a < a∗c
with bFS(a) < b < b∗FS(a), which implies that we also can not derive the desired
estimate cBE < λ∗ from (7.3) for 2 ≤ N ≤ 5 and a < a∗c with bFS(a) < b < b∗FS(a).
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